
Understanding the distribution and
fine-scale habitat selection of
mesocarnivores along a habitat quality
gradient in western Himalaya
Meghna Bandyopadhyay1, A. Cole Burton2, Sandeep Kumar Gupta1 and
Ramesh Krishnamurthy1,2

1 Wildlife Institute of India, Dehradun, Uttarakhand, India
2 Faculty of Forestry, University of British Columbia, Vancouver, Canada

ABSTRACT
Background: Human activities have resulted in a rapid increase of modified habitats
in proximity to wildlife habitats in the Himalaya. However, it is crucial to understand
the extent to which human habitat modification affects wildlife. Mesocarnivores
generally possess broader niches than large carnivores and adapt quickly to human
activities. Here, we use a case study in the western Himalaya to test the hypothesis
that human disturbance influenced mesocarnivore habitat use.
Methods: We used camera trapping and mitochondrial DNA-based species
identification from faecal samples to obtain mesocarnivore detections. We then
compared the responses of mesocarnivores between an anthropogenic site and a less
disturbed park along a contiguous gradient in habitat quality. The non-linear pattern
in species-specific habitat selection and factors responsible for space usage around
villages was captured using hierarchical generalized additive modelling (HGAM) and
non-metric multidimensional scaling (NMDS) ordination.
Results: Wildlife occurrences along the gradient varied by species. Leopard cat and
red fox were the only terrestrial mesocarnivores that occurred in both anthropogenic
site and park. We found a shift in habitat selection from less disturbed habitat in the
park to disturbed habitat in anthropogenic site for the species detected in both the
habitat types. For instance, red fox showed habitat selection towards high terrain
ruggedness (0.5 to 0.7 TRI) and low NDVI (−0.05 to 0.2) in the park but no such
specific selection in anthropogenic site. Further, leopard cat showed habitat selection
towards moderate slope (20�) and medium NDVI (0.5) in park but no prominent
habitat selections in anthropogenic site. The results revealed their constrained
behaviour which was further supported by the intensive site usage close to houses,
agricultural fields and human trails in villages.
Conclusions: Our results indicate shifts in habitat selection and intensive site usage
by mesocarnivores in the human-modified habitat. In future, this suggests the
possibility of conflict and disease spread affecting both the people and wildlife.
Therefore, this study highlights the requisite to test the wildlife responses to rapidly
growing human expansions in modified habitats to understand the extent of impact.
The management strategies need to have an integrated focus for further expansions
of modified habitat and garbage disposal strategies, especially in the human-wildlife
interface area.
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INTRODUCTION
Human settlement is one of the most substantial factors modifying habitat conditions for
wildlife worldwide (Vitousek et al., 1997; Andersen et al., 2017). The encroachment of
human settlements into surrounding ecosystems creates new ecological niches (Mckinney,
2002) and also alters existing niches. As a result, there are opportunities for an increase in
anthropogenic food sources for wildlife in and around the human settlements (Verdade
et al., 2011). These food sources benefit some species by affecting their behaviour,
distributions and interspecific interactions (Parmesan, 2006). For instance, coyotes and
white-tailed deer were considered sensitive to human activities but have colonised urban
landscapes in recent decades (Ditchkoff, Saalfeld & Gibson, 2006). Further, a wide range of
wild carnivores inhabited the cropland landscape (Athreya et al., 2013) and agroecosystem
matrix (Ferreira et al., 2018). Some carnivores adapt quickly to human-modified habitats
by utilising anthropogenic food sources (Ghoshal, 2011; Athreya et al., 2016; Naha et al.,
2020b), while some are adversely affected by these habitat alterations (Carricondo-Sanchez
et al., 2019).

The Himalaya has faced consistent pressure from increased human settlements due to
agricultural practices, more intensive grazing by domestic animals and increased demand
for timber (Cronin, 1979; Schaller, 1980). Consequently, the increasing quantity and
proximity of readily available anthropogenic subsidies facilitate increasing dependencies of
native carnivores on these resources (Ghoshal, 2011; Ghoshal et al., 2016; Rajaratnam,
Vernes & Sangay, 2016; Khan et al., 2020). Additionally, the natural resources are localised
in the rugged landscapes and often are not readily available to carnivores compared to the
anthropogenic food resources. Moreover, when anthropogenic food resources replace
natural prey due to habitat modifications, such changes affect wildlife distribution (Ripple
et al., 2014; Parsons, Newsome & Young, 2022). In this context, there is a paucity of
information regarding the modified habitats adjacent to less disturbed natural forests and
their effect on the native wildlife in the rugged landscape of Himalaya.

In this study, we studied mesocarnivores to understand the impact of habitat
modification in the western Himalaya. Mesocarnivores are known for their diverse
behaviour and ecology; hence they are more generalist when living in close proximity to
humans than large carnivores (Roemer, Gompper & Van Valkenburgh, 2009). Their diverse
nature makes them receptive to small-scale habitat alterations, and they responds more
quickly than large carnivores (Randa & Yunger, 2006). Thus, they serve as helpful
indicator species in preserving sensitive habitats (Kalle et al., 2013; Torre et al., 2022).
Apart from being an indicator species, mesocarnivores efficiently utilise anthropogenic
food sources, like garbage dumps, agricultural products, kitchen wastes and livestock
carrions (Reshamwala et al., 2018), due to their opportunistic behaviour and ability to
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adapt to modified habitats (Rajaratnam et al., 2007; Lorica & Heaney, 2013). In this
situation, the site usage near human habitations by mesocarnivores enables the shared
spaces by wildlife and human to be the most probable zone for zoonotic disease spread
(Ghimire, Regmi & Huettmann, 2020) and conflict risks (Peterson et al., 2021).
Mesocarnivores are known to be the potential hosts of zoonoses at the wildlife-livestock-
human interface (Yang et al., 2021). That is why transmission of diseases like rabies, canine
distemper viruses and anthrax can occur bi-directionally, affecting both humans and
wildlife (Beineke, Baumgärtner & Wohlsein, 2015;Muturi et al., 2018; Acharya et al., 2020;
Gonzálvez, Martínez-Carrasco & Moleón, 2021). Therefore, knowledge of mesocarnivore
space usage in human-modified habitats can aid in improving management strategies in
the light of future outbreaks of zoonotic diseases and conflict probabilities (Alexander
et al., 2012; Theimer et al., 2017; Ng et al., 2019; Ferreira et al., 2021; Veals et al., 2021).

