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The tumor-immune interplay represents a dynamic series of events executed by cellular and
soluble participants that either promote or inhibit successful tumor formation and growth.
Throughout a tumor’s development and progression, the host organism’s immune system
reacts by generating anti-cancer defenses through various incremental and combinatorial
mechanisms, and this reactive orchestration is termed the cancer-immunity cycle. Success
or failure of the cancer-immunity cycle dictates the fate of both host and tumor as winner or
loser. Insights into how the tumor and host immune system continuously adapt to each
other throughout the lifecycle of the tumor is necessary to rationally develop new effective
immunotherapies. Additionally, the evolving nature of the cancer-immunity cycle
necessitates therapeutic agility, requiring real-time serial assessment of immunobiologic
markers that permits tailoring of therapies to the everchanging tumor immune
microenvironment. In order to accelerate advances in the field of immuno-oncology, this
review summarizes the steps comprising the cancer-immunity cycle, and underscores key
breakpoints in the cycle that either favor cancer regression or progression, as well as
shaping of the tumor microenvironment and associated immune phenotypes. Furthermore,
specific large animal models of spontaneous cancers that are deemed immunogenic
will be reviewed and proposed as unique resources for validating investigational
immunotherapeutic protocols that are informed by the cancer-immunity cycle.
Collectively, this review will provide a progressive look into the dynamic interplay between
tumor and host immune responses and raise awareness for how large animal models can
be included for developing combinatorial and sequenced immunotherapies to maximizing
favorable treatment outcomes.

Keywords: comparative oncology, pet dogs and cats, cancer immunotherapy, spontaneous model,
immune activation
INTRODUCTION

Immuno-Oncology (IO) is a ballooning therapeutic landscape that holds great promise for
improving long-term outcomes in both human and canine cancer patients. Currently, IO has
been heralded as a tremendous advancement for treating cancer patients with particular
immunogenic histologies, whereby exploiting the host immune system’s inherent antineoplastic
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machinery can be harnessed sufficiently to eliminate cancer cells
entirely. However, the full benefit of immunotherapy remains
unrealized, as only a minority of treated patients achieve lasting
remission durations (1). While profoundly life-changing for
some, there is urgent need to expand the benefits of IO across
a larger swathe of cancer patients. Intuitively, maximal benefit of
IO approaches will require the development of innovative
combinatorial strategies (2, 3), as well as the preclinical
evaluation in suitable and immunocompetent model systems
(4–6).

In order to rationally design immunotherapeutic
interventions, it is necessary to understand the dynamic
interplay that occurs between host immunocytes, tumor cells,
and the associated tumor microenvironment (7). As such, the
optimal tailoring of immunomodulatory strategies, both
temporally and spatially, requires comprehension of the
cancer-immunity cycle which predicates how anticancer
immune responses are generated and propagated (8). When
functioning properly, the cancer-immunity cycle is a series of
steps that are conducive to successful priming, activation,
infiltration, and tumor specific targeting of cytotoxic T
lymphocytes to mount a tumor inhibiting immune response
(8–10). However, in cases of tumor growth, one or more steps in
the cancer-immunity cycle succumb to tumor suppressive
mechanisms, and thus, fail to provide protective anti-cancer
immunity. Given the complex and dynamic interplay that
evolves throughout the cancer-immunity cycle, faithful
recapitulation of this intricate immunobiologic process requires
the inclusion of sophisticated tumor models.

In addition to highly sophisticated rodent and 3D modeling
approaches for evaluating novel immunotherapeutic strategies,
pet dogs present a complementary, yet unique opportunity to aid
in the advancements of IO because dogs provide an
immunologically outbred, spontaneously developing,
heterogenous tumor model that in many respects parallels
humans (11–14). Importantly, naturally-occurring tumors in
pet dogs possess remarkable similarities with regards to
biologic behavior, histologic features, genetic mutations, and
response to therapy, as compared to specific cancers in people
(11–14). Given the spontaneous course of cancer development
under operative immune mechanisms, pet dogs treated with
interventional strategies at different steps of the cancer-
immunity cycle have the potential to serve as valuable model
systems for realizing the science and best clinical practices
necessary in generating robust anticancer immune responses
sufficient for improving the management of primary and
metastatic tumor lesions (13, 15).
CANCER-IMMUNITY CYCLE

The cancer-immunity cycle describes the generation of
anticancer immune reactivity as a cyclic process operating in a
self-propagating manner (8, 16). Mechanistically, the cancer-
immunity cycle can be divided into sequential critical steps
required for effective immunity against cancer cells beginning
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with Step 1- release of cancer cell antigens; Step 2- cancer antigen
presentation; Step 3- priming and activation in secondary
lymphoid organs; Step 4- trafficking of activated T cells to
tumors; Step 5- infiltration of T cells into tumors; Step 6-
recognition of cancer cells by tumor-infiltrating T cells; and
Step 7- T cell-mediated selective targeting and killing of cancer
cells. As a consequence of cancer cell killing by activated T cells,
additional tumor antigens are released into the tumor
microenvironment (TME), which then further amplifies
subsequent rounds of the cancer-immunity cycle in a feed-
forward manner.

The cancer-immunity cycle can be initiated through the
production of tumor neoantigens as a consequence of
tumorigenesis (17–20). High mutational burden is a signature
attributed to many inflamed tumor phenotypes given that as
genomic instability amplifies across time, so does the chance for
generating non-synonymous point mutations that code for novel
immunogens (21–24). However, favorable outcomes of Step 1, will
not be achieved in the absence of other immune stimulating
factors such as pro-inflammatory cytokines and immunogenic
molecules released from dying cancer cells. Step 2 involves tumor
specific antigen presentation via MHC class I and MHC class II
molecules on specialized antigen presenting cells, namely
dendritic cells. Following activation, dendritic cells will migrate
away from the local TME, and Step 3 occurs in tumor draining
lymph nodes, where a high volume of T cells can become exposed
to tumor specific- or associated- antigens presented by dendritic
cells and become primed and activated against tumor cells.
Following priming and activation, Step 4 involves the trafficking
of activated tumor specific T cells back to the TME. In Step 5,
diapedesis opens the flood gates to infiltrating tumor-specific T
cells into the TME, so that primed effector T cells can recognize
and bind to tumor antigens presented on MHC class I molecules
in Step 6. Together, this culminates to Step 7, in which cytotoxic T
cells kill tumor cells via perforin and granzyme release or through
FasL : Fas ligation. Importantly, by incorporating serial biomarker
assessments that accurately reflect the immune status of the tumor
and microenvironment, it becomes possible to identify any
defective step(s) in the cancer-immunity cycle and provides
opportunity to restore normal functionality through directed
immunotherapeutic interventions.
IMMUNE PROFILE PHENOTYPES

Given the multiple coordinated steps required for optimal
cancer-immunity cycling, it is expected that tumor cells and
associated TME can dramatically shape the localized immune
milieu, including the quantity, quality, and composition of
tumor-associated immunocytes, spatial and temporal kinetics
of immune infiltration, and the functionality and competency of
effector cells. Collectively, these cellular and morphologic
hallmarks can be categorized into distinct profiles termed
immune-desert, immune-excluded, and immune-inflamed
phenotypes (Figure 1) (25). These immune profiles of
tumorous lesions can guide the rational institution of
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immunomodulatory strategies for rectifying key breaks in the
cancer-immunity cycle with consequent induction of robust
anticancer immune responses. The clinical relevancy and
predictive value of immune phenotype profiling has been
underscored for the last decade, where positive responses to
immunotherapeutic manipulations have been partially hinged
upon the establishment and/or existence of an immune-
inflamed TME.

