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Abstract

The causes of a disease and its therapies are not only related to genotypes, but also associated with other factors, including
phenotypes, environmental exposures, drugs and chemical molecules. Distinguishing disease-related factors from many
neutral factors is critical as well as difficult. Over the past two decades, bioinformaticians have developed many
computational resources to integrate the omics data and discover associations among these factors. However, researchers
and clinicians are experiencing difficulties in choosing appropriate resources from hundreds of relevant databases and
software tools. Here, in order to assist the researchers and clinicians, we systematically review the public computational
resources of human diseases related to genotypes, phenotypes, environment factors, drugs and chemical exposures. We
briefly describe the development history of these computational resources, followed by the details of the relevant databases
and software tools. We finally conclude with a discussion of current challenges and future opportunities as well as
prospects on this topic.
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Introduction

As the advance of sequencing and other high-throughput tech-
nologies are producing big omics data for medical research, how

to utilize and analyze these data to understand human diseases
has become increasingly challenging. Whole exome sequencing
or whole genome sequencing could unravel hundreds of thou-
sands to even millions of variants, of which only a few may
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be disease-causative or related [1–4], thus identifying disease-
causing genes and pathogenic variants is critical in human
genetics studies. The focus of the genetics field is shifted from
the production of genotypic data to the annotation and interpre-
tation of analysis results.

The causes of a disease and its therapies are not only related
to genotypes but also associated with other factors, such as
phenotypes, environmental exposures, drugs and chemical
molecules, etc. Distinguishing disease-related factors from
many neutral factors is critical as well as difficult. Misleading
assignment of pathogenicity to factors may result in inaccurate
disease-risk assessments and diagnoses along with unsuitable
treatments. Individual phenotype, broadly defined as any
observable characteristics of an individual [5], arises from
complex interactions between the above multiple factors.
Correct and accurate interpretation of the relationships between
these factors is fundamentally important for the investigation
of human disease mechanisms.

Over the past two decades, bioinformaticians have developed
more than 100 computational resources to integrate the omics
data and discover associations among genotypes, phenotypes,
environmental exposures, drugs and chemical molecules. These
computational resources, including databases such as Online
Mendelian Inheritance in Man (OMIM) [6], ClinVar [7] and dbGAP
[8–10], software tools such as Polyphen [11], ANNOVAR [12], Eigen
[13], DeepSea [14] and PhenIX [15] and web platforms such as
Open Targets [16] and DisGeNet [17], offer online and stan-
dalone applications to prioritize genotype–phenotype associa-
tions (GPAs), phenotype-drug/chemical-target associations and
other associations. Undoubtedly, these computational resources
have facilitated the research in life sciences and greatly sup-
ported the development of precision clinical medicine. However,
researchers and clinicians are experiencing difficulties in choos-
ing appropriate resources from hundreds of relevant databases
and software tools. Therefore, it is imperative to critically review
the disease-related databases and tools, not only for life scien-
tists, but also for medical researchers and clinicians.

Here we systematically review the public computational
resources of human diseases related to genotypes, phenotypes,
environment factors, drugs and chemical exposures. We begin
with the history of development of computational resources for
human diseases, followed by the description of the relevant
databases and the comparison of their scales of data and
scopes of usage. Then we summarize and compare the software
tools and the web platforms for the deeper understanding of
associations between multiple disease-related factors. Finally,
we conclude with a discussion of current challenges and future
opportunities as well as prospects on this topic.

Development of the computational resources
Disease-related data, including phenotypes, genotypes, environ-
ment factors and drug/chemical exposures, were mainly gener-
ated by a range of international projects or research programs
and have been stored and integrated in different public com-
putational resources, freely available to the public (Figure 1 and
Supplementary S-Table 1).

OMIM is the first established database to provide a cata-
log of human genes and genetic disorders [6], followed by the
starting of the Human Genome Project in 1990. Five years later,
the Human Gene Mutation Database (HGMD) was published to
handle the data of human gene mutations [18, 19], followed
by the construction of dbSNP [20] and Orphanet [21] in the
late 1990s to integrate data of single nucleotide polymorphisms

(SNPs) and rare diseases based on protein-coding genes. Since
the year of 2000, several organism models have been developed
and the databases of these model species are available not only
for life science studies but also for medical research, e.g. Mouse
Genome Database (MGD) [22] and MouseNet [23], Rat Genome
Database (RGD) [24] and Zebrafish Model Organism Database
(ZFIN) [25]. In 2000s, the databases of drug targets and chemical
molecules were established to accelerate the development of
molecular drugs, such as PharmGKB [26], DrugBank [27] and
PubChem [28]. Since the late 2000s, noncoding RNAs have been
found important in the development of diseases [29–33], and
thus databases have been constructed to classify relationships
between noncoding RNAs and human diseases, for example,
NONCODE [34], miR2Disease [35] and LncRNADisease [36]. At the
same time, the international projects and research programs of
population genomics, including 1000Genomes [37], TCGA [38, 39],
ICGC [40] and UK10K [41], have produced biomedical big data
for the communities of life and medical sciences to share, anal-
yse and utilize. Environmental factors (EFs), drugs and chem-
icals also play critical roles in the development of diseases,
such as the Comparative Toxicogenomics Database (CTD) [42],
LncREnvironmentDB [43] and Exposome-Explorer [44].

With the rapid growth of data in these databases, data mining
and analysis have become another challenge. Since 2003, at
least 30 tools have been developed to annotate, predict and
prioritize functional effects of genomic variants, as well as to
identify genomic variants of uncertain significance (Figure 1 and
Supplementary S-Table 1), e.g. SIFT [45], PolyPhen [11], ANNOVAR
[12], VASST [46] and GWAVA [47]. Additionally, several ontology-
driven computational tools have been developed to facilitate
clinical interpretation of genomic variants based on functional
prediction of genomic variants and deep phenotype annotations,
such as PhenIX [15] and Phevor [48]. Moreover, machine learn-
ing technologies (including deep learning) have recently been
implemented to predict variations and their biological effects,
for example, CADD [49], Eigen [13], DeepSea [14] and DeepVariant
[50]. Furthermore, several web platforms, such as DisGeNET [17],
MalaCards [51], Monarch Initiative [52] and Open Targets Plat-
form [16], have been established to comprehensively integrate a
variety of disease-related data sources with computational tools,
allowing easy and simultaneous data access and analysis.

Databases
Dozens of public databases have been developed to store,
retrieve and manage disease-related data. According to scopes
and data associations, the databases can be categorized into
seven groups (Table 1). The database group for coding genes
includes data resources that primarily provide association
information between protein-coding genes and phenotypes of
human diseases, while the group for ncRNAs contains non-
coding RNAs information associated with diseases. The group
for genomic variations associates genomic variant information
with phenotypes of disease. The group for population genomic
data focuses on the worldwide clinical genomic variation and
allele frequencies in various populations. The group of genetical
organism models stores association information between
genotypes and phenotypes/diseases of laboratory organisms.
The group of environment exposures offers toxicogenomic
relationships relevant to exposed factors, genes, proteins, phe-
notypes or diseases. The treatment group provides information
that involves target drugs, drug resistance mutations, disease
and their associations. All of these databases offer internet
access of data through web browsers, and some of them also
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Figure 1. Development history of disease-related computational resources. The development of disease-related databases, software tools and web platforms, is depicted

over the timeline. According to scopes and applications, the computational resources are classified into different groups.

offer web Application Programming Interfaces (APIs). Table 1
summarizes the groups according to their scopes and asso-
ciations. Table 2 states the current status of the databases
and Supplementary S-Table 2 states the data standards of
nomenclature. The URLs of the databases can also be found
in the supplementary file.