The Great Himalayan National Park Conservation Area (GHNPCA) of Western
Himalaya comprises of heterogeneous habitat gradient. Hence, we considered it as the
study site to understand the responses of mesocarnivores to habitat modification in
ecozone (henceforth, anthropogenic site) and national park (henceforth, park). Change in
carnivore habitat selection from a relatively less human-disturbed to a more
human-disturbed area in favour of easily available resources can be seen in a continuum of
mosaic habitats (Boydston et al., 2003). Therefore, studying carnivore distribution along
the habitat gradient consisting of both the human-modified and natural forest (Andersen
et al., 2017) will aid in (a) understanding the status of the human-wildlife interface and
(b) enabling integrated management of nature and people in the susceptible landscapes.
In the context of anthropogenic habitat in GHNPCA, the human population was 15,000
from 160 villages in 1995 (Tucker, 1997), reaching about 9,000 in just six villages in 2011
(www.census2011.co.in). With the increase of human population, there were conversions
of forested habitats into arable lands for agricultural practices (Tucker, 1997). Since
settlements and agricultural plots generate human-induced resources (Verdade et al.,
2011), there are chances that the resources are available in more quantity and close to
natural habitat than before. We used 3rd order habitat selection of mesocarnivores related
to the usage of habitat components within the home range (Johnson, 1980). We expected
mesocarnivores to show changes in habitat selection in anthropogenic site relative to park
in GHNPCA. Mesocarnivores prefer fine-scale forest fragments (Červinka et al., 2011) and
use a variety of habitats (Gese & Thompson, 2014). Therefore, we selected habitat variables
like slope, ruggedness, elevation, normalized difference vegetation index (NDVI) and
distance to woodland (riparian forest at hill base) to identify the changes in the habitat
selection. The selected potential habitat variables important for mesocarnivores
occurrences also aligned with other studies where elevation, terrain ruggedness, etc., were
used as explanatory variables for red fox and leopard cat occurrences (Parsons et al., 2019;
Kalle et al., 2013). Although some studies have shown the utilization of human-modified
habitats by mesocarnivores in the Himalayas and other areas (Verdade et al., 2011; Lorica
& Heaney, 2013; Bashir et al., 2014;Ghoshal et al., 2016), information regarding the scale of
such utilization is still scarce. Hence, the study focuses on the following objectives: (1) To
understand the distribution pattern of mesocarnivores along the habitat gradient; (2) to
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determine species-specific habitat selection of mesocarnivores in the park and
anthropogenic site; and (3) to determine factors responsible for space usages by
mesocarnivores in the anthropogenic site.

MATERIALS AND METHODS
Study area
The Great Himalayan National Park Conservation Area (GHNPCA), a UNESCO world
heritage site (UNESCO, 2011; UNESCO, 2014: https://whc.unesco.org/en/list/1406/), is
located in the Kullu district of Himachal Pradesh, western Himalaya, India (Fig. 1).
The area of GHNPCA covers four catchments (river), viz., Parvati, Jiwa, Sainj and Tirthan.
The administrative boundary divides into anthropogenic sites representing the buffer area
and park representing the core forest area. We selected Tirthan for the intensive studies
due to the similarity in habitat characteristics with the entire GHNPCA (Singh & Rawat,
1999). Tirthan catchment (300 sq. km.) represents a highly variegated landscape with
lower temperate Chir pine (Pinus roxburghii), Banj oak (Quercus leucotrichophora) and
open scrubs at lower elevation (<2,000 m) to upper temperate Fir (Abies pindrow), Kharsu
oak (Quercus semecarpifolia) forests and alpine meadows at high elevation (2,500 to
4,000 m) within an aerial distance of 35 km. A detailed list of the composition of the
vegetation structure is available in Singh & Rawat (1999).

Camera trapping
We conducted camera trapping in five sessions from 2017 to 2019, covering the
anthropogenic site and park in all the human-established trails. Number of sampling
locations (n) and days of effort (t) in the respective five sessions were April–July 2017;
n = 59, t = 2,986, October–December 2017; n = 78, t = 2,589, April–July 2018; n = 40,
t = 1,791, October–December 2018; n = 82, t = 2,737 and April–June 2019; n = 81,
t = 1,763. We deployed 340 camera traps from 2017 to 2019 (Fig. 1, Figs. S1 to S5)
(Table S1). Total camera trap effort was 11,866 (no. of camera traps × operational days).
The total number of camera traps and effort in the anthropogenic site were 120 and 2,582,
and in the park, 220 and 9,284, respectively. Table S1 consists of detailed information
regarding the number of days of each camera trap. We deployed camera traps
systematically with a minimum distance of 0.5 km and a maximum distance of 1 km
between each consecutive trap location.

