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Microglia are considered the main phagocytic cells in the central nervous

system, remodeling neural circuits by pruning synapses during development.

Microglial phagocytosis is also a crucial process in maintaining adult brain

homeostasis and clearing potential toxic factors, which are recognized to

be associated with neurodegenerative and neuroinflammatory disorders. For

example, microglia can engulf amyloid-β plaques, myelin debris, apoptotic

cells, and extracellular harmful substances by expressing a variety of specific

receptors on the cell surface or by reprogramming intracellular glucose

and lipid metabolism processes. Furthermore, physical exercise has been

implicated to be one of the non-pharmaceutical treatments for various

nervous system diseases, which is closely related to neuroplasticity and

microglia functions including proliferation, activation, and phagocytosis. This

review focuses on the central regulatory mechanisms related to microglia

phagocytosis and the potential role of exercise training in this process.
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Introduction

Microglia are the innate immune cells of the central nervous system (CNS) and

have a long life span, accounting for 5–20% of glial cells in the adult brain (Mecca

et al., 2018). They are malleable in response to different signals (Wendeln et al., 2018)

and can undergo extensive morphological, phenotypic, and functional reprogramming

to adapt to the changing needs of the developing brain. Microglia play a variety of

roles in the brain such as immune monitoring, secretion of cytokines and neurotrophic

factors, regulation of inflammation, phagocytosis of cell debris, synaptic connection and

pruning, and neural circuit remodeling under physiological and pathological conditions

(Kettenmann et al., 2011; Hayashi and Nakanishi, 2013). In addition, microglia
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are considered crucial regulators of CNS development and

homeostasis through the crosstalk with other glia and neurons

(Colonna and Butovsky, 2017; Hagemeyer et al., 2017).

In a physiological state, microglia show a highly branched

state with a small cell body and long branches, which is

called “resting microglia.” They continuously extend and retract

through the parenchyma (Nimmerjahn et al., 2005), dynamically

surveying the brain parenchyma. In addition, the assembly of

neuronal circuits requires a delicate balance between synaptic

formation and elimination. Microglia play a defined role in

this process by eliminating excess synapses (Ferro et al., 2018).

For instance, during brain development, microglia contribute to

developmental synaptic remodeling via engulfing synapses from

less active neurons (Wu et al., 2015), and thereby, promoting

formation of precise neural circuitry (Li et al., 2020). In

parallel, microglia dynamically investigate synapses in the adult

brain in an activity-dependent manner and play a vital role

in neuronal homeostasis and cognitive repair (Bartels et al.,

2020). Dysphagocytosis of microglia may lead to synaptic over-

pruning or inadequate pruning, which may be a direct culprit

in neurodevelopmental and neuropsychiatric disorders such as

autism and schizophrenia (Edmonson et al., 2016; Druart and Le

Magueresse, 2019). Furthermore, microglia can also normalize

dendritic spine increment in an experience-dependent manner

(Tuan et al., 2021).

In pathological conditions such as infection, trauma, or

cerebral ischemia, microglia rapidly transform from the resting

state to the activated state, presenting a typical “amoeboid,”

which is characterized by an enlarged cell body, shortened and

thickened branches (Wolf et al., 2017), followed by migrating

to the inflammatory site and secreting cytokines, chemokines,

and neurotoxins, such as reactive oxygen species (ROS), thereby

survey surrounding axons and invading pathogens.

Microglia dynamically switch between two polarized states,

namely the M1 phenotype (pro-inflammatory) and the M2

phenotype (anti-inflammatory) and are involved in different

CNS diseases such as cerebral ischemia, traumatic brain injury,

and neurodegenerative diseases such as Alzheimer’s disease

(AD) and Parkinson’s disease (Colonna and Butovsky, 2017; Li

and Barres, 2018; Prinz et al., 2019). Microglia can recognize

pathogens and other external stimuli on account of a rich

array of receptors they express, including toll-like receptors

(TLRs) (Li Y. et al., 2021), Fc receptors (Fuller et al., 2014), Ig-

superfamily receptors such as triggering receptors expressed on

myeloid cells 2 (TREM2) (Zhao et al., 2018; Andreone et al.,

2020), scavenger receptors (Wilkinson and El Khoury, 2012),

complement receptors (Werneburg et al., 2020), and fractalkine

receptors (Gunner et al., 2019).

Compared to brain surgery andmedication, exercise therapy

is largely non-invasive and free from side effects. A large

number of investigations have reported that exercise can induce

structural and functional plasticity of the injured CNS, such as

promoting the repair of injured neurons and the reconstruction

of compensatory neural circuits (Mahalakshmi et al., 2020).