Coding genes

Approximately 50 databases provide disease-related phenotype
information associated with genotypes. Several of them
focus on depicting the association between protein coding
gene and phenotypes (Table 1). One of the most widely used
databases is OMIM, which is manually collated and integrated
from numerous peer-reviewed literature and other medical
information, offering broad and powerful compilations of
knowledge about human genes, genetic phenotypes and the
relationships between them [6]. The latest OMIM database

contains 15 919 gene descriptions, 8670 phenotypes and
3928 genes with association to 1 or more phenotype(s) [6]
(Table 2). Another similar example is Orphanet [53]. Instead
of targeting on Mendelian disorders, Orphanet focuses on
easy access to accurate and specific recommendations for
the management of rare diseases. It establishes the relation-
ships between classification of rare diseases, textual data
and the appropriate services for patients and healthcare
professionals.

It has been debated that many diseases classically considered
monogenic may be better described as more complex inher-
itance, such as oligogenic mechanisms [101]. Gazzo et al. pub-
lished the DIDA database as a Nucleic Acids Research breakthrough
article in 2016 to offer the first-time detailed information
on genes and associated genetic variants involved in digenic
disorders, the simplest form of oligogenic inheritance [55].
The current DIDA database includes 213 digenic combination-
disease associations involved in 44 digenic diseases (Table 2).

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby071/-/DC1
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Table 1. Comparison of different disease-related data resources

Data resource name Phenotype/Disease Genotype Environmental
factors

Drugs/
chemicals

Association

Mendelian
and Rare

Complex
and Trait

Organism
model of
disorder

Coding Non-coding Function
annotation
of variant

Types Score

Coding genes

OMIM √(M) √(F) √ √(M) √(F) GPAs
Orphanet √ √(M) √(F) √ GPAs,

PDAs
DIDA √ √(digenic) GPAs
DiseaseMeth √(Cancer) √ GPAs
Noncoding RNAs

miR2Disease √ √(miR) GPAs
HMDD v2.0 √ √(miR) GPAs
NONCODE √ √(lnc) GPAs
LncRNADisease √ √(lnc) GPAs
Lnc2Cancer √(Cancer) √(lnc) GPAs
NSDNA √(NSDs) √(ncR) GPAs
circRNADisease √ √(circ) GPAs
MNDR √(F) √(M) √(ncR) GPAs √
Genomic variants

HGMD √ √ √(M) √(F) √ GPAs √
ClinVar √ √ √(M) √(F) √ GPAs √
VarCards √ √ √(M) √(F) √ GPAs √
GWAS Catalog √ √(M) √(F) √ GPAs √
GWAS Central √ √(M) √(F) √ GPAs √
GWASdb √ √(M) √(F) √ √ GPAs,

GDAs

√

COSMIC √(Cancer) √(M) √(F) √ √ GPAs,
GDAs

√

CIViC √(Cancer) √ √ √ GPAs,
GDAs

√

Denovo-db √(NSDs) √(M) √(F) √ GPAs √
miRdSNP √ √(miR) √ GPAs
LincSNP √ √(lnc) √ GPAs √
LncRNASNP √ √(lnc) √ GPAs √
Population genomic data

dbSNP √ √ √ √
ESP √ √ √ √ GPAs
ExAC √ √
1000Genome √ √ √
Kaviar √ √ √
FINDbase √ √ √
Genetical organism models

MGD √ √ √(Mouse) √ GPAs
MTB √(Cancer) √(Mouse) √ GPAs
RGD √ √ √(Rat) √ GPAs
ZFIN √ √ √(zebra

fish)

√ √ GPAs

Environmental exposures
CTD √ √ √ √ GPAs,

GEFAs,
PEFAs

miREnvironment √ √(miR) √ GPEFAs
SM2miR √ √(miR) √ √ GEFAs
LncEnvironmentDB √(lnc) √ GEFAs √
DLREFD √ √(lnc) √ √ GPEFAs

Continued
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Table 1. (continued)

Data resource name Phenotype/Disease Genotype Environmental
factors

Drugs/
chemicals

Association

Mendelian
and Rare

Complex
and Trait

Organism
model of
disorder

Coding Non-coding Function
annotation
of variant

Types Score

Treatments (drugs and their targets)

ChEMBL √(Target) √(F) √ PDTAs
DrugBank √ √ √(Target) √(F) √ PDTAs
DrugCentral √ √ √(Target) √ PDTAs
TTD √ √ √(Target) √ √ PDTAs
PharmGKB √ √ √(Target) √ √ GDAs √
DGIdb √(Target) √ DTAs √
CancerPPD √(Cancer) √(Target) √(Peptides) DTAs

According to scopes and data associations, the databases can be categorised into major groups, but some of them could be included in multiple groups. The
symbol ‘√’ indicates the relevant information provided in each database. The following are the name abbreviations: NSDs: nervous system diseases; M: majority; F:
few; lnc: lncRNA; mi: miRNA; circ: circRNA; ncR: ncRNAs, including lncRNA, miRNA, piRNA, siRNA and snoRNA etc.; GPAs: genotype–phenotype associations; GDAs:
genotype-drug associations; PDAs: phenotype-drug associations; GPEFAs: genotype–phenotype-EF associations; GEFAs: genotype-environmental gactor associations;
PDTAs: phenotype-drug-target associations; DTAs: drug-target associations.

The publication of DIDA may initiate further data annotation and
tool development for deciphering more complex inheritance,
such as polygenic disorders.

Complex diseases generally involve multiple levels of
alterations, such as epigenetics and transcriptomic alter-
ations [102, 103]. The human disease methylation database
(DiseaseMeth), first published in 2012 [104], associates aberrant
DNA methylation with human diseases, especially various
cancers. Data in DiseaseMeth are manually or computationally
extracted from experimental studies and high-throughput
methylome data. The current DiseaseMeth [56] database
contains over 679 000 aberrant DNA methylation-disease
associations across 88 diseases (Table 2). To identify correlations
between DNA methylation and RNA expression, another
methylation-related database, called MethHC, provides a large
collection of DNA methylation data combined with mRNA/
microRNA expression profiles in human cancer [105]. These
resources provide coding gene-disease associations that are a
great utility in different research and clinical purposes, including
the investigation of causes of specific human diseases and the
interpretation of clinical significance of genetic dysfunctions in
coding genes. Researchers are recommended to use OMIM for
studies in Mendelian inheritance, Ophanet for rare disorders,
DIDA for digenic disorders and DiseaseMeth for disease-related
methylation.

Noncoding RNAs

A large portion of human genome is transcribed into non-
coding RNAs (ncRNAs), particularly long-noncoding RNAs
(lncRNAs), micro RNAs (miRNAs) and circular RNA (circRNA),
potentially representing another layer of epigenetic regulation
[33, 106]. Accumulative investigations have shown that ncRNAs
play critical roles in many important biological processes [32]
and its deregulations could be related to a broad spectrum of
diseases [29–33]. Evidently, ncRNAs have become a novel class of
potential biomarkers and targets for disease diagnosis, therapy
and prognosis. Due to their functional and clinical significance,
several databases have been established since 2005, including
miRbase [107] for miRNAs, NONCODE [57], LNCipedia [108] and
lncRNAdb [109] for lncRNAs. These databases connect ncRNA
to diseases and also integrate annotation data of sequences,

functions, expressions, related targets and cellular locations.
For example, the latest NONCODE [57] has annotated 167 150
human lncRNA sequences, of which 1110 are associated with
284 diseases [36] (Table 2).