Faecal sampling
We could not conduct camera trapping and regular monitoring in some areas inside the
park as the habitats have rugged terrain and harsh climatic conditions (Ramesh,
Sathyakumar & Rawat, 1999; Singh & Rawat, 1999). Therefore, we adopted non-invasive
methods like faecal sample collection to cover the relatively inaccessible areas inside the
park for mesocarnivores showing high detections through camera trapping. Following the
dry sampling protocol, we collected carnivore faecal samples opportunistically during the
same period (Biswas et al., 2019). We surveyed 125 trails, each length 500 m (Fig. 1)
(Table S1), and collected 161 carnivore faecal samples. We stored the samples at −20 �C
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and subjected them for mesocarnivore species confirmation using molecular markers
(Cytochrome b, 146 bp) because of the presence of other sympatric carnivores (Vinod &
Sathyakumar, 1999; Bandyopadhyay, Dasgupta & Krishnamurthi, 2019) in the study area.

Species confirmation
We extracted DNA from faecal samples by swabbing the outer layer and following the
protocol described in Ball et al. (2007) and Biswas et al. (2019). Further, we used a
carnivore-specific molecular marker (Cytochrome b, 146 bp) to ascertain the species
(Farrell, Roman & Sunquist, 2000). We performed PCR reactions in 10 µl reaction volumes
with 5 µl multiplex master mix, 1 µl of bovine serum albumin (BSA), 0.8 µl of each primer,
0.4 µl RNAse free water and 2 µl of template DNA. PCR conditions were 95 �C for 10 min
followed by 38 cycles at 95 �C for 30 s, annealing at 55 �C for 50 s and extension 72 �C for
50 s, with a final extension of 72 �C for 10 min. We monitored the effectiveness and
consistency of the PCR reactions by using positive and negative controls. The amplified

Figure 1 Map of GHNPCA showing sampling in park (faecal site) (survey trail mid points = 125), park (camera site) (camera trap
locations = 220) and anthropogenic site (camera trap locations = 120) during 2017 to 2019. Full-size DOI: 10.7717/peerj.13993/fig-1
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PCR amplicons were visualized in UV light on 2% agarose gel stained with green stain dye.
Exonuclease I (EXO-I) and shrimp alkaline phosphatase (SAP) (Thermo Scientific,
Waltham, MA, USA) treatments were given to the amplified PCR products for 15 min each
at 37 �C and 80 �C, respectively, to eliminate any residual primer and unused dNTPs.
The amplified PCR products were sequenced using the BigDye� Terminator cycle
sequencing Kit (v3.1; Thermo Fisher Scientific, Waltham, MA, USA) and analyzed on an
ABI 3500XL Applied Biosystems Genetic Analyzer (ABI 3500xl, Applied Biosystems,
Waltham, MA, USA). Finally, we identified the sequences by comparing them in the NCBI
database using the BLAST tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Data analysis
Distribution pattern
We used 15 min as the minimum interval to consider species detection from camera traps
(photo capture, C) as independent detections for estimating the relative abundance index
(RAI; capture rate per 100 trap night) of mesocarnivores in the park and anthropogenic
site. Red fox (Vulpes vulpes) and leopard cat (Prionailurus bengalensis) were the only
terrestrial mesocarnivores detected in the park and anthropogenic site. Thus, we
considered red fox and leopard cat for further analyses and calculated the total detections
and RAI in the park and anthropogenic site. We calculated the RAI of red fox and leopard
cat for all five sessions and plotted it against the respective locations (latitude and
longitude). We used the package “camtrapR” in R (v.4.0.5; R Core Team, 2021) to generate
the plots. We used the resulting plots to determine the distribution pattern of each
mesocarnivore along the habitat gradient covering park and anthropogenic site.

Habitat selection
The anthropogenic site was situated at the lower reaches (<2,500 m), while the park was at
the higher side (>2,500 m) of the elevation gradient. The park and anthropogenic site
demonstrated overlapping values of the covariates of interest like, terrain ruggedness,
slope, NDVI and distance to woodland (because of riparian forest at hill base and
grasslands at hill brows). For instance, terrain ruggedness overlapped highly (0.3 to 0.6 in
anthropogenic site and 0.3 to 0.7 inside park) and elevation had low overlap (1,500 to
2,900 m in anthropogenic site and 2,000 to 4,300 m in park) (Figs. S6 to S10, Table S2).
Thus, the habitat characteristics in park and anthropogenic sites were comparable except
for the presence of human settlements in the latter. The villages were majorly located near
the river at lower reaches on hill slopes, hill base, less rugged terrain, and woodlands.
In this condition, species with specific habitat preferences in their natural state might likely
differ when exposed to anthropogenically modified habitats (Schuette et al., 2013).

We selected habitat variables based on red fox and leopard cat ecology. We identified
five habitat variables as potentially significant predictors where red fox (McDonald et al.,
2017; Sacks, Statham & Wittmer, 2017; O’Malley et al., 2018; Martin-Garcia et al., 2022)
and leopard cat (Bashir et al., 2014; McCarthy et al., 2015; Can et al., 2020) were likely to
occur: elevation, slope, terrain ruggedness, NDVI and distance to woodland (riparian
forests at hill base). Red fox preferred alpine meadows (high elevation, moderate slope),
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rugged terrain, and open and rocky areas (low NDVI) (Weber & Meia, 1996; Murdoch
et al., 2016; Kumar, Magar & Kumar Dhamala, 2019; Naseer et al., 2020), and grasslands at
hill brow (away from woodland at hill base) (Sacks, Statham & Wittmer, 2017; Rodríguez
et al., 2020) in natural forests and used variety of habitats in anthropogenic areas (Mueller,
Drake & Allen, 2018; Jahren et al., 2020; Jackowiak et al., 2021). Hence, we expected red fox
to show habitat selection towards high rugged, high elevation, moderate slope, low NDVI
and away from woodlands inside the park and no habitat selection pattern in
anthropogenic site. On the other hand, leopard cat occurred in temperate to sub-alpine
forests (>3,000 m, moderate slope) (Mishra, Madhusudan & Datta, 2006; Thapa et al.,
2013; Irawan et al., 2020). Leopard cats prefer rugged terrain, tree-covered (high NDVI),
and woodland habitats (Ghimirey & Ghimire, 2010; Bashir et al., 2014; Buzzard, Li &
Bleisch, 2018; Pin et al., 2022) in natural forests. It used lower reaches and a wide range of
habitats in anthropogenic sites (Lorica & Heaney, 2013; Petersen et al., 2019; Wu et al.,
2020). Likewise, for leopard cats, we expected to see habitat selection towards high rugged,
high elevation, moderate slope, high NDVI, closer to woodlands inside the park and no
such pattern in the anthropogenic site.