Expanding the concept of “cold” versus “hot” tumors and
classification into immune-desert, immune-excluded, and
immune-inflamed, these phenotypes are defined by immune
infiltration status reflecting the extent and topography
predominantly of T lymphocytes within the TME, among other
immune cells (26, 27). These three phenotypes span across an
immune spectrum, with immune-desert representing a lower
“cold” immunodeficient boundary, the immune-inflamed
defining an upper “hot” immunoreactive boundary, and
immune-excluded falling in between these 2 immune landscape
extremes. The immune-desert is considered a non-inflamed
tumor that has succumb to extreme tumor immunosuppressive
mechanisms (28–30), and characterized by the seldom presence of
tumor infiltrating lymphocytes (TILs) within tumor parenchyma
or stroma. There is minimal to complete absence of CD8+ T cells,
scant expression of PD-L1, low mutational burden, and only slight
expression levels of MHC molecules (31). Collectively, the
immune-desert phenotype represents a non-reactive TME that
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is permissive for tumor progression and poorly responsive to
immunotherapeutic interventions (31–33). The immune-excluded
phenotype can also be classified as a non-inflamed tumor, albeit,
with some indication that a previous immune response was
generated, yet ineffective largely due to physical microanatomic
barriers created by the invasive margins delineating the tumor
(31, 34–36). In the immune-excluded phenotype, rather than
penetrating the cancerous parenchyma, T cells are confined
within the dense stromal network surrounding the immediate
tumor mass. The microanatomic constraints of the immune-
excluded phenotype thwart successful immune surveillance and
effector T cell attack of tumor cells. Lastly, the immune-inflamed
profile is characterized by a significant and successful infiltration
of T lymphocytes into the tumor parenchyma. Distinctively, both
CD4+ and CD8+ T lymphocytes can be detected in close proximity
to tumor cells, as well as the loco-regional liberation of pro-
inflammatory cytokines that promote the activation and
migration of tumor antigen specific T cells (36, 37). The
immune-inflamed phenotype has increased mutational burden
bearing a larger range of cancer derived antigens and tumor-
specific neoantigens that effector T cells can recognize as non-self
and selectively target (34, 37). Counterintuitively, tumors
categorized as “hot” with an immune-inflamed phenotype can
also express the highest levels of the immune inhibiting molecule,
PD-L1. However, upregulation of PD-L1 is a compensatory
immunomodulatory setpoint mediated by IFN-g secreted from
activated CD8+ and CD4+ T cells, which counteracts rampant
immune reactivity through the production of PD-L1 and
indoleamone-2,3-dioxygenase (IDO) immunosuppressive
proteins (34). Moreover, IFN-g is a major inducer of the
chemokines, CXCL9 and CXCL10, which function as trafficking
directors for NK cells and activated T cells to the tumor (38).
Therefore, while the presence of CD8+ T lymphocytes remains
integral to tumor regression, continuous exposure to tumor
associated antigens induces an intrinsic regulatory feedback loop
and ultimately leads to T cell exhaustion (9, 34, 39, 40).

Along with PD-L1, other checkpoint molecules including
lymphocyte act ivat ion gene 3 (LAG3) and T cel l
immunoglobulin mucin (TIM3) are expressed on T cells in
response to IFN-g resulting in T cell suppression. As such,
multi-pronged blocking strategies for LAG3, TIM3, and/or PD-
L1 might synergistically amplify effector T cell responses by
inactivating T cell suppression and promoting T cell activation
(41–43). Although T cells are an important feature distinguishing
the three immune phenotypes from one another, other immune
cells also participate in the TME. Trafficking of NK cells and
dendritic cells alongside T cells promotes inflamed tumor
microenvironments, and their existence has been associated with
improved outcomes in certain solid tumors, such as
neuroblastoma (44). Likewise, invariant Natural Killer T (iNKT)
cells enhance anti-tumor immune surveillance by recognizing
specific lipid antigens, and once bound to their cognate ligands,
iNKT cells engage both the innate and adaptive immune systems
that establish broad anti-tumor immunity and contributes to an
inflamed phenotype. The potential clinical importance of iNKT
cells is highlighted by their attenuated presence in cancer patients
suffering from disease progression in various tumor histologies
FIGURE 1 | Naturally arising canine oral malignant melanoma with differences
in immune profiles hallmarked by vastly differing quantity and spatial distribution
of cellular infiltrates (H&E), and specifically CD3+ T lymphocytes (IHC, nova red
chromogen). Representations of immune-inflamed (A, B), immune-excluded
(C, D), and immune-desert (E, F). Magnification 100x.
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including multiple myeloma, prostate cancer, and a spectrum of
other solid tumors (45).

Correlating immune profiles with the tumor-immunity cycle,
it is reasonable to postulate that immunotherapeutic
manipulations that restore activation of immune exhausted T
cells have potential to reinvigorate effective immune attack
against tumors harboring an immune-inflamed profile; and
tumor immune escape and immune profiles favoring either
immune-desert or immune-excluded result from dysregulation
of the tumor-immunity cycle and consequent impeded function
of tumor specific T cells. Whether immunocyte dysfunctions are
mediated through impaired migration, exhaustion or failure to
become activated, T cells remain central and indispensable for
protective tumor immune surveillance. By understanding the
molecular mechanisms that contribute towards a tumor’s
conversion into a T cell immune-inflamed phenotype or other
non-inflamed phenotype (desert or excluded), the rational
institution of immunotherapies which target these mechanisms
can be employed to foster an activated T cell response for
improved anticancer activities (9, 10, 37, 39).

Factors Influencing Tumor
Immune Profiles
Many immunotherapies namely checkpoint blockade, yield
successful results with durable responses. However, positive
responses are achieved in only a subgroup of cancer patients
expressing appropriately favorable “tumor immune profiles” (27,
34, 46, 47). These clinical observations support the existence of
specific and permissive tumor qualities, immune molecules, and
host responses that collectively contribute to therapeutic
outcomes by modulating the interplay among the tumor, TME,
and host. Seemingly similar tumors often respond in disparate
manners to identical immunotherapeutic interventions, and
these observations support the existence of heterogeneous
immune compositions across tumors of similar histology (31,
34). The immune profile of a tumor is the result of combinatorial
interactions between both intrinsic and extrinsic factors (31, 37),
and recognition of these complex relationships can afford
opportunity to rationally institute therapeutic interventions.

Cancer is a genetic disease, and the genome and epigenome of
individual tumors can participate in generating both positive and
negative immunosurveillance outcomes (31). Genomic
instability early in the oncogenic process favors the acquisition
of truncal driver mutations shared by a large fraction of
clonal progeny tumor cells and can result in the expression of
tumor-specific neoantigen targetable by immunotherapeutic
interventions such as CAR-T cells. Conversely, genomic
mutations can favor immunosuppression too, such as MAP
kinase pathway perturbations that reduce MHC class I molecule
expressions, with consequent immune tolerance within the
TME. Complementing genomic alterations, gene transcription
can be perturbed by epigenetic modifications, microRNAs,
and non-coding long RNAs, leading to gene transcription of
immunosuppressive molecules such as PD-L1, IDO-1, and IDO-2,
as well as increasing suppressive cytokine secretion (31). Not
unexpectedly, the genetic makeup and/or transcriptional regulation
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manifested by individual tumors can substantively contribute to
the polarization of immune phenotypes, being either “hot”
or “cold”.

In addition to genomic regulation, a multitude of additional
factors contribute to shaping tumor immune profiles including
the influences of the microbiome, tumor location, myeloid
derived suppressor cells, light exposure, tumor stromal
thickness, and type 1 interferon production (31, 37). In the
case of the microbiome, the specific genus, Bifidobacterium, has
been demonstrated to positively influence the quantity and/or
quality of tumor-specific CD8+ T cells within the TME sufficient
enough to delay tumor growth (48, 49). Another influencing
factor involves myeloid derived suppressor cells (MDSCs) that
develop from myelopoiesis during episodes of sustained
inflammation and are phenotypically similar but functionally
distinct from neutrophils and monocytes. MDSCs exert
counterregulatory activities to impede exuberant T cell
responses and can contribute to non-inflamed immune
phenotypes (50). In addition, the tissue of origin can also affect
the tumor immune profile, as anatomic compartments (central
nervous system, gastrointestinal tract) where inflammation can
be exceptionally damaging are basally repressed by the liberation
of immunosuppressive cytokines. As an example, in colorectal
cancer there tends to be elevated levels of TGFb, and
consequently increased numbers of inducible Tregs which
promote a non-inflamed tumor profile (51, 52).

Stimulation of type 1 interferon is essential for fostering
immune-inflamed tumor phenotypes (53, 54). Type 1
interferon production is prominent in amplifying the immune
response through coupling of the innate and adaptive immune
systems. Cooperativity between innate and adaptive systems
cultivates an environment conducive for sustaining TILs that
result in tumor antigen specific cytotoxic effector functions and
immunological memory for durable anticancer immune
activities (55). The main mechanism for amplifying the innate
immune system with type 1 interferon is through augmentation
of antigen presenting function of dendritic cells, macrophages
and other APC’s in the TME, with consequent priming of T cells
with tumor antigens. Underscoring the importance of type 1
interferon signaling for adaptive immunity, knockout mouse
studies have demonstrated impaired T cell priming towards
tumor antigens and resultant adoption of non-inflamed tumor
phenotypes (56).