Several databases target on the association between ncRNA
dysregulation and human diseases (Table 1 and Table 2). For
example, miR2Disease [35] and Human MicroRNA Disease
Database (HMDD) [58] provide miRNA dysregulation-human dis-
ease associations and miRNA-target associations. The current
release of HMDD has integrated 10 368 associations between
572 miRNAs and 378 diseases. Similarly, LncRNADisease [36]
and Lnc2Cancer [59] contain manually curated entries of
experimentally supported lncRNA-disease associations and
lncRNA-target associations, and the latter focuses on association
data for cancer research. Unlike LncRNADisease and Lnc2Cancer,
the Nervous System Disease NcRNAome Atlas (NSDNA) [60]
aims to offer a comprehensive, quality and special resource
of NSD-related ncRNA dysregulation. It manually collects
experimentally supported associations between nervous system
diseases (NSDs) and different types of ncRNAs, including
miRNAs, lncRNAs, piRNAs, siRNAs and snoRNAs. The latest
[60] NSDNA contained 26 128 associations between 8736
ncRNAs and 144 NSDs (Table 2). The MNDR database [110]
integrates experimentally supported and predicted ncRNA-
disease associations from 14 resources such as HMDD [58],
Lnc2Cancer [59], NSDNA and LncDisease [111].

Moreover, several databases store predicted circRNA-disease
associations such as Circ2Traits [112] and manually curated
circRNA-disease associations from peer review papers such as
circRNADisease [61]. Currently, circRNADisease provides 354
curated associations between 330 circRNAs and 48 diseases
including cancers, neurodegeneration and cerebrovascular
diseases [61]. Each association has comprehensive annotation
information such as circRNA name, expression pattern, asso-
ciated partners, associated diseases, experimental detection
techniques and publication reference.

The above resources of ncRNA-disease relationships can be
used conjunctively to discover and predict associations between
novel ncRNAs and diseases, and to facilitate the interpretation
of clinical significance of dysfunctions in ncRNAs. Lnc2Cancer is
preferable for studying cancer-related lncRNAs, and NSDNA for
NSD-related lncRNAs.



Computational resources associating diseases 2103

Table 2. Summary of disease-related databases

Database Scope and scale Date of statistic

Coding genes

OMIM [6] 15 919 gene descriptions, 8670 phenotypes and 3928 genes with association to 1 or
more phenotype(s)

22 June 2018w

Orphanet [53] 6949 associations between genes and rare diseases Aug 2016w

Gene2phenotype [54] 2285 GPAs in developmental disorders Oct 2017w

DIDA [55] 213 digenic combination-disease associations in 44 digenic diseases Oct 2015p

DiseaseMeth v2.0 [56] 679 602 aberrant DNA methylation-disease associations in 88 diseases, especially
in various cancer

Nov 2016p

Noncoding RNAs

NONCODE [57] 1110 lncRNAs associated with 284 diseases Nov 2016p

miR2Disease [35] 3273 associations between 349 miRNAs and 169 diseases Jun 2018w

HMDD v2.0 [58] 10 368 associations between 572 miRNAs and 378 diseases Jun 2013p

LncRNADisease [36] 3000 association between 914 lncRNAs and 329 diseases July 2017w

Lnc2Cancer [59] 1488 associations between 666 lncRNAs and 97 cancers July 2016w

NSDNA [60] 26 128 associations between 8736 ncRNAs and 144 nervous system diseases May 2017w

circRNADisease [61] 354 associations between 330 circRNAs and 48 diseases Apr 2018p

MNDR v2.0 [62] 8824 lncRNA-disease, 70 381 miRNA-disease, 118 piRNA-disease and 67
snoRNA-disease experimental associations across 6 mammals

Nov 2017p

Genomic variants and population genomics

Clinvar [7] 428 435 genomic variant-disease associations across 30 181 genes Jun 2018w

HGMD [63] 224 642 disease related variants on 8784 genes Jan 2018w

Denovo-db [64] (July 2016)p: 32 991 de novo genetic variants in neurodevelopmental disorders
VarCards [65] 110 154 363 artificially generated SNVs and 1 223 370-reported indels in coding

region and splicing sites
Oct 2017p

LOVD 2.0 [66] 3 334 104 (2 400 084 unique) variants in 248 807 individuals in 86 LOVD installations Dec 2015p

MITOMAP [67] 1746 variants on mitochondrial DNA Dec 2015p

COSMIC [68] 208 368 associations between somatic mutations and cancer Nov 2016p

CIViC [69] 1678 interpretations of clinical relevance for 713 variants affecting 283 genes
associated with 209 cancer subtypes and 291 drugs

Feb 2017p

GWAS Catalog v2 [70] ∼60 000 associations between SNPs and traits/diseases Apr 2018w

GWASdb v2.0 [71] 252 530 associations between SNPs and traits/diseases Nov 2015p

GWAS Central [72] 69 986 326 associations between 2 974 961 SNPs and 829 traits/diseases Nov 2017w

LincSNP2.0 [73] 371 647 associations between lncRNA SNPs and diseases, and 1 266 485 Linkage
disequilibrium (LD)-SNPs

Oct 2016p

LncRNASNP2 [74] 697 lncRNA-Disease associations; 602 GWAS-SNPs and 2 859 147 SNPs in LD regions Oct 217p

miRdSNP [75] 786 associations between 630 unique disease-associated SNPs and 204 disease
types

2012p

miRNASNP [76] 2257 SNPs in 1596 human pre-miRNAs;706 SNPs in miRNA mature regions and 227
SNPs in miRNA seed regions

Jan 2015p

dbSNP [77] A genomic variation database including 660 773 127 SNPs of Homo sapiens. Mar 2018w

ExAC [78] Variations from 130 000 subject exome sequencing data from a wide variety of
large-scale sequencing projects

Aug 2016p

ESP [79] 1 788 563 variants of 6700 exome sequencing data from heart-, lung- and
blood-related diseases and traits

Oct 2016p

1000Genome [80-82] Over 88 million variants of 2504 whole genome sequencing data from 26
populations

Oct 2015p

Kaviar [83] Over 162 million variants from 35 projects encompassing 13 200 genomes and
64 600 exomes

Feb 2016w

Genetically modified organism models

MGD [84] 5021 associations between mouse genetic models and human diseases Nov 2016p

MouseNet v2 [85] 788 080 functional gene network associations for laboratory mouse and eight other
model vertebrates

Nov 2015p

MTB [86] 6057 associations between mouse genetic models-human cancer; 2288
associations between specific genes-cancers

Oct 2014p

RGD [87] 2998 associations between rat genetic models-human diseases Nov 2016p

ZFIN [88] 11 348 associations between zebrafish genetic models-human diseases Nov 2016p

Environmental exposures

CTD [89] 1 379 105 chemical-gene associations, 202 085 chemical-disease associations and
33 583 gene-disease associations

Sep 2016p

Continued
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Table 2. (continued)

Database Scope and scale Date of statistic

ExposomeExplorer [44] 8034 concentrations correspond to dietary biomarkers (488) for 50 foods and 78
food compounds