Data preparation
We categorised the area surveyed for carnivore faecal samples inside the national park as
park (faecal site). These were the areas where we could not conduct camera trapping due to
rugged terrain. We used five explanatory variables as the habitat covariates in the park
(faecal site): elevation, terrain ruggedness index (TRI), slope, NDVI and distance to
woodland (Table S2). We extracted the habitat covariates from the midpoint of each of the
0.5 km trails.

We categorised the camera trapped area inside the national park as park (camera site).
Explanatory variables used as habitat covariates in the park (camera site) and
anthropogenic site were the same as park (faecal site). We extracted the values of all habitat
covariates from each camera trap point location (Table S2).

We checked for the collinearity between habitat covariates in park (faecal site), park
(camera site) and anthropogenic site using r values (−1 to 1) as it might reduce the
precision of the estimated coefficients (Dormann et al., 2013). None of the covariates was
co-related in either the anthropogenic site or park (Figs. S11–S13). The test was performed
on the R platform using package lattice (Sarkar, 2008).

Data visualisation
In park (faecal site), we assessed the total number of genetically confirmed faecal samples
of red fox and leopard cat. We considered each mesocarnivores’ relative abundance index
(RAI) as the number of confirmed faecal samples from each trail (0.5 km). In park (camera
site), we calculated the RAI of red fox and leopard cat as the capture rate per 100 trap
nights for each camera trap location. Likewise, we calculated the RAI of red fox and
leopard cat for each camera trap location using the capture rate per 100 trap nights in the
anthropogenic site. We plotted the RAI of the mesocarnivores against the respective
habitat covariates for all five sampling sessions in the park (faecal site), park (camera site)
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and anthropogenic site to account for linear, non-linear patterns and outliers. Most of the
RAI vs covariate relationships were non-linear (Figs. S14 to S19); therefore, we chose
hierarchical generalized additive modelling (HGAM) (Zuur, 2012; Pedersen et al., 2019) to
model each response of mesocarnivores to habitat covariates.

Statistical analysis
We separately modelled the detections from genetically confirmed mesocarnivore faecal
and camera trap data. We performed GAM using “mgcv” package (Wood, 2011) in R
(v.4.0.5) to assess the habitat selection of mesocarnivores in park (faecal site). Here, we
considered the number of genetically confirmed red fox faecal samples (F = 83) from each
trail as the response variable. Due to the low sample size of genetically confirmed leopard
cat faecal samples (F = 40), we dropped leopard cat for habitat selection analysis. We found
a linear relationship between red fox faecal count and elevation (Fig. S17) while data
visualisation; hence we did not apply a smoother function. The equation of spline
regression (Zuur & Ieno, 2018) used for the additive model for red fox in park (faecal site)
was:

Fj ¼ aþ f ðelevationjÞ þ f ðTRIjÞ þ f ðslopejÞ þ f ðNDVIjÞ
þ f ðdistance to woodlandjÞ þ ej

(1)

where Fj = number of genetically confirmed red fox faecal samples from each trail, j = each
survey trail, a = intercept, f = smoother function, Ɛ = residuals. The underlying idea of
spline regression is to separate the covariate into k segments (knots) and apply a bivariate
linear regression model to the data of each segment. A smoother was obtained by
connecting the regression lines for all segments (Zuur & Ieno, 2018). To allow for smooth
connections at the knots, we used a cubic regression spline for each covariate (Zuur, 2012).
For example, the equation of smoother function for elevation in Eq. (1) becomes:

f ðelevationjÞ ¼ b1 � elevationj þ b2 � elevation2j þ b3 � elevation3j

þ
Xk

p¼1
�ðelevationjp–kpÞ3þ þ ej

(2)

where j = each survey trail, β = unknown regression parameters, k = number of knots,
p = knot positions in the x-axis. We first modelled Gaussian, Poisson and negative
binomial distributions without k-value (to avoid the unnecessarily large number of
candidate models) to select the best distribution. We then chose the model with the lowest
AIC and tested it with possible 8 k-values (2 to 9). Therefore, the number of candidate
models for red fox in park (faecal site) was 40: 5 variables × 8 k-values. In park (camera
site) and anthropogenic site, we performed HGAM. We used the number of
mesocarnivore detections (C) from each camera traps as the response variable and camera
operational days as an offset. The park (camera site) and anthropogenic site were used as
two zones and incorporated into the model as factors. The equation of the additive model
using park (camera site) and anthropogenic sites as factors was:
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Ci ¼ aþ f ðelevationi; by¼fzoneÞ þ f ðTRIi; by¼fzoneÞ þ f ðslopei; by¼fzoneÞ
þ f ðNDVIi; by¼fzoneÞ þ f ðdistance to woodlandi; by¼fzoneÞ
þ offset ðlogdaysÞ þ ei