Given the importance of type 1 interferon for promoting
tumor-inflamed profiles, considerable interests have focused on
the actionability of stimulating cellular receptors on
immunocytes known as pattern recognition receptors (PRRs)
with damage associated molecular patterns (DAMPs) produced
from a specialized form of cancer cell apoptosis (57, 58). The
specific programmed cell death pathway mediated by the release
of DAMPs from dying cancer cel ls that heightens
immunogenicity is termed immunogenic cell death (ICD) (57).
Beginning with calreticulin (CALR), an abundant endoplasmic
reticulum (ER) protein, ER stress induced by ICD inducing
agents cause CALR to translocate to the plasma membrane of
dying cancer cells (15, 57–62). Importantly, any interruption of
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this initial CALR translocation step, prunes the immunogenic
anti-neoplastic response and curtails the effects to non-
immunogenic cell death (57). Membranous CALR exposure act
as strong “eat me signals” so that dendritic cells and
macrophages possessing the CD91 receptor become engaged as
participants in the cancer-immunity cycle through active
phagocytosis of CALR expressing tumor cells (57, 59, 60, 63).
As cancer cells die, autophagy-dependent ATP release acts as
strong “find me signals” for dendritic cells and macrophages (57,
59). Upon ATP binding to the P2RX7 receptor on dendritic cells,
IL-1b is released, which draws tumor specific T lymphocytes into
the TME (57). The final hallmark of ICD is the post-apoptotic
release of the non-histone protein, high mobility group box 1
(HMGB1) (57, 59, 60). Upon release from dying cancer cells,
HMGB1 serves as a cognate activating ligand for Toll-like
receptor 4 (TLR4) on cells of the innate immune system such
as dendritic cells (57, 59). The successful binding of HMGB1 to
TLR4 is a necessary trigger for the release of proinflammatory
cytokines such as type 1 interferon into the TME (19, 57). In
tumors that are deficient of TILs, the innate immune system can
be activated in order to promote tumor antigen presentation to
cells of the adaptive immune system, and the purposeful
induction of ICD can promote the activation of immunocytes
within immunologically cold tumors (57). Broadly, strategies
that leverage ICD incorporate the use of defined exogenous
stimuli (chemotherapy, radiation, hyperthermia, physical
stressors) to elicit a specialized form of immunogenic,
regulated cell death, which can activate and bridge the innate
and adaptive immune systems to prime the TME with TILs and
thus, transform “cold” into immunologically “hot” tumors.
CANINE IMMUNOGENIC TUMORS

Immuno-oncology continues to cultivate significant promise in
the world of cancer therapy, and as new immunotherapies are
developed, it remains paramount to identify sophisticated tumor
models for assessing the benefit and limitations of novel
Frontiers in Oncology | www.frontiersin.org 5
immune-activating strategies. Recognizing the distinct immune
characteristics of different tumor histologies serve as an initial
foundation to rationally design, tailor, and validate treatment
effects which are intended to counteract breaks in the cancer-
immunity cycle and enhance immunotherapy efficacy. As
observed in human cancer patients, specific tumor histologies
(melanoma, renal cell carcinoma, NSCLC, urothelial carcinoma,
HNSCC) are considered more likely to be immunogenic (64),
and better suited for evaluating novel combinatorial
immunotherapeutic strategies. Analogously, in pet dogs,
certain cancers are more immunogenic and understanding the
foundational immune landscape of specific spontaneously
arising tumors in pet dogs is necessary to serve as a natural
reference point when evaluating the immune modulatory
activities of investigational treatments. While not necessarily
equivalent with translational relevance, six tumor histologies
(Figure 2) including cutaneous histiocytoma, histiocytic
sarcoma, transmissible venereal tumor, osteosarcoma, oral
malignant melanoma, and canine mammary gland tumors will
be highlighted for how the immune system participates in
shaping the biology, clinical behavior, and prognosis of these
tumors. With this foundation, specific tumor types of greatest
comparative value can be uniquely leveraged to accelerate the
discovery and validation of new immunotherapeutic
interventions intended for human cancer patients.

Cutaneous Histiocytoma
Canine cutaneous histiocytoma is classified as a benign
epidermal tumor of Langerhan cell origin most often affecting
young dogs less than 3 years of age (65–68). Spontaneous
regression, typically within 2-3 months of presentation, is a
unique and compelling feature of this tumor which can
provide insights into naturally-occurring successful anti-tumor
immune responses (67, 69). Upon presentation, histiocytomas
often appear similar to other round cell tumors and immune
molecular markers are nearly synonymous to other dendritic cell
diseases (70, 71). Immunophenotypic markers of canine
cutaneous histiocytoma including CD1a, CD11c, CD18, MHC
FIGURE 2 | Panel of spontaneously-arising tumors in pet dogs demonstrating classic clinical presentation and associated representative cytologic or histologic
features. All tumors presented are considered immunogenic in nature and can be leveraged for evaluation of novel immunomodulatory strategies for cancer therapy
and include (A, G) canine transmissible venereal tumors, (B, H) oral malignant melanoma, (C, I) mammary gland carcinoma, (D, J) appendicular osteosarcoma,
(E, K) cutaneous histiocytoma, and (F, L) splenic histiocytic sarcoma. Cytology and histology images, magnification 200-500x.
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class II, and E-cadherin (67, 68, 70, 71). Importantly, the
expression of E-cadherin is a distinguishing adhesion marker
indicating Langerhans cell origin (70), however cannot be used
solely to diagnose cutaneous histiocytoma given overlapping
expression by other round cell tumors (72).

A complete list of elements participating in the spontaneous
regression of cutaneous histiocytomas remain unspecified (71);
however, confirmed factors actively contributing to regression
are mediated through anti-tumor responses by CD8+ ab T cells
(67, 71, 73). The initiation of T cell activation involves the
migration of tumor derived dendritic cells, as well as
infiltrating interstitial dendritic cells, to regional lymph nodes.
Once in the draining lymph node, these dendritic cells engage
CD4+ T lymphocytes which potentiate CD8+ T cell activation
(71). It has been proposed and not discounted that the origin of
cutaneous histiocytoma being the Langerhan cell, may contribute
to a self-perpetuated mediated regression due to the normal
antigen presentation function of dendritic cells (67, 71). This
putative regressive mechanism, while not proven, remains
plausible given that suboptimal antigenicity is a fundamental
feature of failed immunosurveillance (74).

To better elucidate factors associated with spontaneous
regression of cutaneous histiocytomas, a correlation between
the magnitude of lymphocytic infiltration and dynamics of
spontaneous regression has been studied (67). This study
observed that as histiocytomas longitudinally proceed through
later points of spontaneous regression, lymphocytic infiltration
increases, as well as the transcription of pro-inflammatory
molecules including IL-2, TNF-a, IFN-g, and iNOS. By
categorically segregating 30 histiocytomas into 4 groups based
on stage of regression, early in the regression period, CD4+ T
cells out number CD8+ T cells, but as tumor regression
proceeded, CD8+ T cells comprised the predominant immune
cell infiltrate. In a complementary study, canine cutaneous
histiocytomas that spontaneously regressed displayed increased
T and B lymphocyte infiltrates, decreased mitotic index, MHC
class II molecule plasma membrane localization, and minimized
E-cadherin expression on tumor cells (70). The loss of E-
cadherin in normal dendritic cells following their activation
allows them to travel to draining lymph nodes to prime cells of
the adaptive immune system (70, 72), and this mechanism was
postulated as a reason for loss of E-cadherin expression in
spontaneously regressing cutaneous histiocytoma.

Typical treatment for canine cutaneous histiocytoma involves
surgical excision if spontaneous regression fails to occur within 3
months of tumor presentation (66). Although infrequent, some
cutaneous histiocytomas do not spontaneously regress and
lymphadenopathy may ensue consequent to migration of
tumorous histiocytes to draining lymph nodes (68, 71). In
these progressive settings, it is probable that the cancer
immune response is insufficient and offers opportunities to
investigate strategies to manipulate the cancer-immunity cycle
for reinduction of effective immune surveillance.