Oct 2016p

CEBS [90] Over 11 000 exposure agents and over 8000 exposure studies Nov 2016p

SM2miR [91] 5161 associations between 1681 miRNAs and 255 small molecules Apr 2015p

miREnvironment [92] 3857 associations between 1242 miRNAs, EFs and 305 phenotypes Sep 2012w

DLREFD [93] 835 associations between 475 LncRNAs, 153 EFs and 124 phenotypes Oct 2016p

Drug/chemical exposures
ChEMBL [94] Over 1.6 million distinct compound structures and 14 million activity values from

over 1.2 million assays; ∼11 000 drug targets including 9052 proteins
Nov 2016p

DrugBank 4.0 [95] 2037 FDA-approved small molecule drugs and 241 FDA-approved biotech
(protein/peptide) drugs; over 6000 experimental drugs and over 201 SNP-associated
drug effects, and 4661 drug targets

Nov 2013p

DrugCentral [96] 2021 FDA drugs, 2423 drugs approved outside US, 3799 small molecules, 239
peptides, 294 other drugs; 10 427 human protein targets including 837 drug efficacy
targets

Oct 2016p

TTD [97] 2071 approved drugs, 7291 clinical trial drugs, 357 preclinical drugs, 17 803
experimental drugs397 successful targets, 723 clinical trial targets, 1469 research
targets

Nov 2015p

PharmGKB [98] 20 017 associations between SNPs and drugs, and 65 important pharmacogenes Jun 2018w

DGIdb [99] 40 017 mining clinically associations between 2644 genes and 11 215 drugs Nov 2015p

CancerPPD [100] 3491 Experimentally verified anticancer peptides and 121 proteins spanning in 21
tissues

Sep 2014p

Scope refers to the major focus of the databases. The number of associations or items currently provided in the database is given. In the date of statistic, p
indicates the Month-Year of statistic from journal publications; w refers to the Month-Year of statistic from official websites.

Genomic variations

Many genetic and complex diseases are associated with genomic
variations and thus many genotype–phenotype databases store
and curate genomic coverage of germline and somatic variations
in single genes across the majority of genetic diseases, including
Mendelian disorders, rare diseases and complex traits (Table 2).
HGMD [63] is a representative repository for the clinical annota-
tion of genetic mutations manually curated from more than 2600
peer-reviewed journals. HGMD has two types of version: the pub-
lic version is freely available to users from academic institutions
and non-profit organizations while the subscription version is
available to all users under a commercial license provided by
QIAGEN Inc. Another representative repository is ClinVar [7],
which provides clinical annotation of genomic variation data.
Data in ClinVar are submitted by clinical laboratory users and
integrated from a variety of curated resources, including HGMD.
Compared to HGMD, the freely available database LOVD provides
not only the gene-centric collection and web search of nuclear
DNA variations, but also the patient-centric data storage and
storage of NGS data, even of variants outside of genes [66].
Moreover, MITOMAP reports 1746 human mitochondrial variants
associated with diseases [67].

To provide standardization of annotation and improve
accessibility of genomic variants, Li et al. developed VarCards
to artificially generate all possible human single nucleotide
variants (SNVs) in coding regions and splicing sites, and to
classify all reported insertions and deletions (indels) [65].
VarCards has annotated variants from more than 60 genomic
data sources, including disease-associated knowledge, func-
tional effects, drug–gene interactions, predicted consequences
through different in silico algorithms and allele frequencies
in different population [65]. VarCards currently maintain over
110 million possible SNVs and more than 1.2 million reported
indels (Table 2). Additionally, several other databases also
cover genomic variations in genome-wide association studies

(GWASs), such as GWAS Catalog [70], GWASdb [71], GWAS Central
[72] and somatic variations in cancer, such as Catalogue of
Somatic Mutations in Cancer (COSMIC) [68].

During recent years, abundant de novo variants and non-
coding variants have been discovered in studies of complex
diseases [64]. Novel variants of an individual not presented in
either of his/her parents are termed de novo [113]. To facilitate
better usages of the data of de novo variants, many databases
have been established to integrate, characterize and annotate
disease-related human de novo variants, including Denovo-db
[64], NPdenovo [114] and Developmental Brain Disorder [115]. On
the other hand, a few other databases focus on the disease/trait-
related variants in human ncRNAs, ncRegion or their transcript
factor binding sites (TFBSs), e.g. lncRNASNP [74], SNP2TFBS [116],
miRdSNP [75], miRNASNP [117] and LincSNP 2.0 [73]. LincSNP
specifically integrates and annotates disease-associated SNPs
in human lncRNAs and TFBSs [73]. Similarly, miRNASNP [117]
collects polymorphisms altering miRNA target sites, in order to
identify miRNA-related SNPs in GWAS SNPs and eQTLs. The cur-
rent miRNASNP [76] has integrated multiple filters to prioritize
functional SNPs and experimentally supported miRNA-mRNA,
as well as provided expression level annotation and correlation
of miRNAs and target genes in various tissues.

These above resources often have a limitation that there is
no mechanism for rapid improvement of the content and anno-
tation of genomic variants. To address this, Griffith et al. have
recently developed the CIViC knowledgebase for biocurators to
annotate the clinical interpretation of variants in cancer which
involves in the susceptible, diagnostic, therapeutic and prog-
nostic relevance of somatic and germline variants of all types
[69]. CIViC currently provides 1678 interpretations of clinical
relevance for 713 variants affecting 283 genes associated with
209 cancer subtypes and 291 drugs. The variants in CIViC are
annotated by provenance of supporting evidence and allowed
users to transparently generate current and accurate variant
interpretations [69].
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Altogether, these comprehensive resources of genomic vari-
ants with disease-related annotations are not only valuable for
investigating the functions and mechanisms of coding genes
and ncRNAs in human diseases, but also helpful for developing
computational tools to functionally predict and interpret clinical
significance of genomic variants in exome and genome sequenc-
ing data. According to the maturity and the annotation quality,
HGMD, ClinVar, CIViC and COSMIC are highly recommended in
this category.

Population genomic data

Population genomics examines genomic variations within and
among various populations. NCBI’s dbSNP is the first published
population genomic database [20], which deposits SNPs and
other classes of minor genetic variation including indels,
copy number variations (CNVs) and structure variations from
multiple resources [77]. With the NGS technology being widely
adopted, several international projects have been launched to
construct and integrate large number of genomic databases
associated with populational phenotypes and features. These
projects include National Heart, Lung and Blood Institute Exome
Sequencing Project (NHLBI ESP), Exome Aggregation Consortium
(ExAC), 1000 Genome and Kaviar (Table 2). NHLBI ESP [79] has
offered an unprecedented depth to identify rare variants located
in protein coding regions from about 6500 individuals who have
been clinically diagnosed with heart, lung and blood disorders.
Similarly, ExAC [118] has discovered rare variants from over
130 000 subjects whose exomes have been sequenced as part
of various disease-specific and population genetic studies. Com-
pared to NHLBI ESP and ExAC, the 1000 Genomes project provides
a comprehensive resource for over 88 million human genomic
variants in 2504 individuals from 26 populations [80–82].
1000 Genomes also offers freely available RNA expression
data from RNA sequencing and expression arrays, which can
be explored to determine whether the genomic variants are
associated with the changes of gene expression in RNA level
[119]. Another consolidated database for allele frequencies is
Kaviar [83] that contains genotype information of over 162
million variants from 35 projects, encompassing 13 200 genomes
and 64 600 exomes. dbSNP is recommended for its quality
annotation and maturity, Kaviar is recommended for its large
scale of data in both genomes and exomes and 1000 Genomes
is preferable for studying diseases associated with different
populations.