(3)

where Ci = number of mesocarnivore detections from each camera trap location, i = each
camera trap location, a = intercept, f = smoother function, logdays = logarithm of camera
operational days, fzone = park (camera site) and disturbed site, Ɛ = residuals. The number
of candidate models for each mesocarnivore in park (camera site) and anthropogenic site
was 40: (5 variables × 8 k-values). We plotted the response curves (detections) of
mesocarnivores against each significant explanatory variable for park (faecal site), park
(camera site) and anthropogenic site, respectively. We used the package “ggplot2”
(Wickham, 2016) and “ggeffects” (Lüdecke, 2018) in R (v.4.0.5) for plotting the response
curves. We evaluated the significance of the explanatory variables in each model using the
p-values from the Wald statistics in the “mgcv” package. We also evaluated the effective
degrees of freedom (edf) for each covariate to understand the scale of non-linearity
captured by the model. The shaded area in the resulting plots represents 95% point-wise
confidence bands of the smoother covariates (Zuur, 2012).

Model selection
We selected the best model based on the lower Akaike Information Criterion (AIC),
overdispersion values (OD) (Zuur, 2012; Zuur, Hilbe & Ieno, 2013) and k values with the
best ecological meaning (Figs. S14 to S19). For park (faecal site), we selected negative
binomial GAM as the best distribution for the habitat selection model for red fox.
We chose the best model out of 40 candidate models with AIC = 241.4 and OD = 1.2.
For the combined model of park (camera site) and anthropogenic site, we selected negative
binomial distribution as the best distribution. We chose the best model each for red fox
(AIC = 744.8, OD = 2.8) and leopard cat (AIC = 988.9, OD = 2.2) out of 40 candidate
models.

Model validation
We performed concurvity test to check for non-linear dependencies in the predictor
variables for each of the best models in park (faecal site) and combined model of park
(camera site) and anthropogenic site (Amodio, Aria & Ambrosio, 2014). We did not find
any concurvity in the predictor variables (Figs. S20–S22). We conducted homogeneity test
to check for any pattern in the residuals due to model misspecification (Pearson residuals
vs fitted values) (Zuur, Leno & Smith, 2007; Zuur, 2012; Zuur, Hilbe & Ieno, 2013).
We performed independence test to check for patterns in residuals due to any covariate
(Pearson residual vs covariates) (Zuur, 2012; Zuur & Ieno, 2018). We did not find any clear
pattern in either of the Pearson residual vs fitted values plots (indicating homogeneity,
Figs. S23, S24) or Pearson residual vs covariate plots (showing independence, Figs. S25,
S26) for red fox and leopard cat in park (faecal site), park (camera site) and anthropogenic
site. We checked for spatial dependency using semi-variogram plots (residual vs space)
using package “gstat” (Pebesma, 2004) in R (v.4.0.5). The semi-variogram plots (Pearson
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residual vs space) indicated no spatial dependency in the photo captures (C) of red fox and
leopard cat to the distance between sampling locations in park (faecal site), park (camera
site) and anthropogenic site (Figs. S27, S28). We also investigated the influential
observations in the model using cook’s distance and found four influential observations for
red fox in the anthropogenic site and were not dropped (Figs. S29, S30).

Non-metric multidimensional scaling for factors responsible for space usage
by mesocarnivores in anthropogenic site
After assessing the habitat selection by mesocarnivores in the anthropogenic site, we
investigated the driving factors that might be possibly responsible for space usage in the
anthropogenic site. Since the villages were small and located at a distance, the type of
human attributes changed on moving outwards from the village core. For instance, the
village centre had the maximum number of houses surrounded by a few agricultural plots.
In contrast, the village edges had fewer houses, mainly farming fields and human trails.
Therefore, we categorised the camera trap locations into three human attributes: houses,
agricultural plots, human trails, and three topography types: hill base, hill slope and hill
top. Human disturbances like livestock, humans and dogs also varied with increasing
distance to the village. To depict the variation of the three human attributes, three village
topography types and three human disturbance variables, we divided the distance to village
into three classes; “within village” (0 to 300 m), “near village” (300 to 600 m) and “away
from village” (>600 m) based on distances between camera trap locations and village
centroids (average village area radius 300 m). We calculated the RAI (capture rate per 100
trap nights) of red fox, leopard cat, human, dog and livestock for all the categories under
three distance classes. We used Non-metric Multidimensional Scaling (NMDS) (Clarke,
1993) to understand the factors responsible for space usage of mesocarnivores in villages.
NMDS was performed in R using “vegan” package (Oksanen et al., 2020). We modelled the
ordination over different dimensions (1, 2 and 3) with Bray-Curtis distance and selected
the best model based on the lowest stress value (less than 0.05 is a good fit) (Zuur, Leno &
Smith, 2007).

RESULTS
Distribution pattern
Total detections of red fox and leopard cat were 344 and 524, respectively. In park, red fox
and leopard cat detections were 119 and 405, and in the anthropogenic site, the detections
were 214 and 130, respectively. RAI of red fox in the park and anthropogenic site were 1.54
(0.14) and 8.77 (0.39), and of leopard cat were 4.47 (0.29) and 5.01 (0.28), respectively
(values in the parenthesis depict standard error). Figure 2 shows the RAI of red fox and
leopard cat along the habitat gradient, including all five camera trapping sessions.

Habitat selection
Inside park, GAM results of red fox in remote high elevation areas using genetically
confirmed faecal samples revealed preference for certain habitats. Red fox occurred mostly
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at high rugged terrain (0.5 TRI, p-value: 0.0009, edf = 1.8) (Fig. 3D), low slope (edf = 0.7)
(Fig. 3E) and low NDVI (0.2, p-value: 0.0002, edf = 1.9) (Fig. 3F) sites.