Histiocytic Sarcoma
Histiocytic sarcoma (HS) is a highly aggressive tumor arising
from interstitial dendritic cell origin and shares many similarities
Frontiers in Oncology | www.frontiersin.org 6
between human and canine patients (75). Although far less
common in humans (76, 77), commonalities of genetic and
biologic importance support canine HS a compelling
comparative model for investigating its human counterpart
(78). Fortuitously, canine HS is a relatively common tumor
histology that arises spontaneously with enriched frequency in
specific dog breeds such as the flat coated retriever, Bernese
mountain dog, golden retriever, and rottweiler (68, 75). Of
significant relevance, recent studies have demonstrated a
prominent TIL composition in both human and canine HSs
underscoring the existence of dynamic immune trafficking
within the TME and hence the rational exploration of
immunotherapies in both species.

In people, HS is universally aggressive in nature and strong
clinical justification exists for improving disease management.
Yet given its rarity in humans, definitive standard of care for HS
remains loosely established, and further underscores the
potential value of comparative models to accelerate the
validation of investigational treatment options. Histiocytic
malignancies in pet dogs can serve as a relevant translational
model for human HS based upon conserved disease-associated
genetic abnormalities and aggressive biologic behaviors.
Through detailed comparative cytogenetic studies, the most
recurrent DNA copy number aberrations (CNAs) identified in
HS derived from flat coated retrievers and Bernese mountain
dogs are evolutionarily conserved with those reported in human
histiocytic malignancies too (78, 79).

Both human and canine HS are often associated with poor
outcomes despite treatment, highlighting the need for novel
therapeutic protocols. A recent study, documenting the
immune makeup of visceral and localized HS in flat coated
retriever dogs demonstrated that 95% of infiltrating T cells were
positive for FOXP3 suggesting a high proportion of Treg cells
within these tumors (80). In addition, CD45RA (naïve T-cell and
hematopoietic marker) stained positively in a higher proportion
of visceral canine HS of the spleen, while FOXP3 was increased
in localized soft tissue HS. While not designed for definitive
correlative analysis, this study did identify marginally improved
outcomes in pet dogs with localized HS despite having a higher
density of immunosuppressive Treg cells (80). Complementing
these findings, a recent report characterizing the immune
infiltration status with prognosis has been reported in both
human and canine HS. Findings from this comparative study
identified improved clinical outcomes in pet dogs with primary
tumors demonstrating higher densities TILs expressing CD3+

and granzyme B (81). Counterintuitively, this study also found
that increased levels of FOXP3 was associated with improved
outcomes, although this relationship was not statistically
significant (81). Additionally, this study found that immune
infiltration and tumor location were the strongest prognostic
indicators and highlight the potential influence of immune
reactivity with positive treatment outcomes.

Transmissible Venereal Tumor
Canine transmissible venereal tumor (TVT) circulates amongst
both domestic and wild canid species and is proposed to be the
oldest known cancer in existence, likely originating in a dog or
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wolf 10,000 years ago (82). Transmissible venereal tumor
propagates across canids as a contagious cancer that resides as
an allograft within affected individuals by circumventing host
versus graft rejection typical ly mediated by major
histocompatibility (MHC) protective mechanisms (82–84).
Horizontal transmission, primarily through coitus, has allowed
the perpetuation of the founding TVT cell lineage to be preserved
from its initial emergence, and has spread globally as sub-clones
from the original tumor (85). Immunohistochemical
characterization of TVT supports a cancer of histiocytic cellular
origin based on positive markers for vimentin, lysozyme, ACM1,
and alpha-1-antitrypsin (82, 83, 86). In most cases, TVT is non-
lethal and is characterized by three defined evolving phases, being
the initial progressive (P) phase, leading to the stationary (S)
phase, and ending with the regressive (R) phase in which
spontaneous immune-mediated regression can occur (83). The
progressive (P) phase typically lasts between 3-4 months in
duration, while the stationary (S) phase can last for months to
years depending upon multiple factors including immuno-
competency (83). Spontaneous regression (R phase) can occur
follow the waning of the (S) phase. In general, TVT behaves as a
local malignancy and disseminated metastases occurs rarely
(< 5%) (82, 87, 88), except in immunocompromised canids or
puppies with ill adapted immune systems (83, 86).

While ultimately immunogenic and possessing potential to
undergo spontaneous regression, TVT has the unique ability to
avoid host immune rejection upon transmission as a cellular
allograft (82, 83, 87). Typically, allografts should be rejected
because of functional MHC restrictive barriers between
individuals (82). However, TVT employs an immuno-
suppressive mechanism largely reliant on the secretion of
TGFb1 by tumor cells (82, 87). Early during the (P) phase, an
extreme scarcity of MHC class I and II molecules is expressed by
tumor cells (< 5%) (82–84). In the absence of MHC molecules,
TVT cells do not present sufficient quantity of tumor peptides in
the context of MHC molecules, and can remain largely
unrecognized by cytotoxic T cells (89). Additionally, the active
secretion of TGFb1 by TVT cells creates a hostile TME that
impairs the proliferation of B and T cells, blunts cytotoxicity of T
cells by inhibiting release of perforin and granzymes, blocks
cytolytic activity of NK cells and bars the effects of IFN-g induced
expression of MHC class I and II molecules (89). Normally NK
cells can kill cells that do not express MHC molecules, but TVT-
derived TGFb1 inhibits NK cell killing and permits TVT
establishment and growth largely unabated during the (P) phase.

Spontaneous regression that occurs during the (R) phase of
TVT is associated with a notable increase in MHC class I and II
molecule expressions on tumor cells to 30-40% (82, 84, 89, 90).
Nonetheless, the majority (60%) of TVT cells remain MHC barren
and necessitate the reactivation of NK cells to regain their
cytotoxic functions. Collectively, augmented MHC expression
and restoration of NK cell cytotoxicity serve as driving
immunostimulatory mechanisms responsible for TVT
regression. Synergizing with cellular alterations favoring
regression, IL-6 secretion by TILs emerges as a vital
immunostimulatory cytokine and helps tip the (P) phase into
the (R) phase (84, 89). Interestingly, IL-6 seems to be secreted by
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TILs throughout both (P) and (R) phases of TVT cellular lifecycle;
however, during the progressive stage, IL-6 secretion is low,
while in the regressive phase it is much higher (89). IL-6
promotes immune recognition and attack of TVT cells by
counteracting TGFb1 activity and thereby attenuating TME
immunosuppression (89, 91). Additionally, IL-6 can reestablish
IFN-g activity to amplify MHC class I expressions (84). In
summary, the interplay between MHC expressions, IL-6, IFN-g,
and TGFb1 appear to be major participants involved in the (P)
phase and (R) phase of TVT. Complementing these observed
cellular immune dynamics, there is evidence suggesting humoral
responses to TVT might likewise participate in immuno-
surveillance, as supported by the detection of IgG antibodies
against a tumor specific antigen (92). Humoral protection of
detected antibodies appears functional, as the passive transfer of
antibodies from previously infected dams has been shown to be
capable of establishing resistance to TVT in nursing puppies (92).

Given the contributory role of TGFb1 in TVT pathogenesis
and immune evasion, pet dogs with TVT could serve as a
valuable model system for evaluating that tolerability and
immune reactivating potential of TGFb1 inhibition strategies,
which include blocking antibodies, ligand traps, decoy receptors,
and small molecule inhibitors (93). The near-term opportunity
to evaluate TGFb1 inhibition strategies in pet dogs has been
accelerated by studies describing key tissue tolerability of small
molecule inhibitors (galunisertib) in beagles (94), as well as the in
vitro biologic activity of novel fusion proteins in canine cell lines
(95). However, given the pleiotropic activities mediated by
TGFb1 beyond immune suppression, deconvolution of
provocative results generated in pet dogs with TVT would be
required, given TGFb1’s central roles in angiogenesis and
epithelial-mesenchymal transition.