Genetical organism models

Despite the recent success in identifying causative associations
between genetic alterations and disorders, GPAs remain uncov-
ered for many diseases. For example, almost half of the known
genetic disorders recorded in the OMIM knowledgebase are still
unclear for causative genes [120]. With the advanced technology
of gene modifying and gene editing such as RNAi, Zinc-Finger
Nuclease, TALENs and CRISPR/Cas system, a number of genetic
modified organism models have been constructed to investi-
gate genetic mechanisms in human diseases and to identify
GPAs. The disease-associated information of genetically modi-
fied organism models is annotated and available from different
databases, such as MGD [84], MouseNet [85], Mouse Tumor Biol-
ogy (MTB) [86], RGD [87] and ZFIN [88, 121] (Table 2).

MGD is a highly integrated and curated database, housing
comprehensive knowledge about mouse genes, genetic markers

and genomic features as well as associations to various human
diseases [84]. MGD also provides a portal of the Human-Mouse
Disease Connection to facilitate the investigation of phenotypic
similarity between mouse models and human patients. Sim-
ilarly, RGD is a comprehensive data repository for laboratory
rat, involving genomic and genetic variants as well as disease
data [87]. The various disease portals at RGD are entry points
of data and tools related to 12 classes of diseases, including
cancer, diabetes, aging and cardiovascular disease. Compared to
MGD, MTB is a database for mining data on tumor development
and patterns of metastases [86]. It can facilitate the selection of
strains in cancer research. In addition, Zebrafish (Danio rerio) is
another useful model organism to investigate human disease,
especially in developmental disorders. ZFIN is a central resource
for zebrafish genomic, genetic, phenotypic and developmental
data [88]. MGD, MTB, TGD and ZFIN house thousands of
disease associations between the model species and human
beings, involving cancer, mutation, congenic and transgenic
constructions, etc. Other special organism model resources
for rhesus monkey [122], dog [123], chicken [124], Drosophila
[125] and Caenorhabditis elegans [126, 127] have also integrated
confirmed association information between genetic makers
and disorders. Thus, genetical organism models associated with
diseases are useful resources for demonstrating and identifying
the relationships between genetic alterations and phenotypes of
human diseases.

Environmental exposures

Except for genetic factors, accumulative evidence has suggested
that EFs have a great contribution to the development of many
diseases, especially in complex disorders such as cancer and
cardiovascular diseases [128–131]. Moreover, complex interac-
tion between genetic factors and environmental exposures plays
critical roles in developing the phenotypes of diseases. Several
databases have been established to associate environment
factors with protein coding genes and phenotypes of diseases
[44, 90, 132–134] (Table 2). For example, the CTD [89] is a com-
prehensive repository of interactions between chemicals and
gene products, as well as their relationships to diseases.
The latest CTD contains over 30.5 million toxicogenomic
relationships for the interactions of chemical-gene, chemical-
disease and gene-disease [89]. Different from CTD, the Exposome
Explorer database focuses on annotating biomarkers of exposure
to environmental risk factors and dietary [44].

Recently, like other genetic factors, it has been suggested that
miRNAs, lncRNAs and other type of ncRNAs also have complex
interactions with a wide spectrum of exposure factors such as
drugs [135], stress [136], alcohol [137], cigarette [138], virus [139],
radiation [140], air pollution [141] and diet [142] in the devel-
opment of diseases. With the rapid growth of interaction data
between ncRNAs, environmental exposures and development of
diseases, a number of databases have been generated to describe
their relationships, such as SM2miR [91], miREnvironment [92],
DLREFD [93] and LncEnvironmentDB [43] (Table 2). SM2miR is
the first established database to provide experimentally vali-
dated effects of small molecules on miRNA expression and hosts
manually curated association data between miRNAs and small
molecules across 17 species [91]. Compared to SM2miR, miREn-
vironment not only provides manually curated information on
environmental exposures and miRNA expression, but also offers
phenotypes associated with miRNAs and EFs [92]. Different from
SM2miR and miREnvironment for miRNAs, DLREFD [93] and
LncEnvironmentDB [43] focus on the lncRNAs that are exper-
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imentally or computationally associated with environmental
exposures and disease-related phenotypes.

These environment-related databases (Table 2) are valuable
data resources for investigating the impacts of EFs on the devel-
opment of human diseases at the molecular level as well as
at the network level. Due to the large numbers of associations,
CTD is highly recommended for coding genes associated with
environmental and chemical exposures in this category.

Drugs and their targets

To facilitate successful medicine research with comprehensive
information across drug discovery and development process,
several public repositories have been established to dedicate
associations across phenotypes, drugs, chemicals and their tar-
gets (Table 2). Therapeutic Target Database (TTD) is the earliest
repository [143] to provide information about drugs, targets and
their associations with specific pathways. DrugBank [95] and
DrugCentral [96] are the other two main databases, hosting com-
prehensive drug-target interactions and drug action information
captured and integrated from online non-commercial resources,
e.g. US Food and Drug Administration (FDA), European Medicines
Agency and Japan Pharmaceutical and Medical Devices Agency,
as well as curated data from published research articles and
drug labels. DrugBank and DrugCentral have become the ref-
erential drug data source for a number of well-known public
databases such as PubChem [144], ChEMBL [94], PharmGKB [98],
UniProt [145]and SuperTarget [146]. Moreover, TTD, DrugBank
and DrugCentral link to targets and pathways to in silico drug dis-
covery efforts. Other notable databases include PharmGKB [98]
for impact of human genetic variations on drug responses, and
the Drug-Gene Interaction Database (DGIdb) [99] for drug–gene
interactions and gene druggability. Moreover, several databases
have integrated drug-target information with special medical
indications, such as cancer [100, 147, 148], side effects [149],
pharmacophores [150] and special metabolic pathways [151].
The data resources of drugs with diseases enable the investi-
gations of drug effects in specific genetic contexts and provide
new insights in drug action at the molecular level. Due to the
maturity and the data quality, ChEMBL and DrugBank are recom-
mended for drug annotation in this category. On the other hand,
PharmGKB is recommended for the interpretation of impact of
human genetic variations on drug responses.

Software tools and web platforms
Software tools and web platforms are another type of com-
putational resources, accelerating deeper understanding asso-
ciations between multiple disease-related factors. Most of the
available public software tools used to bridge the gaps between
biology, medicine and clinic are driven by either genomic fea-
tures or ontologies. These tools can be downloaded and used
to analyze data in a standalone computer. To analyze online,
several web platforms have been constructed to include inter-
active applications that comprehensively integrate a variety of
disease-related data sources and software tools to prioritize
disease-related associations spanning genotypes, phenotypes
and treatments.