Using camera traps, we found similar habitat preferences of red fox inside the park.
Red fox preferred areas with rugged terrain (0.6 TRI, p-value: 0.0009, edf = 1.4) (Fig. 3A),
moderate slope (20�, p-value: 0.0004, edf = 2.8) (Fig. 3B) and low NDVI (0.1, p-value:
0.0002, edf = 2.2) (Fig. 3C). Also, cameras detected leopard cat most commonly at
moderate slope (20�, p-value: 0.0001) (Fig. 4A) and high NDVI (0.4 to 0.6, p-value: 0.03)
(Fig. 4C) inside park. Although leopard cat occurrence decreased with increasing elevation,
we found a peak in the smoother curve at 3,000 m elevation (Fig. 4B) (p-value: 0.0005).
All the p-values mentioned above refer to the significance of the smoother covariate, not
the predicted mesocarnivore counts at a particular value of the smoother covariate. On the
other hand, neither red fox nor leopard cat showed any habitat-specific selection in the
anthropogenic site. As we did not find any prominent peak in the smoother curves of red
fox and leopard cat with either of the habitat covariates (Figs. 3A–3C and 4A–4C). Except
for an additional peak at 0.6 NDVI (edf = 2.9) in case of red fox (Fig. 3C). The other
smoother curves of habitat covariates in relation to leopard cat and red fox habitat
selection were provided in Figs. S31 and S32, respectively. Although the GAM models
revealed species-specific habitat selection but most of the non-linear effect of habitat
covariates on red fox and leopard cat detections were small (indicated by small edf values)
due to low detections at camera trap locations. Hence precautions should be taken while
interpreting results considering ecological meaning.

Figure 2 Relative abundance index (capture rate per 100 trap night) of mesocarnivores in GHNPCA during the sampling period from 2017 to
2019. Full-size DOI: 10.7717/peerj.13993/fig-2
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Factors responsible for space usage by mesocarnivore in
anthropogenic site
The three-dimensional NMDS ordination identified the factors responsible for intensive
site usage in villages by red fox and leopard cat (stress value 0.017; Figs. 5, 6; Tables S3, S4).
We have provided the shepherd diagrams (a graphical representation of the stress values)
of all the tested models for red fox and leopard cat in Figs. S30 and S31. We found the
relationship of red fox and leopard cat to three human attributes (house, agricultural plot,
human trail), three village topography types (hill base, hill slope, hill top) and three human
disturbance variables (human, dog, livestock). Within villages, red foxes used sites near
households and hill slopes, showing positive relation to livestock (Fig. 5). Red foxes near
the village used more agricultural plots and hill slopes, showing positive relation to
livestock. Away from the village, human-made village trails and hill base were the sites
where red foxes mostly occurred. Red fox showed negative relation to the disturbance
variables; human and dog. Leopard cats within villages primarily used agricultural plots
and hill slopes (Fig. 6). Near the village, they mostly used houses and hill slopes (Fig. 6).
Away from the village, leopard cats used human trails and hill base. Overall, leopard cats
showed negative relation to humans, dogs and livestock.

Figure 3 Response curves of the best models from HGAM (negative binomial distribution) showing habitat selection of red fox in park
(camera site, blue line) and anthropogenic site (red line) (A to C) and park (faecal site, blue line) (D to F).

Full-size DOI: 10.7717/peerj.13993/fig-3
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DISCUSSION
Distribution in human-modified – natural gradient
The study was the first attempt to understand the effect of fine-scale habitat modification
using habitat covariates like slope, elevation, ruggedness and NDVI on the distribution of
mesocarnivores using complementary (camera traps and molecular) approaches in
GHNPCA in the western Himalaya. We observed variation in the site intensity usage of
mesocarnivore in the anthropogenic site-park gradient, where the anthropogenic site is
located at lower reaches and park at higher elevations. For instance, the overall capture rate
(RAI) of red fox and leopard cat in the anthropogenic site was higher than in the park.
The result contradicts the established literature from GHNPCA in 1999, where red fox and
leopard cat were recorded only inside the park at high elevations (Vinod & Sathyakumar,
1999). The shift in presence of mesocarnivores from less disturbed forested habitats to
human dominated habitats in the last two decades affirms the increasing human
population and its associated land usages in the landscape and its effect on native wildlife.
In the previous research, some results were comparable due to the substantial walk effort of
290 km in anthropogenic site and 867 km in the park. However, carnivore sign surveys on
human trails were not as robust compared to camera trapping used in this study. In the
current study, the higher RAI of red fox and leopard cat in the anthropogenic site than in
park explains the intensive site usage by the native wildlife in the human-dominated areas
in GHNPCA. The result was analogous to studies by Lorica & Heaney (2013) and

Figure 4 Response curves of the best models from HGAM (negative binomial distribution) showing habitat selection of leopard cat in park
(camera site, blue line) and anthropogenic site (red line) (A to C). Due to low faecal sample size leopard cat was dropped for park faecal site.

Full-size DOI: 10.7717/peerj.13993/fig-4
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Reshamwala et al. (2018), where red fox and leopard cat occurred more frequently in
anthropogenically disturbed areas like human settlements, agricultural plots, etc.
The possible reason can be that the disturbed areas favour the native wildlife for readily
available food resources like carrions, rodents, kitchen wastes, etc. And as a result, they use
these areas more frequently than less disturbed habitats. The variation in site usages along
the disturbed to natural gradient, elucidates the role of mesocarnivores as indicators of
habitat quality (Goad et al., 2014; Šálek, Drahníková & Tkadlec, 2015; Wang, Allen &
Wilmers, 2015). The differences in intensive site usage by native wildlife point towards
habitat modifications in terms of increasing households, expanding agricultural plots,
availability of human-induced food resources, etc. at the lower reaches of GHNPCA. After
assessing the overall distribution pattern, we further investigated the site-specific
occurrences of red fox and leopard cat using 3rd order habitat variables in park and
anthropogenic site.