Osteosarcoma
Osteosarcoma (OS) is the most common primary bone tumor in
dogs; accounting for up to 85% of malignancies originating from
the skeletal system and affecting more than 10,000 dogs per year
in the United States (96, 97). Canine OS closely resembles
pediatric OS with regards to histological features, spontaneous
development, predilection for larger skeletal size, molecular
signatures, high instance of aneuploidy, metaphyseal and
appendicular localization tendency, high metastatic potential,
and aggressive nature (98, 99). Based upon the strong
conservation of OS biology, pet dogs provide an exceptional
comparative model for human OS. Middle-aged to older dogs
that are large or giant breed are most commonly affected (100,
101). Due to its high metastatic potential, it is estimated that 90%
of canines will have established micro-metastasis at initial
presentation, and dogs treated with amputation alone succumb
to metastatic progression within 20 weeks (102). Canines treated
with standard-of-care, inclusive of amputation and systemic
chemotherapy have improved survival times approaching 9-11
months (103, 104).

Canine OS is considered an immunogenic tumor based upon
serendipitous and purposeful scientific inquiry, and has been
thoroughly discussed in recent review publications highlighting
historical and active evidence of OS immune recognition
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(13, 105–107). While there has been convincing clinical evidence
for canine OS immunogenicity derived from the antimetastatic
activities exerted by L-MTP-PE and inhaled liposomal IL-2 (108–
110), as well as, retrospective observations for improved survival
outcomes in pet dogs developing limb-spare infections (111, 112),
only recently has there been a focused attention on the exact
cellular players that might be orchestrating provocative
antimetastatic activities through heightened immunosurveillance.

Much of what is known about the immune response in OS and
associated prognostic relevance implicates monocytes,
macrophages, and regulatory FOXP3+ T (Treg) cells. Of note,
FOXP3, although often used to identify Treg cells, may also be
expressed in other subsets of T cells. Pointedly, macrophages have
been emphasized as main contributors towards improving overall
survival time and disease-free interval in canines as well as
humans. Supporting the importance of macrophages, Withers
et al. performed a study to characterize lymphocyte (CD3+ and
FOXP3+) and macrophage (CD204+) infiltrates within the OS
TME and their effects on disease free interval and overall survival
time (113). The study involved 30 dogs treated with standard-of-
care defined as surgical amputation and carboplatin therapy. Pet
dogs with a greater percentage (≥ 4.7%) of cellular infiltrates being
CD204+ within the primary tumor and associated TME achieved
markedly enhanced disease-free intervals. Lymphocytic
infiltration, regardless of presumed effector or regulatory
phenotype, was not associated with outcomes. While increased
mononuclear infiltrate within the primary tumor appears to
support improved immunosurveillance, this supposition has not
been supported with differences in circulating immunocytes,
whereby elevated numbers of circulating monocytes (>400 cells/
µL) and lymphocytes (>1000 cells/µL) were associated with
decreased disease free intervals (114). To further describe
potential functional changes of circulating monocytes in dogs
with OS, Tuohy et al. identified altered and reduced monocyte
surface expression of several chemokine receptors (CD62L,
CCR2, CCR7, CD43, CX3CR1, and CXCR2) in dogs with OS
versus healthy dogs (115). Based upon these observational
findings, it was postulated that downregulation of these
chemokine receptors imparted a functional reduction in the
directional migration of monocyte into the primary tumor or
metastatic sites (115). While not proven by either study
characterizing monocyte populations within circulation, it could
be speculated that dysfunctional monocyte/macrophage
migration could result in breaks in Steps 2 & 3 (antigen
presentation and secondary lymphoid tissue migration) of the
cancer-immunity cycle, and thus reduce effective anticancer
immunity for combatting metastatic progression.

In addition to the role of monocytes and macrophages for OS
immunosurveillance, absolute and relative lymphocyte
phenotypes (effector versus regulatory) have been investigated
in both human and canine OS. In humans, considerable evidence
supports the negative immunoregulatory activity of FOXP3+

Tregs in solid cancers, including pediatric OS. In a recent
investigation utilizing 150 treatment-naïve patient biopsies,
researchers demonstrated that intratumoral CD8+/FOXP3+

ratio in the OS microenvironment is predictive for survival
(116). Similarly, a study in canine OS patients evaluating
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CD8+/FOXP3+ ratios in blood, lymph node, and primary
tumor also concluded comparable findings, being dogs with
decreased CD8+/FOXP3+ ratios were associated with
significantly shorter survival times (117). Lastly, increasing
evidence indicate that canine OS possess the cellular
machinery to attenuate effector T cell attack, specifically
tumoral PD-L1 expressions (118–120), and could ultimately
promote T cell exhaustion. Derived from these early studies,
PD-L1 is likely taking part in the immune evasion and
suppression mechanisms, as supported by the inverse
relationship between OS PD-L1 expression and the number of
intratumoral T cells (118).

Oral Malignant Melanoma
Canine oral malignant melanoma (OMM) is considered a highly
aggressive tumor that is locally invasive and highly metastatic. In
dogs, OMM accounts for 40% of all oral cancers and carries a
guarded prognosis for long term survival (121). Traditional
therapies are reliant upon local and distant tumor control
requiring multimodality treatment approaches including
surgery, radiation, and chemotherapy; however, outcomes for
disease management are often non-curative in nature. While the
management of primary disease within the oral cavity can be
adequately controlled with surgery and/or radiation (122, 123),
the effective control of regional and distant metastases remains
problematic even with the institution of systemic chemotherapies
(124). There is strong evidence that canine OMM can serve as a
valuable comparative tumor for improving treatment of advanced
melanoma in human beings given the shared clinical behavior,
genetics, and disease biology between species (125, 126). Of
significance, recent metastasis-associated gene expression
profiles and comparative transcriptomic analysis have become
available for canine OMM (127–129), and provides solid genomic
foundation for leveraging a comparative oncology approach for
validating new therapies to curb metastatic progression in both
canines and human beings. Excitingly, like the tremendous
opportunity already realized for remarkable immunotherapeutic
outcomes in people with melanoma treated with checkpoint
blockade strategies, there is rapidly accumulating data to suggest
parallel outcomes are also feasible in dogs (130–132), and solidifies
canine OMM as an outstanding comparative model to explore
novel immunotherapeutic combinations intended to benefit
people diagnosed with advanced melanoma (cutaneous and
mucosal) (133).

Despite the strong evidence supporting the comparative
nature of canine OMM as a model for human melanoma, it is
important to call attention to a few relevant distinctions. Human
malignant melanoma is often cutaneous and is frequently UV
induced creating a high mutational burden, and thus, a high level
of immunogenicity. Although canine OMM is not thought to be
associated with UV induction, it remains immunogenic with the
potential production of neoantigens which can be recognized by
the immune system. Confirmation of putative OMM
immunogenicity has been supported by a recent study
evaluating tumor mutational burden (TMB) across 7 tumor
types in over 35 canine breeds (134). Within the 7 tumor types
evaluated, canine OMM, along with OS and hemangiosarcoma,
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were among the cancer types having the greatest amount of
TMB. Interestingly and similar to humans, the TMB across all
tumor types and breeds was frequently associated with mutation
of the tumor suppressor gene, TP53. Furthermore, canine OMM
demonstrated similar pathway alterations analogous to human
melanoma, in particular p53 and cell cycle alterations.
Collectively, this study indicated that TMB tracked primarily
with tumor type, and breed was not found to be a driving factor.
Further evidence supporting the immunogenicity of canine
OMM has been demonstrated in a study showing that across
three forms of canine melanoma, a high percentage (68%)
exhibited presence of TILs within the TME. Similar to human
cutaneous melanoma, the overall abundance of TILs was
assessed as mild. In addition, a higher proportion of CD20+ B
lymphocytes was associated with an increased occurrence of
metastasis and tumor related death compared to elevated tumor
infiltration of CD3+ T lymphocytes (135). Taken together, while
the underlying carcinogenic factors that drive melanoma
formation in dogs and people might be divergent, there
remains significant overlap in regard to tumor immunogenicity
in both canines and people. Given this immunologic
conservation, canine OMM should be considered a valid
comparative model for evaluating novel immunomodulatory
strategies that have potential to improve treatment outcomes
in human beings.