Genomic feature-driven tools

To facilitate clinical interpretation of genetic and genomic
factors, many computational tools have been developed based
on various features including evolutionary conservation,

sequence homology and genomic and epigenetic annotations
(Table 3). These computational tools have been widely used to
annotate, predict and prioritize functional effects of varieties
of genomic variants from high-throughput sequencing data,
including KGGSeq [152, 153], ANNOVAR [12] and wANNOVAR
[154] for functional annotation of genetic variants, VEST3 [155]
and REVEL [156] for prioritization of rare missense variants,
GWAVA [47] and Deepsea [14] for prioritization of noncoding
variants, MutationTaster [157], VAAST [46], CADD [49], DANN
[158], FATHMM-MKL [159] and Eigen [13] for prediction of
the functional consequences of both coding and non-coding
variants (Table 3). Some past research attempted to compare
the usage and performance of these tools. It has been shown
that Eigen has better discriminatory ability than CADD using
disease-related variants and putatively benign variants in both
noncoding and coding regions [13]. Moreover, M-CAP [160] and
InterVar [161] were developed to eliminate the majority of
variants of uncertain significance and facilitate interpretation
of clinical significance of variants (Table 3). Furthermore, SIFT
[45], LRT [162], PolyPhen2 [11], MutationAssessor [163], PROVEAN
[164], FATHMM [165], MetaSVM [166] and IMHOTEP [167] have
been developed to predict functional impacts of amino acid
substitutions (Table 3). On predictions of polymorphisms and
mutations with variants causing single amino acid substitutions,
MutationTaster2 [168] had the highest accuracy compared to
SIFT, PolyPhen-2 and PROVEAN. Different from all the above
tools, ClinLabGeneticist [169] was established to manage clinical
genetic variants from whole exome sequencing based on
extensive variants annotation data (Table 3). ClinLabGeneticist
contains information of data entry, distribution of work
assignments and selection of variants for validation, report
generation and communications between various personnel,
and the entire workflow of ClinLabGeneticist has been integrated
into a single data management platform.

Ontology-driven tools

The ontology databases in life science, such as Human
Phenotype Ontology (HPO) [170–174], Mammalian Phenotype
Ontology [175], Disease Ontology [176], Gene Ontology (GO) [177]
and Experimental Factor Ontology (EFO) [178], provide standard
terminologies and controlled vocabularies to describe and
classify molecules, diseases, genotypic and phenotypic features,
etc. The ontologies can be utilized to support computational
tools that allow sophisticated search and analysis routines. For
example, HPO offers standard terminologies for phenotypic
features and diseases, to bridge the gap between genome
biology and clinical medicine [179]. Several tools use phenotypic
ontologies to enable deep interpretation for the analysis results
of NGS data, including eXtasy [180], PhenIX [15], Exomiser [181],
Phen-Gen [182], Phevor [48] and PhenogramViz [183] (Table 4).
eXtasy, the earliest tool of them, ranks the damaging impacts of
nonsynonymous single-nucleotide variants (nSNVs) by genomic
data fusion. PhenIX evaluates and prioritizes impacts of SNVs,
splice sites and short indels in the exome sequencing data of
Mendelian diseases based on pathogenicity of variants and
semantic similarity of HPO-based phenotypes [15]. Compared
to PhenIX, Phen-Gen implements an exome-centric approach
to rank the impacts of coding mutations, and a genome-wide
approach to prioritize pathogenicity of non-coding variants
(Table 4). Similar to Phen-Gen, the recently developed tool
Exomiser [184] integrates a number of algorithms, including
HiPHIVE [185], PHIVE [186], ExomeWalker [187] and OWLSim
[188], to enable the clinical interpretation of variants in exome
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Table 3. Genomic feature-driven tools for annotation and evaluation of clinical significance of variants

Application Year of first deployment:
tool name

Regular update Based on

Functional annotation of
genomic variants

2010: ANNOVAR [12] Yes, annually since 2015 Functional annotation of genetic variants from
high-throughput sequencing data

2012: wANNOVAR [154] Yes Functional annotation of genetic variants from
high-throughput sequencing data

2012: KGGSeq [152, 153] Yes, bugs fixed monthly Three different levels: genetic level, variant-gene
level and knowledge level

Prediction of functional
impact of amino acid
substitutions

2003: SIFT [45] Last update in Aug 2011 Sequence homology based on PSI-BLAST
2009: LRT [162] Last update in Nov 2009 Sequence homology
2010: PolyPhen2 [11] Last update in 2016 Eight sequence-based and three structure-based

predictive features
2011: MutationAssessor [163] Last update in Dec 2015 Sequence homology of protein families and

subfamilies between species
2012: PROVEAN [164] Last update in Jan 2015 Sequence homology
2013: FATHMM [165] Last update in May 2015 Sequence homology
2015: MetaSVM [166] Last update in 2016 9 prediction scores and allele frequencies in

1000Genomes
2017: IMHOTEP [167] Unknown 9 popular predicted tools

Prioritization of rare
missense variants

2013: VEST3 [155] Yes, quarterly 86 sequence features
2016: REVEL [156] Last update in 2016 13 popular predicted tools
2016: M-CAP [160] Last update in 2016 Pathogenicity likelihood scores and direct

measures of evolutionary, conservation, the
cross-species analog to frequency within the
human population

Prioritization of
noncoding variants

2014: GWAVA [47] Last update in 2014 Various genomic and epigenomic annotations
2015: DeepSEA [14] Yes, annually Regulatory sequence code

Prediction of functional
consequences for both
coding and non-coding
variants

2010: MutationTaster [157] Yes Conservation, splice site, mRNA features, protein
features and regulatory features

2011: VAAST [46] Last update in Sep 2016 Variant frequency data with AAS effect
information on a feature-by-feature basis

2014: CADD [49] Last update in Apr 2018 63 annotations including 949 sequence features
2015: DANN [158] Last update in 2015 63 annotations including 949 sequence features

that is same to CADD
2015: FATHMM-MKL [159] Last update in 2015 1281 sequence features
2016: Eigen [13] Last update in 2016 Functional, evolutionary conservation and

regulatory annotations

Interpretation of clinical
significance of variants

2017: InterVar [161] Yes, last update in Jan.
2018

The-2015-ACMG-AMP-Guidelines

2015: ClinLabGeneticist [169] Last update in 2014 Extensive variant annotation data source and
prioritization of variants

The tools are classified into different categories according to their uses.

and genome sequencing data. Instead of postulating a set of
fixed associations between genes, diseases and phenotypes,
Phevor dynamically integrates various knowledge of multiple
biomedical ontologies into the variant-ranking process [48]. This
enables Phevor to improve its accuracy not only of established
gene-disease-phenotype associations but also of previously
atypical and undescribed disease statements. PhenogramViz
focuses on the interpretation of candidate CNVs and their
pathogenicity prioritization from the data analyses of array
comparative genome hybridization (aCGH) and NGS [183].