Species-specific habitat selection
Red fox and leopard cat showed habitat selection in park that differed from anthropogenic
site. Inside the park, red fox mainly occurred in high rugged (>0.5), moderate slopes and

Figure 5 NMDS ordination plot showing factors responsible for space use by red fox in
anthropogenic site (ecozone). Full-size DOI: 10.7717/peerj.13993/fig-5
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open and rocky (low NDVI; 0.1 to 0.2) locations depicting temperate grasslands,
sub-alpine scrubs and alpine meadows (Rossi et al., 2019). The result aligned with the
previous study by Vinod & Sathyakumar (1999) in GHNPCA and other established
literature, Halpin & Bissonette (1988) and Cavallini & Lovari (1991). The result explains
that given less human disturbance, the red foxes tend to occupy the habitat according to
their natural behaviour and ecology. However, in the anthropogenic site, red foxes used a
variety of habitats. They did not show any habitat-specific selection, unlike in the park,
indicating red foxes using sites which were out of their natural behaviour in disturbed
habitats. The change in the occurrence of red fox in selected habitats inside park to a wide
range of habitats in anthropogenic site revealed its flexibility in humanized environments
(Díaz-Ruiz et al., 2016) and exploitation of niches that form in the wake of human
activities (Jahren et al., 2020). Furthermore, leopard cat mainly occurred in moderate
slope, high elevation and high NDVI inside park, which was upper temperate forests with
dense tree-cover. The result was supported by the aforementioned study in GHNPCA in
1999 and Bashir et al. (2014) in eastern Himalaya, suggesting leopard cats prefer sites as per
their ecology in the natural habitats in GHNPCA. Interestingly we did not find such
habitat selection in the anthropogenic site, and leopard cats used a variety of locations
irrespective of habitat preferences, including open areas (low NDVI). The result was
analogous to Rajaratnam et al. (2007) and Izawa et al. (2009), where leopard cat utilised a

Figure 6 NMDS ordination plot showing factors responsible for space use by leopard cat in
anthropogenic site (ecozone). Full-size DOI: 10.7717/peerj.13993/fig-6
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wide range of habitats in a human-modified landscape. We could perceive that leopard cats
changed their site selection out of their natural behaviour, based on levels of anthropogenic
disturbances in different habitats. In general, leopard cats inhabit diverse habitat types, but
they respond differently to the extent of anthropogenic exposures. For instance, in Bashir
et al. (2014), leopard cats were reported to have a low tolerance to deviations from their
preferred habitat in the eastern Himalaya. Still, it manages to thrive in varied landscapes.
Overall, red fox and leopard cat in GHNPCA showed differences in habitat selection in
park and anthropogenic sites, reflecting species-specific sensitivities to habitat changes
(Recio et al., 2015; Riggio et al., 2018). The difference in habitat selection revealed their
opportunistic and human adapter behaviour (Ditchkoff, Saalfeld & Gibson, 2006) that is an
outcome of resource utilisation (Zhao et al., 2020), especially in resource-scarce and rugged
landscapes in the western Himalaya. The change in selection of specific habitats inside the
park to a wide range of habitats in anthropogenic site by red fox and leopard cat revealed
impact of human disturbances on a finer scale (Lorica & Heaney, 2013). This argument can
be further supported by the fact that human habitations in GHNPCA were majorly located
in the anthropogenic site. Thereby resulting into adaptive behaviour of mesocarnivores
through shift in habitat choices for utilising resources in the anthropogenic habitats
(Duduś et al., 2014). The opportunistic behavior of mesocarnivores was further supported
by the site usages close to different human attributes in the anthropogenic sites.

Factors responsible for space usage around human habitation
The NMDS ordination plots revealed that both the mesocarnivores showed close
association with human attributes like houses, agricultural plots and human trails in
villages. The choices of these attributes varied with increasing distance from villages
reflecting resource utilisation at different scales. For instance, space usage by red foxes
close to households inside villages, agricultural plots in the village vicinity, and trails
outside villages relate to utilising anthropogenic food subsidies in villages. The findings
were similar to Ghoshal (2011) and Ghoshal et al. (2016), where red foxes used sites close to
villages and agricultural plots for anthropogenic food subsidies. It indicates that houses
and agricultural plots in anthropogenic site of GHNPCA are the possible sources of food
and hence responsible for intensive site usage by red foxes in these areas. Furthermore, red
fox was positively related to livestock like goats and sheep, suggesting the possibility of
livestock depredation, which aligned with Aryal, Sathyakumar & Kreigenhofer (2010) and
Maheshwari & Sathyakumar (2020). Also, red foxes showed a negative relationship with
humans and dogs in villages possibly due to disturbance and threat from the competitive
carnivore (Gil-Fernández et al., 2020; Reshamwala et al., 2021). Interestingly hill slopes
were the most frequently used sites within and near villages. This result was
complementary to Reshamwala et al. (2021), where red foxes used the hill slopes for
denning sites with minimal human disturbance. Unlike red fox, leopard cat showed close
association with agricultural plots within villages and houses near villages which was in
accordance with the study by Rajaratnam et al. (2007) and Vitekere et al. (2020). Knowing
the importance of rodents in leopard cat diet, the abundance of rodents in these areas
explains the space usage near agricultural fields and houses (Lorica & Heaney, 2013).
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The negative relation of leopard cats to human presence and dogs revealed their sensitivity
towards disturbance and inter-specific avoidance, which aligned with Oh et al. (2010),
Cheyne & MacDonald (2011) and Weng et al. (2022). Overall, for red foxes presence of
houses played a crucial role in intensive space usage, whereas for leopard cats, agricultural
plots were the important factors for frequent space usage in the anthropogenic site of
GHNPCA. Hence our results suggest that human-induced disturbances like houses and
agricultural plots are the potential factors responsible for thorough space usage by the
native wildlife in the study area.