This is especially one of the widely used neurorehabilitation

methods after stroke (Billinger et al., 2014). Moreover, exercise

can regulate brain function by acting on functional changes

in microglia. Multiple animal studies have identified the

regulation of exercise on the quantity, morphology, phenotype

cytokine, and neurotrophic factor expression of microglia in

several neurological disorders (Lu et al., 2017; Pignataro et al.,

2021; Zhang et al., 2022). Physical exercise also mediates

the crosstalk between microglia and astrocytes/neurons to

enhance neuroplasticity. For example, the CX3CL1-CX3CL1R

axis and the CD200-CD200R axis were more responsive to

the same stimulus in the exercised animals than in the

sedentary animals (Sung et al., 2012; Fleshner et al., 2014).

The molecular mechanisms involved in the crosstalk between

astrocytes/neurons and microglia have been elaborated on in

recent reviews (Li F. et al., 2021). Mee-Inta et al. (2019)

also provided a detailed review of the effect of exercise on

microglia activation and its possible regulatory mechanisms.

Moreover, Consorti et al. (2021) have reviewed the peripheral

mechanisms that drive physical activity to influence the brain,

in particular, the physiological processes that transform sensory

input inmuscles and joints into the activation of brainmolecular

pathways associated with neuroplasticity.

However, a few reports further summarize microglia

functions, such as phagocytosis and environmental surveillance,

and the effect of physical exercise on them. As an example,

recent studies have shown that exercise reverses behavioral

abnormalities in mouse models of autism spectrum disorder

by stimulating microglia to engulf excess synapses (Andoh

et al., 2019). Treadmill exercise preconditioning for 6

weeks promoted recovery of intracerebral hemorrhage

mice with neurological deficits, reduced lesion size, and

increased microglial phagocytosis (Kinoshita et al., 2021).

This study discusses the possible mechanisms of microglia

phagocytosis regulated by exercise. How signals generated by

muscle movement are transmitted from the periphery to the

center is not explained here, even though it is a crucial and

complex process.

Here, we summarize recent knowledge on factors regulating

microglial phagocytosis, including TREM2, lipid metabolism,

metabolic reprogramming, complement, chemokine receptor,

noradrenaline (NA), interleukin (IL)-33/ST2, and TAM

system (Table 1). Pharmacological or exercise interventions

through some of these factors may contribute to preventing

neurodevelopmental dysfunction mediated by microglial

phagocytosis of excess living neurons and synapses or

neurodegeneration and neuropsychiatric disorders induced

by microglia phagocytic dysfunction. Physical exercise has

been shown to reverse microglial phagocytosis by modulating

several factors. Through this review, we aim to make an overall

overview of the molecular mechanism controlling microglia

phagocytosis and provide new targets and ideas for physical
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TABLE 1 Regulation mechanism and exercise participation of microglia phagocytosis in di�erent disease models.

Objects Effects Models Disease

model

Exercise

participation

References

TREM2 Synapses Limits astrocyte uptake of

synapses.

1-month-old mice During

development

N/A Jay et al., 2019

Neuronal

debris

Mediates cell survival,

phagocytosis, processing of

neuronal debris, and lipid

metabolism.

Human iMG N/A N/A Andreone et al., 2020

Aβ Facilitates Aβ uptake by microglia

and human macrophages through

interaction with lipoproteins.

An unbiased protein

microarray screen

AD N/A Yeh et al., 2016

Myelin Regulates cholesterol transport and

metabolism at the transcriptional

level.

Mice; iMG Chronic

demyelination

model

N/A Nugent et al., 2020

N/A 16 weeks of physical exercise

increases sTREM2 in CSF of AD

patients.

198 patients with AD AD Treadmill,

stationary bike,

cross trainer

Jensen et al., 2019

N/A Three months of running wheels

inhibits TREM2 shedding and

maintains TREM2 protein levels.

APP/PS1 mice AD Running wheels Zhang et al., 2022

Lipid

metabolism

Aβ Acetate, as the essential

microbiome-derived SCFAs,

modulates microglial phagocytosis

of Aβ.

Germ-free WT mice; 5xFAD

mice

AD N/A Erny et al., 2021

Myelin TREM2 regulates cholesterol

transport and metabolism at the

transcriptional level.

Mice; iMG Chronic

demyelination

model

N/A Nugent et al., 2020

Metabolic

reprogramming

Aβ The conversion of microglia to

glycolysis leads to microglia

phagocytic dysfunction and

Aβaccumulation.