In the performance aspect of causal gene identification, pre-
vious researches indicate that Phen-Gen gains 13∼58% improve-
ment in sensitivity over eXtasy, Phevor, PHIVE and the earlier
version of Exomiser [182]. Bone et al. [181] suggest that Exomiser
is slightly favorable compared to Phen-Gen in the causal gene
identification for autosomal dominant disorders and autosomal
recessive disorders as well as the detection of novel variant-

disease associations [181]. Moreover, Exomiser can analyse mul-
tiple samples or families per run for both Mendelian and multi-
genic disorders, while Phen-Gen can only handle single sample
or family per run for Mendelian disorders (Table 4).

eXtasy and Phen-Gen have both online and standalone ver-
sions of programs. The standalone eXtasy has many library
dependencies of bioinformatics, statistics and machine learn-
ing algorithms (Table 4). Exomiser has the standalone version
only, while PhenIX and Phevor have online versions instead.
PhenogramViz can be downloaded, installed as an application
in Cytoscape [189], and used through the Cytoscape interface.
The standalone tools can be installed locally and run within
hospital firewalls, thereby relieving the concerns of privacy and
security for the information of patients. On the other hand,
the online version tools are more acceptable and useable for
many biologic researchers and clinicians, who lack bioinformatic
and computing skills. In the timing aspect, the online eXtasy
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Table 4. Comparison of phenotype-driven tools for interpretation of clinical significance of variants

Year: tool Availability Operation
System

Requirements Algorithms
implemented

Input data and
parameter

Application scopes

2013: eXtasy
[185]

Online
& Standalone

Linux Ruby; Tabix; Bedtools;
R Statistical Framework
with randomForest;
RobustRankAggreg
libraries

Random Forests;
Phenomizer

VCF file; TSV for
HPO term(s)

Mendelian and
oligogenic disorders;
nSNVs; Exome
analysis; (Only 1
sample per run)

2014:
Phen-Gen
[187]

Online
& Standalone

Linux
(Ubuntu,
CentOS, &
RHEL)

Perl Bayesian
framework;
Random walk–with–
restart; Variant-
predicted
pathogenicity
score; Phenomizer

VCF file; text file
for HPO term(s);
Pedigree(PED) file;
Inheritance models;
Type of prediction-
genomic or coding;
Discard de novo and
Stringency

Rare disorders;
nSNVs, splice-sites
and short indels and
non-coding variants;
Genome and Exome
analysis; (Only 1
family or 1 sample
per run)

2014:
PhenIX [15]

Online - - Semantic similarity
score; Variant-
frequency score;
Variant-predicted
pathogenicity score

VCF file; HPO
term(s); Inheritance
modes; Frequency
sources;
Number of
candidates
to show

Mendelian diseases;
SNVs, splice-sites
and
short indels; Exome
analysis; (Only 1
sample per run)

2014:
Phevor [54]

Online - - Disease-gene
association score;
Variant-
prioritization score

VAAST simple or
Table for variants;
Ontology Term(s);
Ontologies to link
to HPO

Rare disorders; SNVs;
Exome analysis;
(Only 1 sample
per run)

2016:
Exomiser
[186]

Standalone Linux; Mac OS X;
Windows

∼4GB RAM for an exome
analysis and ∼12GB RAM
for a genome analysis;
>3 GB free RAM (8 GB
preferred); Java 8
or above

HiPHIVE; PHIVE;
PhenIX; Exome
Walker; OWLSim;
Logistic regression

YML file that
include VCF file
name; HPO term(s);
PED file name;
inheritance modes,
Probands; Frequency
sources;
Pathogenicity
sources and other
alterative
parameters

Mendelian,
oligogenic and
multigenic disorders;
SNVs, splice-sites,
short indels and
non-coding variants;
Genome and Exome
analysis; (Multiple
samples or families
per run)

2014:
Phenogram
Viz [188]

Cytoscape
app

Windows Cytoscape Version
3.1.0. and above

Phenogram-score
(PHS); NAG, OBE,
OPA, HI score

Enter symptom(s)
directly for
symptoms or create
file with HPO
term(s); Lists of
CNVs (include types,
Chromosome, Start,
End); Lists of genes

Mendelian disorders;
CNVs; aCGH and
exome analysis;
(Only 1 sample
per run)

The availabilities, the requirements and the use of these tools are detailed in the table.

takes about 15 min to analyze a whole exome data sample with
∼82 000 variants, while the online PhenIX takes about 100 s to
complete the same analysis, much faster than eXtasy. Exomiser
[184] consumes about 10∼15 min to analyze an exome and
genome sample or family, approximately 5–15 min faster than
the online Pen-Gen (http://54.173.20.191). Moreover, Exomiser
[184] produces HTML, tab-delimited and VCF format files that
can be incorporated into many bioinformatic workflows.

Taken together, the standalone versions of Phen-Gen and

Exomiser are recommended to skilled bioinformaticians for the
interpretation of SNVs, splice-sites, short indels and non-coding
variants from data of exomes and genomes. Exomiser is also
suggested for the analysis of multiple samples or families.
Phevor is recommended for the prioritization of variants

pathogenicity related to previously atypical and undescribed
disease statements, and PhenogramViz for the interpretation of
CNVs pathogenicity.

Interactive platforms

To tackle the hurdles in utilising disease-related data resources,
several web platforms have implemented a number of analysis
software tools to allow users to search, analyze and visualize
the resources through web interface and APIs (Table 5). Most
of these platforms, such as DisGeNET [190], Open Targets [16],
Monarch Initiative [52] and MalaCards [51], target on human
Mendelian and complex diseases, involving data of genotypes,

http://54.173.20.191
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Table 5. Summary of different biomedical data and analysis web platforms

Name Scope and scale (Date of statistic) Applications/Tools
Available

Sources

DisGeNET [190] GPAs (May 2017)w: 429 036 associations
between 17 381 genes and 15 093 human
diseases; 72 870 associations between
46 589 SNPs and 6356 human
diseases/phenotypes

Web interface, DisGeNET
Cytoscape plugin,
Disgenet2r R package,
DisGeNET-RDF

UniProt, dbSNP, GDA, CTD, MGD, OMIM,
Clinvar, RGD, GWAS Catalog, Orphaned,
HPO, UMLS, MeSH, DO, ICD9-CM, HGNC,
dbSNP, CTD in total 22 resources

Monarch Initiative
[52]

Genetically modified model support GPA
(Nov 2016)p: 237 531 gene-phenotype
associations in human; 1 489 573
variant-phenotype associations in
human; 19 783 disease models

Web interface,
Phenotypes Analyzer,
PhenoGrid, Text
annotator, Exomiser

ClinVar, CTD, GeneReviews, OMIM, HPO,
Orphanet, GWAS Catalog, MGI, ZFIN,
NCBI, UCSC, HGNC, MeSH, OMIM, ORDO,
HPO, EFO, UMLS in total 53 resources

Open Targets
Platform [16]

Genotype–phenotype-drug association
(Apr 2018)w: 2 336 807 associations
between genes/variants/drugs and
diseases/phenotypes/targets

Web interface,
Phylogenetic tree and
HEART, Application
programming interface

GWAS Catalog, UniProt, Expression Atlas,
ChEMBL, Reactome, PhenoDigm, UMLS,
MeSH, GO, ECO, HPO, MP, OMIM, ICD9-CM
in total 21 resources

MalaCards [51] Genotype–phenotype-drug association
(Nov 2016)p: 10 198 genes associated with
13 619 disease entries; 966 338
associations between 8005 distinct
diseases and 3017 distinct drugs

Web interface, Tgex,
GeneAnalytics, VarElect
GeneALaCart, PathCards

Clinvar, Cosmic, dbSNP, DGIdb, DrugBank,
FDA, HGMD, OMIM, PharmGKB, ICD10,
MeSH, MGI, UMLS, UniProt in total 68
resources

MARRVEL [191] GPA (June 2017)p: 12.3 million variants;
6.95 million genotype–phenotype
relationships

Web interface, Mutalyzer
Position Converter,
OMIM API, DIOPT, GTEx

ExAC, gnomAD, IMPC, Monarch, ClinVar,
Geno2MP, DGV, DECIPHER, DIOPT,
Mutalyzer, SGD, PomBase, WormBase,
FlyBase, ZFin, MGI and RGD in total 17
resources

Scope refers to the major focus of the web platform. Scale is the number of associations and items currently provided in the platform. Each platform has
integrated multiple tools/applications. Sources refer to the original data resources that have been integrated in the platform. In the date of statistic, p indicates the
Month-Year of statistic from journal publications; w refers to the Month-Year of statistic from official websites.

phenotypes, genetically organism models, drugs targets and
chemical molecules.