Canine OMM is a highly immunogenic tumor, and cancer
vaccination strategies has garnered attention over the past 2
decades for their potential to improve prognosis for dogs
diagnosed with OMM (136, 137). While multiple vaccination
strategies have been explored including genetically modified
allogenic cell vaccination (138), a xenogeneic DNA tyrosinase
canine vaccine has been widely used clinically since 2007, and
has demonstrated in some studies to enhance survival times in
dogs with OMM (139, 140). In one study comparing historical
outcomes of 53 dogs diagnosed with OMM that were not treated
with the human tyrosinase vaccine to 58 dogs with stage II or III
OMM that received the human tyrosinase vaccine, a significant
survival benefit was identified in dogs receiving vaccine
treatment (140). Despite these positive findings, other
retrospective investigations analyzing the efficacy of human
tyrosinase vaccine in the adjuvant setting for canine OMM
have not identify significant improvement in progression-free
survival, disease free interval, or median survival time for those
animals treated with tyrosinase vaccination (141, 142).
Currently, there are several investigations demonstrating the
safety and biologic outcomes associated with human tyrosinase
vaccination in dogs with varying clinical stages of OMM (stages
I-IV), but few of significant population size (143). While the
immunogenicity of OMM is not disputed, collectively, the
findings derived from these existent reports with human
tyrosinase vaccination would be strengthened through the
conductance of prospective definitive trials with appropriate
control arms.

Complementing human tyrosinase vaccine approaches, some
investigations have explored parallel vaccine strategies utilizing
different xenogeneic proteins as immunogens. One such strategy
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includes intramuscular electrovaccination of a DNA plasmid
encoding human chondroitin sulfate proteoglycan-4 (CSPG4)
into dogs with OMM (144, 145). In the first foundational study,
CSPG4 electrovaccination was safe, improved disease-free
intervals in vaccinated compared to unvaccinated dogs, and
generated measurable immune responses assessed by antibody
production and IFN-g T cell responses (144). In a follow up
prospective study, electrovaccination of human DNA plasmid
for CSPG4 was evaluated in the adjuvant setting following
surgical resection of primary OMM lesions in 23 dogs. The
median disease-free interval, median survival time and 1- and 2-
year survival rates were compared to a group of 19 dogs treated
with surgical resection only. The experimental group receiving
CSPG4 adjuvant vaccination achieved significantly improved
outcomes compared to the non-vaccinated group (145), and
these results further support the potential clinical value of
CSPG4 vaccine strategies. Further bolstering the promise of
vaccine approaches for improving OMM outcomes, a pilot
study employing the intratumoral delivery of an adenovector
CD40L transfection strategy has been conducted in dogs with
malignant melanoma, and following vaccination, resected
melanoma tissues had B and T lymphocytes trafficking through
the tumor parenchyma indicating the existence of an immune-
inflamed profile (146).

In addition to vaccines which generate adaptive and
protective immunity through cell-mediated activities,
monoclonal antibodies have revolutionized cancer therapies for
both hematopoietic and solid tumor histologies in people (147–
149). While the realization of monoclonal antibodies in
veterinary medicine remain largely unrealized for cancer
applications, tremendous opportunity exists for systemically
exploring combinatorial immunotherapeutic strategies
inclusive of checkpoint blockade in dogs with OMM.
Historical and active investigations continue to indicate that
naturally-occurring tumor histologies, in particular OMM, might
be responsive to checkpoint blockade interventions (PD-1/PD-
L1) (120); with predicted reversal of exhausted T cell responses
following checkpoint inhibition being predicated on existing data
that demonstrates an immune-inflamed phenotype of OMM
(135, 150), in conjunction with the expression of PD-L1 by
OMM cells (120, 130, 132).

The druggability of the PD-1/PD-L1 axis in OMM has been
developed over the past 5-10 years and continues to advance with
provocative translational potential. In early studies performed by
Maekawa et al., IFN-g induced expression of PD-L1 on
immortalized canine melanoma cell lines, and endogenous
expression of PD-L1 was confirmed in naturally-occurring
OMM tissue samples (47). Further characterization of PD-L1
expressions performed by Maekawa et al. reaffirmed high PD-L1
expression on 90% (36/40) of canine OMM samples (120).
Furthermore, this study confirmed PD-1 expression on both
CD4+ and CD8+ TILs, and illustrated how the cancer-immunity
cycle could be short circuited through OMM PD-L1 expressions
to promote T cell exhaustion (120). The functionality of OMM-
mediated PD-L1/PD-1 immunosuppression was further
supported by a complementary investigation that evaluated the
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immunobiologic activities of an anti-PD-L1 antibody
administered to dogs with OMM, showing increased survival
time in 4 dogs with pulmonary metastasis compared to a
historical group (132). In a most recent investigation, the
safety and efficacy of a canine chimeric anti-PD-L1
monoclonal antibody (c4G12) administered intravenously
every 2 weeks was assessed in 29 dogs with advanced OMM
and pulmonary metastases. In a subset of 13 dogs with
measurable pulmonary metastatic disease, single agent activity
was documented in 1 patient achieving complete remission, with
a calculated overall response rate of 7.7% (1/13) (130).

While single agent activity of anti-PD-L1 blockade appears
modest in the setting of advanced pulmonary metastatic OMM
(130), combinatorial adjuvant treatment option for use in
patients with OMM that should be aggressive explored with
the expectation for developing rational combinations capable of
exerting additive and/or synergistic activities. Such innovative
strategies should include the therapeutic induction of ICD which
are predicted to generate abscopal effects when induced by
ionizing radiation in canine OMM patients (15), as well as
other innovative approaches to overcome existent breaks in the
cancer-immunity cycle.

Mammary Gland Tumors
Canine mammary gland tumors (MGTs) are the most common
cancers diagnosed worldwide and predominantly arise in
sexually intact female dogs (151). Middle-aged to older dogs
are at higher risk for developing MGTs, while in dogs under 5
years of age, the risk of developing aggressive MGT with
associated metastatic potential is lower (152, 153). Given the
hormone-dependent nature of mammary gland epithelium, the
risk of tumor development is significantly reduced in dogs
undergoing ovariohysterectomy prior to onset of the first
estrus cycle; and dogs spayed before the first estrus cycle have
only a 0.5% lifelong risk of developing MGTs (154). In addition
to hormonal status, other risk factors for MGT development
include breed and body condition status during puberty (9-12
months) (155). Similar to other cancers, genomic instability is
believed to play a role in MGT tumorigenesis, and evidence
suggests mutations in the BRCA genes might serve as risk factors
in canine MGT development, but this supposition requires
further investigation (156, 157).

The immune system imparts elements of risk or protection to
dogs diagnosed with MGTs as well, and lymphocytes are the
dominant inflammatory cell type infiltrating canine mammary
gland tumors (158–161). In some studies, the pattern and
quantity of TILs have provided prognostic information. As one
example, Carvalho et al. identified risk factors related to the
specific location of T lymphocytes within or surrounding the
TME that showed significant relationships to survival (159). In
benign tumors, there were higher numbers of CD3+ TILs
compared to malignant tumors, yet in malignant tumors a
greater density of CD3+ lymphocytes were constrained to the
tumor periphery. These microanatomic findings could support
that malignant MGT can adopt immune-excluded phenotypes,
and consequently evade immunosurveillance and tumor
progression is not constrained by the immunity-cancer cycle.
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Collectively, these findings provide some observational evidence
that T lymphocyte location (intratumoral versus peripheral
stroma) and quantity could be participating in MGT biology
and behavior.

The notion that T lymphocytes can exert immune activities
which affect MGT progression is not surprising, as T lymphocytes
can differentiate into specific effector/regulatory phenotypes and
consequently influence their microenvironment through both
direct cell contact and soluble factors (162). In both human and
canine MGTs, an elevated tumoral CD8+ T cell presence has been
associated with a better prognosis and a decreased chance of
metastatic progression (158). Conversely, a high level of CD4+ T
cells within the TME can be a poor prognostic indicator in both
human and canine MGTs. Because naïve CD4+ T cells can be
polarized to discrete subtypes following activation including Th1,
Th2, Th9, Th17, and T regulatory (Treg), further characterization
of CD4+ T cells found within the MGT TME would more
accurately represent key T lymphocyte compositions that
contribute to MGT behaviors. Polarization of CD4+ subsets can
have divergent immunomodulatory effects with the TME, with
Th1 cell responses being pro-inflammatory in nature with the
release of IFN-g, TNF-a, and IL-2, while Th2 cell responses can be
more suppressive through the release of IL-4, IL-5, IL-10, and
IL-13.