The distribution and habitat selection of mesocarnivores along the human-modified
and natural gradient clearly showed the impact of increasing and expanding
anthropogenic activities around GHNPCA. The outcome was similar to Schuette et al.
(2013) and Ditchkoff, Saalfeld & Gibson (2006), where mesocarnivores showed signs of
adaptation to expanding human habitations, indicating mesocarnivore adaptations to
human-modified habitats in GHNPCA. The ecozone around the park was delineated as a
buffer area to lower anthropogenic activity’s direct pressure on the GHNPCA boundary.
Although land settlements and agricultural expansions occurred earlier (Tucker, 1997), the
current status of human habitation around GHNPCA needs re-evaluation to implement
effective conservation practices. One of the caveats of human residences adjacent to
natural forests adds to the availability of anthropogenic food sources like garbage dumps,
agricultural products, kitchen wastes and livestock carrions in village areas (Randa &
Yunger, 2006; Newsome et al., 2015). Mesocarnivores, an opportunistic feeder, roam
around these areas for food subsidies (Reshamwala et al., 2018). Eventually, these shared
spaces can be the most probable zones for zoonotic disease transmissions and
human-wildlife conflict (Namusisi et al., 2021). In particular, the disease spread can be bi-
directional, i.e., from red fox, leopard cat to domestic animals or humans (Plumer et al.,
2014; Chhabra & Muraleedharan, 2016; Nadin-Davis et al., 2021) or humans, livestock to
the mesocarnivores (Clark et al., 2018; Ng et al., 2019). Concurrently, the availability of
livestock and crop (like maize) close to GHNPCA also confers the exposure of native large
carnivores like leopard and Himalayan black bear to more vulnerable habitat conditions
and conflict probabilities (Sathyakumar, 2000; Chauhan, 2003; Charoo, Sharma &
Sathyakumar, 2011; Naha et al., 2020a). Past evidence and our results suggest that wildlife
in rural areas do not exhibit the same habitat preferences as their natural counterparts
because of adaptation to human-induced modifications (Ditchkoff, Saalfeld & Gibson,
2006). Managers in such situations face challenges in addressing problems associated with
rural wildlife and expanding human habitation. There is a need for management strategies
for human habitation expansion and proper garbage disposal practices, primarily in the
anthropogenic site. In this context, we posit the need for mitigation efforts aimed at
expansion of human habitation and systematic garbage disposal practices at the
human-wildlife interface to safeguard future disease outbreaks and conflict risks that
address sustainable development goals.
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Limitations
Our study had few limitations due to inherent challenges. The study area was devoid of any
paved road. Hence, the entire sampling from 2017 to 2019 was carried out on foot.
The inaccessible terrain enabled us to conduct either camera trapping or carnivore faecal
sampling beyond 4,300 m elevation inside the national park. It restricted us from
broadening our understanding of distribution and habitat selection of mesocarnivores at
such high altitudes. Also, due to logistical constraints, the number of camera traps in the
anthropogenic site was less than in the park, although the capture rates and detections of
mesocarnivores in anthropogenic site were comparable to that of the park implying
representative area coverage by camera trapping in anthropogenic site. Due to harsh
environmental conditions, no fieldwork was conducted in the monsoon
(August–September) and snow (January–March) seasons. Therefore, this study was
carried out only in the accessible months from April to July and October to December.
We excluded data derived from cameras not functioning correctly (due to camera failure,
battery failure and heavy snowfall), resulting in the non-detection of the target species.
Also, camera placements, orientation, temperature differences, faecal sample detection and
degradation due to logistic limitations for storage added to species non-detection.
To overcome the non-detection issue, we conducted camera trapping and faecal sample
collection in five sessions by walking more than 400 km to sample each trail and maximise
species detections. The detections were entirely satisfactory, as revealed by the GAM
results. Our results depicted changes in habitat selection in modified habitats and factors
responsible for space usage in villages using camera trapping and faecal sampling
approach. However, we recommend careful insights while placing camera traps (especially
at high altitudes) and collecting faeces in future analogous studies.

CONCLUSION
As development continues, it is crucial to understand how carnivores might respond to
increased human expansions and the factors that might put carnivores and humans at
increased risk of conflict and disease spread. Mesocarnivore distribution and habitat
selection along the anthropogenic site-park gradient in GHNPCA clearly showed the
influence of anthropogenically modified habitat. The effects can harm other large
carnivores like leopard and Himalayan black bear, leading to negative interactions like in
other parts of western Himalaya. The anthropogenic site is an interface area where human
habitations extend toward the natural habitat. Concurrently mesocarnivores from adjacent
forest areas utilise the human habitations. Therefore, it is crucial to reinforce the
conservation practices in anthropogenic site to control the habitat modifications adjacent
to natural habitats and reduce the anthropogenic effects on native wildlife. It took more
than 30 years (1980 to 2014) from inception (Pandey & Wells, 1997) to realization of
GHNPCA as aWorld Heritage Site (UNESCO, 2014: https://whc.unesco.org/en/list/1406/),
but the current situation in the buffer zone of GHNPCA threatens its protection status in
future. There is a need to implement mitigation strategies in the human-wildlife interface
areas to regulate human habitation expansions and its associated caveats to balance the
spheres of humans and wildlife in the study area.
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