The distinctions between different platforms are reflected
in their different focuses and different applications. DisGeNET
[190] is designed to collate GPAs and to offer tool applications for
medical and biological research. It can be plugged into Cytoscape
to visualise and explore gene-disease associations in bipartite
networks [17] (Table 5). Open Targets and MalaCards not only
integrate GPA information from OMIM, GWAS Catalog, ClinVar,
UniProtKB and disease model databases, but also offer infor-
mation of target-diseases related to approved drugs, clinical
candidates, biological pathways and RNA expressions (Table 5).
Due to their comprehensive knowledgebases, sophisticated web

technologies as well as User Experience designs, Open Targets
and MalaCards have been considered as effective platforms
for medicine research. For instance, Open Targets provide two
types of workflows to enable effective applications for different

destinations which are as follows: the disease-centric workflow
to identify targets (such as genes, variants, proteins and chem-
icals) associated with a specific disease, and the target-centric
workflow to identify diseases associated with a specific target
[16]. Moreover, Monarch Initiative semantically integrates geno-
type–phenotype resources from many species for exploring their

relationships across species [52]. Based on its broad genotype–
phenotype information, many tool applications have been devel-
oped on Monarch Initiative, including Phenogrid for phenotype
analysis [52], text annotators [52] for text annotation of genes,
diseases and phenotypes, Exomiser [181] for inferring causative

variants (Table 5). MARRVEL [191] is another publicly available
platform integrating multiple model organism resources for rare
variant exploration. It improves accessibility of data collection

and facilitates analysis of human genes and variants by aggre-
gating about 18 million public data records (Table 5).

Altogether, these platforms have not only facilitated the
research in life sciences, but also greatly supported the
development of precision clinical medicine. They can be used
for the investigation of causes of specific human diseases and
their comorbidities, the discovery of therapeutic action and
adverse effects, the validation of computationally predicted
phenotypes and genotypes and the evaluation of text-mining
methods performance.

Discussion
The computational resources have facilitated deeper under-
standing of disease mechanisms, easier assessment of disease
risks and more accurate diagnoses, and also helped to guide
clinical therapies as well as to evaluate prognosis. However,
challenges remain in many aspects, such as building complex
networks of associations, database design for bigger data,
data analysis with more effective tools and platforms, data
interpretation in consistent and standard manners, result
representation with user friendly interfaces and so on.

Phenotype plays a central role in connection with other
disease-related factors in the current network (Figure 2).
The focus of software and database development is being shifted
from the connection between genotypes and phenotypes to the
association among multiple factors. As wider collaborations
have been made to establish interoperable systems across
international projects, much bigger data are being generated by
many complete genomes of whole populations. Difficulties exist
in connecting much more complex and multi-dimensional data.
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Figure 2. Framework of a comprehensive web platform. A comprehensive web platform should integrate various disease-related information including genotypes,

phenotypes, environmental factors, life styles and so on. The available information in the platform should be homogenously annotated by controlled vocabularies

and community-driven ontologies, such as GenBank, dbSNP and miRbase for genotypes, HPO and DO for phenotypes, EFO and ChEBI for environmental factors and

life styles, DrugBank and PubChem for drugs. Moreover, the platform should have solid scoring models to prioritize associations between different factors, such

as genotype-phenotype associations (GPAs), environmental factor-phenotype associations (EFPAs), genotype-environmental factor-phenotype associations (GEFPAs),

phenotype-treatment associations (PTAs), genotype-treatment associations (GTAs) and genotype-phenotype-treatment associations (GPTAs).

Moreover, additional data types including multi-omics results,
extensive environmental contexts and life styles of patients are
necessary to integrate and associated in the current network.

Obviously, more effective algorithms and software tools are
greatly needed to take more related factors, additional data
types and bigger size of data into account.

Although the approaches of deep phenotyping are helpful
for clinical diagnosis in Mendelian disorders and rare diseases,
patients with similar features or at a same stage of illness
often have various clinical outcomes in cancer and many com-
plex diseases [2]. Existing spectrum of phenotype states is not
optimally captured by current phenotypic ontology systems.
Therefore, substantial efforts are required to better integrate

the ontologies and enable the full interpretation of clinical out-
comes of genetic mutations that may lead to the precision
management of diseases.

Currently, there are abundant biomedical resources that
cover disease information involving in genotypes, phenotypes,
environmental exposures and their associations. However, most

of the popular resources only represent a fraction of available
information. Therefore, more comprehensive platforms are
needed to integrate other ever-growing biomedical information,
such as noncoding genetic factors, multi-omics and extensive
environmental contexts and life styles (Figure 2). In addition,
these platforms should integrate clinical, environmental
contexts and life styles of patients to enable reliable and
useful diagnoses and discoveries, and also make data fully

accessible and easily interpreted through with highly graphical
representation. Moreover, the available information in majority
of databases is represented and annotated by heterogenous
vocabularies (Supplementary S-Table 2). Thus, better platforms
are needed to comprehensively integrate the available infor-
mation with controlled vocabularies and community-driven

ontologies and present analysis results in a consistent and
standard manner (Figure 2). Recently, MNDR has been updated

to offer confidence score of each ncRNA-disease association
based on a simple classification of supporting evidences [62].

However, to better support translational research and precision
medicine, there is a great need to develop solid scoring
models or to refine current models based on experimental
evidences to assist the prioritization of associations, such
as GPAs, EF-phenotype associations, genotype-EF-phenotype
associations, phenotype-treatment associations, genotype-
treatment associations and genotype–phenotype-treatment
associations (Figure 2).

In this review, we detail the human disease-related computa-
tional resources, including databases, software tools and online
platforms. These resources are classified by disparate data types
with focuses on association among genotypes, phenotype, EFs,
organism models, drugs and chemical molecules. We also pro-
vide some of the resulting needs and requirements that should
be regarded as imperative for the development of databases,
tools and platforms (Figure 2).

From the view of precision medicine, better services of com-
putation resources and more training on these services will
accelerate better medical research and clinical diagnoses as
well as treatments. Life scientists, bioinformaticians and clini-
cians are suggested to cooperate to develop more comprehensive
databases, more accurate software tools and more practical
platform systems to facilitate the goals of precision medicine,
enabling reliable and useful diagnoses and discoveries.

Key Points
• The present study is a comprehensive review of avail-

able computational resources of human diseases,
including databases, software tools and interactive
platforms to assist in the appropriate selection and use
of relevant resources.

• Bioinformaticians have developed more than 100
computational resources to integrate omics data and
discover associations among genotypes, phenotypes,

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bby071/-/DC1
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environmental exposures, drugs and chemical
molecules.

• According to scopes and data associations, the
databases can be categorized into seven groups, includ-
ing coding genes, noncoding RNAs, genomic variations,
population genomic data, genetical organism models,
environment exposures and treatments.

• Most of the available public software tools used to
bridge the gaps between biology, medicine and clinic are
driven by either genomic features or ontologies.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.
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