In a study performed by Kim et al., investigators aimed to
better characterize TIL local cytokine production and the role
inflammatory cytokines on canine MGT progression (163). T
lymphocyte secretion of IL-1 was associated with malignant and
metastatic canine MGTs, potentially because IL-1 can mediate
tumor cell proliferation and increases angiogenesis indirectly by
promoting inflammation. Another inflammatory cytokine, IL-6,
has also been investigated and was found to be secreted by canine
MGT cells and significantly elevated in malignant and metastatic
tumors compared to benign tumors indicating a possible pro-
tumorigenic role (163). Finally, TNF-a was elevated in all tumor
types but was the highest in malignant MGTs compared to
benign and metastatic lesions. Normally TNF-a serves as an
effector molecule capable of exerting anti-tumor immune effects
through direct cancer cell killing, however TNF-a can also exert
pro-tumorigenic activities in tumor cells and could be an
underlying reason for observing elevated TNF-a levels in
malignant MGTs.

Extending studies beyond classic Th1 and Th2 lymphocyte
polarization, additional studies have implicated IL-17 in canine
MGT malignancy, progression, and metastases (158); findings
that are comparable to human breast cancer studies showing IL-
17 to be a negative biomarker for prognosis and shorter disease-
free intervals (164). As a counterbalance to immune
inflammation, the participation of Treg cells in canine MGT
has likewise been investigated for their ability to suppress anti-
cancer immunity. In canine MGT, higher numbers of Treg cells
within the TME have been associated with more aggressive forms
of this cancer and poorer prognosis (165). In aggregate from
these descriptive studies in canine MGT, it can be stated that
multiple T lymphocyte subtypes can infiltrate into the tumor
parenchyma and associated TME, yet true functional
investigations are lacking and bar deeper interrogation for how
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the composition and dynamics of T lymphocytes might shape
the biologic behavior and immunogenicity of canine MGT.

In addition to immunomodulation, the angiogenic effects of
TILs can powerfully shape the TME, and provide plausible
explanation for why elevated quantities of infiltrating CD3+ T
lymphocytes have been correlated with worsened prognosis and
decreased survival in both canine and human mammary tumors
(160). One mechanism that should be recognized is TIL-induced
angiogenesis. The ability of CD3+ T lymphocytes to secret
inflammatory cytokines which consequently upregulate VEGF
production and associated tumoral angiogenesis can contribute
to the poorer prognosis and increased incidence of metastatic
disease in MGTs with higher levels of tumor infiltrating CD3+ T
cells (160, 166). Synergistically, certain T cell-secreted cytokines
directly promote endothelial cell migration and proliferation,
supplementing new blood vessel growth and heightened
metastatic potential (166). The expression of other immune-
related machinery, including chemokine receptors CXCR3 and
CCR2, have been investigated for their participation in canine
MGT biology. The expression of CXCR3 on malignant tumor
cells has been correlated to increased tumor growth and spread
(167), while CCR2 participates in tumor metastasis by
promoting the trafficking of tumor associated macrophages
into the TME with consequent angiogenesis (158).

The potential for canine MGT to induce T cell exhaustion
through PD-L1 expressions has been described (120, 131, 168,
169), and findings support that canine MGTmight employ this T
cell suppressive mechanism to attenuate cancer cell killing. In
addition to PD-L1, a recent study likewise identified the co-
expression of CTLA-4 by CMT cells (168). Collectively, both PD-
L1 and CTLA-4 tumoral expressions at gene and protein levels
were found to be greater in metastatic MGT and were prognostic
for survival time. Given these reports confirming PD-L1 and
CTLA-4 expressions, checkpoint blockade therapy could be a
promising treatment to enhance anti-cancer immunity in canine
MGT patients. Furthermore, CTLA-4 binding to its ligand on
tumor cells or antigen presenting cells enables T cell exhaustion.
Peripheral blood T cells of dogs with neoplasia have
demonstrated expression of CTLA-4, making this a potential
therapeutic target in canine patients (170). Lastly, while great
interest resides in checkpoint blockade strategies, canine MGT
might also lend itself well to specific vaccine approaches given
the recent description of melanoma associated antigen (MAGE-
A) on canine MGT cells (171). MAGE-A consist of a group of
tumor associated antigens, and are immunologically exploitable
through diverse immunotherapeutic approaches including
vaccines and transgenic T cell approaches (172, 173).

Canine MGTs are recognized by the immune system, with the
quality, quantity, and composition of TILs influencing disease
outcomes. The identification of immunocytes within the tumor
parenchyma and associated TME affords the opportunity to
modulate specific steps of the cancer-immunity cycle and
potentially expand therapeutic options beyond traditional
surgery, chemotherapy, and endocrine approaches. Given the
similarities between human and canine MGT biologic behavior,
pet dogs diagnosed with MGTs should be explored for their
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potential utility to advance immunotherapy practices for both of
these species (166).
PET DOGS FOR EVALUATING CANCER-
IMMUNITY CYCLE MANIPULATIONS

Manipulating steps in the cancer-immunity cycle with
immunotherapies that potentiate the cycle’s normal activities is
a lucid approach to justify rational treatment interventions
(Figure 3). Beginning with Steps 1-3, failure to produce
actionable neoantigens diminishes the chances of professional
antigen presenting cells (APCs) from successfully exhibiting
altered-self and/or reactive antigens to naive T cells, ultimately
resulting in an uninflamed TME. One way to override these
initial, yet critical, immunologic barriers is through the delivery
of tumor vaccines. Vaccines bolster antitumor immune
responses through the purposeful administration of tumor-
associated antigens with adjuvants, which will be taken up by
APCs. These activated APCs will consequently migrate to
lymphoid tissues, seek out reactive T cells, and consequently
elicit a tumor-specific, cell-mediated response. Currently, there
are numerous vaccine strategies including allogeneic whole-
tumor cell vaccines, dendritic cell vaccination, and DNA
vaccine approaches (174). In pet dogs with cancer, specific
vaccine strategies have been investigated and provide unique
opportunities to define the tolerability, effectiveness, and
limitations of particular interventions to amplify Steps 1-3 of
the cancer-immunity cycle.

To date, most investigational vaccine strategies have been
trialed in pet dogs diagnosed with metastatic solid tumor
histologies including OS or OMM. For canine OS, a vaccine
(ADXS31-164), comprised of a highly attenuated, recombinant
Listeria monocytogenes expressing a chimeric human HER2/neu
construct, has shown provocative activity for delaying
micrometastatic disease progression when used as an adjuvant
therapy following limb amputation and chemotherapy (175).
However, despite being genetically attenuated, the use of live
Listeria monocytogenes as a gene vector has raised concern given
its zoonotic potential, and a lyophilized formulation used in pet
dogs was deemed unacceptable for continued clinical
development given the isolation of live Listeria within bodily
fluids and tissues from treated canine patients (176). Analogous
to the targetable antigenicity of cutaneous melanoma in people,
the immunogenicity of canine OMM has underpinned the
development and therapeutic assessment of genetically
modified vaccine approaches that exert reproducible and
measurable immune activities in specific subsets of dogs
achieving clinical benefit. Several immunogens have been
explored to elicit anticancer responses, particularly xenogeneic
proteins (138, 146), and a bacterial plasmid DNA vaccine
encoding xenogeneic human tyrosinase (Oncept™) is currently
approved by the USDA for the adjuvant treatment of stage
II/III canine OMM (139, 140). The commercial availability
of Oncept™ permits widescale availability of this therapeutic
for assessing traditional [radioimmunotherapy (143)] and
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innovative combinatorial studies. While OS and OMM
classically have been leveraged as translationally-relevant
models for comparative immunogenicity trials, vaccinal
approaches for non-solid tumor histologies (CD40-activated B
cell cancer vaccine) and pan-cancer immunogens (canine DNA
telomerase vaccine) have also been conducted with generation of
data sufficient to stimulate future research studies (177, 178).

Another means to generate immunogenic antigens, and
amplify Steps 1-3 of the cancer-immunity cycle, is through the
purposeful induction of immunogenic cell death (ICD) (32).
Broadly, ICD involves the use of a defined agent that has the
capacity to elicit a specialized form of cell death that unlike
normal apoptosis, is immunogenic (57, 58, 179). The release of
three primary damage associated molecular patterns (DAMPs)
being membranous translocation of CALR, release of ATP and
HMBG1, enables ICD to engage dendritic cell (DC) maturation
which prompts DC migration to tumor draining lymph nodes,
antigen presentation, and expression of required co-stimulatory
molecules for T cell activation (57, 60, 180). Immune escape
resulting in non-inflamed tumors is partially attributed to
insufficient production of immunogenic cancer antigens, and
the induction of ICD through different therapeutic modalities
[chemotherapy, radiation, oncolytic viruses, photodynamic and
hydrostatic stress, hyperthermia (181)] offers multiple synergistic
avenues to restore the first critical Steps 1-3 necessary for optimal
cancer-immunity cycle propagation. Given the breadth of ICD
inducing modalities (58), the inclusion of pet dogs with cancer to
conduct rapid screening of combinatorial approaches could
Frontiers in Oncology | www.frontiersin.org 12
accelerate the derivation of the most optimal treatment
protocols related to sequence, dosage, and timing.

In pet dogs with cancer that deviate from successful T cell
priming and activation, preempting this break in the cancer-
immunity cycle (Steps 2-3) through the use of exogenous
cytokines such as IL-2 and IL-12 may create the desired pro-
inflammatory milieu that substantiates proliferation and
activation of T cells and NK cells. In dogs with cancer, the
exploration of single agent IL-2 as an anti-tumor immune
cytokine has been demonstrated by subcutaneous ,
intratumoral, inhalation (liposome), and intravenous (DNA
plasmid) routes in several different tumor histologies such as
OS, mast cell tumor, and peripheral nerve sheath tumors (108,
182–184). In aggregate, IL-2 has proven to be active in the
context of immunogenic solid tumors, being OS, but failed to
demonstrate clear clinical benefit in tumors of undetermined
immunogenicity (peripheral nerve sheath tumors). Based upon
promising single-agent activity in dogs with OS, IL-2 has been
incorporated into more complex combinatorial regimens
inclusive of autologous cell vaccine and adoptive T cell
transfer, with generation of favorably results and justifies larger
scale confirmatory studies (185). The exploration of IL-12 in pet
dogs remains rudimentary and limited by its conserved toxicity
across species. However, innovative strategies for targeting IL-12
that theoretically limits systemic leakage have been investigated
through the inclusion of pet dogs with cancer (186), and serves as
clear example for the unique biologic value that can be gleaned
from a comparative oncology approach. Nonetheless, additional
FIGURE 3 | Rational design of immunotherapeutic strategies through a comparative oncology approach including canine oral malignant melanoma as a model
tumor for correcting potential breaks in the cancer-immunity cycle. Sequential or combinatorial interventions can be evaluated at each potential break within the
cycle, starting with: Step 1- release of melanoma antigens following immunogenic cell death; Step 2- sufficient intratumoral dendritic cell/macrophage processing
and presentation of melanoma antigens with subsequent migration to secondary lymphoid organs; Step 3- effective priming and activation of naïve T lymphocytes;
Step 4- intravasation and extravasation of activated T lymphocytes through hematogenous and/or lymphatic routes; Step 5- sufficient T lymphocyte infiltration
through microenvironment and into melanoma parenchyma; Step 6- T cell receptor engagement with melanoma MHC class I:peptides; and Step 7- effector T
lymphocyte killing of melanoma cells.
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strategies for localizing IL-12 must be evaluated for improved
safety and activity, and it should be expected that pet dogs can
provide high value information to expedite the clinical
translation of similar strategies in human cancer patients (187).

For defects in Steps 5-6 of the cancer-immunity cycle, adoptive
therapies can maximize the chances for ensuring a sufficient
number of effector cells (cytotoxic T and/or NK) are present
and can extravasate and infiltrate into tumor lesions. Adoptive T
cell therapy, explicitly chimeric antigen receptor (CAR) T cells can
be employed to ensure target recognition and effector activities
against tumor-associated targets including cluster of
differentiation markers (CD19, CD22) and have produced
lifesaving outcomes for the treatment of leukemia and
lymphoma patients in human medicine (188). However, the
process of creating CAR T cells can be costly and time
consuming making it less amenable to becoming standard-of-
care in veterinary medicine. Nonetheless, proof-of-principle
investigations have been conducted using canine derived
materials demonstrating the feasible for engineering CAR T cells
capable of targeting HER2 or CD20 expressed by canine OS or B-
cell lymphoma cells, respectively (189–192). Translation of canine
CAR T cell technology remains in its infancy with required
optimization of lymphodepletion strategies to maximize CAR T
cell engraftment and survival. However, a first-in-dog study has
demonstrated glimmers of activity of CD20 CAR T cells against B-
cell lymphoma in a small number of pet dogs (191). A
complementary adoptive cell therapy includes the ex vivo
expansion and reinfusion of NK cells (193). Unlike cytotoxic T
cells that require recognition of peptide:MHC class I complex, NK
cells are equipped to target and kill tumor cells that do not express
MHC class I on their surface. An innovative treatment design
combining radiation therapy and autologous NK transfer has been
reported in dogs with OS, and results demonstrate the feasibility
and alluring antimetastatic activities achievable in the absence of
conventional chemotherapy (194). With the refinement of NK cell
enrichment strategies, it is highly anticipated that this form of
adoptive cellular therapy will contribute to revolutionizing
treatment outcomes in metastatic solid tumors such as OS (195).

Even with the promise of adoptive cellular therapies, any
treatment benefit might be transient if the TME is unfavorable
for sustained effector activities (Step 7). One mechanism that has
dominated the immunotherapeutic landscape is the role of
checkpoints, which are natural compensatory brakes to
mitigate unrelenting immune activation. However, tumor cells
subvert this immune defervescence safeguard, essentially causing
infiltrating T cells to become exhausted. Mechanistically, tumor
cells evade T cell killing via upregulation of checkpoint
molecules, in particular PD-L1 on tumor cells and PD-1 on T
cells. Reversal of this checkpoint through blocking strategies
inclusive of anti-PD-L1, -PD-1, and/or -CTLA-4 antibody
therapy provides robust benefit to some patients with immune-
inflamed tumors profiles. While response rates to single or
combined checkpoint blockade frequently are less than 30%
across diverse tumor histologies, some patients are cured from
their cancer completely, indicating that for these outstanding
responders the break in the cancer-immunity cycle resides in the
final step of T cell killing.
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Given the remarkable effectiveness of checkpoint blockade
strategies in people, there has been clinical urgency to develop
and evaluate similar therapeutic reagents for the treatment of pet
dogs with diverse tumor histologies predicted to respond to
checkpoint inhibition (47, 118, 120, 196, 197). While a
commercially available canine PD-1 antibody remains in-
development, several translationally impactful studies have
emerged over the past 5 years describing in vitro biologic
activity and in vivo therapeutic potential of anti-PD-1, anti-
PD-L1, or other checkpoint blocking molecule strategies alone or
in combination in cancer-bearing dogs (47, 120, 131, 132, 198,
199). In totality, these cutting-edge investigations demonstrate
an early glimpse into the provocative activity that could be
unleashed through checkpoint blockade strategies in pet dogs
with solid tumors (OS, OMM, glioma, sarcoma). It would be
expected that rather than being used as monotherapies, and
informed by the cancer-immunity cycle, implementing precisely
timed and sequenced combinatorial treatment protocols
inclusive of checkpoint blocking antibodies would generate
additive anticancer benefit to a broader swathe of patients.

CONCLUSIONS

Intuitively, the inclusion of species that lie closely on the
evolutionary scale are more likely to share orthologous
genotypes and prove more valuable as model systems for the
faithful recapitulation of disease states. This paradigm has been
applied to the study of cancer across different species and is
termed comparative oncology. While the foundations of
comparative oncology have been rooted traditionally in more
conventional vertebrate species such as zebrafish and rodents,
the purposeful inclusion of large animal models with
spontaneously-arising tumors, such as pet dogs and cats, has
flowed into consideration for accelerating the advancement of
novel cancer therapies. Given the natural development of cancers
in companion animals with operative immunosurveillance, it is
expected that shared tumor histologies between people and pets
will abide by the same rules governing the cancer-immunity cycle
and could both benefit from similar immunotherapeutic cancer
strategies. If correct, herein lays a unique and rich opportunity to
leverage pet dogs and cats with immunogenic cancers for the
evaluation of innovative combinatorial strategies for the dual
purpose of advancing veterinary patient care, but also guiding
scientific discovery and clinical practice recommendations for
comparative tumor types afflicting human beings.
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