APP/PS1 mice AD N/A McIntosh et al., 2019

Aβ Aβ induces metabolic

reprogramming of microglia from

OXPHOS to glycolysis.

5xFAD mice AD N/A Baik et al., 2019

Aβ Metabolically inefficient glycolysis

reduces the phagocytosis of

microglia to Aβ.

Primary microglia in culture N/A N/A Rubio-Araiz et al., 2018

N/A Glycolysis, glycolytic capacity and

PFKFB3 are significantly increase

in microglia from aged animals.

Exercise ameliorates these effects

and increases the phagocytic

capacity of cells.

Aged (18 months old)

C57BL/6 mice

N/A Treadmill Mela et al., 2020

Complement receptors

C1q Synapses Mediates the elimination of

redundant synapses in the retina

during geniculate neuron

development and in the early stage

of glaucoma.

Mice with glaucoma During

development;

glaucoma

N/A Stevens et al., 2007

(Continued)
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TABLE 1 Continued

Objects Effects Models Disease

model

Exercise

participation

References

C3 Synapses Viral overexpression of the

complement inhibitor Crry at

C3-bound synapses decreases

microglial engulfment of synapses.

Postmortem human MS

tissue, a preclinical

non-human primate model of

MS, and two rodent models of

demyelinating disease

MS N/A Werneburg et al., 2020

C3 Presynaptic

terminals

Viral infection of adult

hippocampal neurons induces

complement-mediated elimination

of presynaptic terminals.

Murine and humanWest Nile

virus (WNV) neuroinvasive

disease post-mortem samples

Neuroinvasive

infection

N/A Vasek et al., 2016

C3 Synapses Complement activation and

opsonization of hippocampal

synapses direct ongoing

microglia-dependent phagocytosis

of synapses.

Mice Stroke N/A Alawieh et al., 2020

C1q and C3 Synapses Mediate microglial phagocytosis of

hippocampal synapses.

Postmortem of 31MS donors MS N/A Michailidou et al., 2015

Chemokine receptors

CX3CR1 Synapses Mediates whisker removal-induced

synaptic elimination.

Mice Sensory

lesioning

N/A Gunner et al., 2019

CCR4 Hematoma CCL17 therapy promotes early

hematoma regression after

intracerebral hemorrhage through

the CCR4/ERK/Nrf2/CD163

pathway.

Mice ICH N/A Deng et al., 2020

CXCR3 N/A Attenuates LPS-induced microglial

phagocytosis and nitric oxide

production in microglia and BV-2

cells.

Primary cortical neurons,

astrocyte and microglia in

culture; mice

Entorhinal

cortex lesion

model

N/A de Jong et al., 2008

Adrenergic

receptors

Aβ NA in locus ceruleus projection

areas facilitates microglial

migration and phagocytosis in AD,

thereby contributing to Aβ

clearance.

APPV717I-transgenic mice;

APP/PS-1-transgenic mice;

Primary microglia in culture

AD N/A Heneka et al., 2010

N/A Both the activity of noradrenaline

neurons in locus coeruleus and the

expression of adrenergic receptors

in healthy rats can by regulated by

wheel running.

Rats N/A Wheel running Van Hoomissen et al.,

2004

Synapses VE significantly normalizes the

SD-induced dendritic spine

increment and maintains the

microglial phagocytic ability.

Mice Adolescent

72 h SD model

VE Tuan et al., 2021

IL-33/ST2 ECM Instructs microglial engulfment of

ECM.

Mice N/A N/A Nguyen et al., 2020

N/A IL-33-ST2-Akt signaling axis

supports metabolic adaptation and

phagocytosis of microglia.

Mice During

development

N/A He et al., 2022

(Continued)
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TABLE 1 Continued

Objects Effects Models Disease

model

Exercise

participation

References

Aβ Ameliorates Aβ pathology by

reprogramming microglial

epigenetic and transcriptomic

profiles to induce a microglial

subpopulation with enhanced

phagocytic activity.

APP/PS1 transgenic mice AD N/A Lau et al., 2020

Hematoma IL-4/STAT6/ST2 signaling

mediates microglia/macrophages

phagocytosis of red blood cells.

Young and aged male and

young female mice

ICH N/A Xu et al., 2020

TAM system Aβ TAM-driven microglial

phagocytosis does not inhibit, but

rather promotes, dense-core plaque

development.

APP/PS1 mouse AD N/A Huang et al., 2021

Viral Inhibition of phospholipid

scramblase 1 (PLSCR1) activity

prevents PtdSer externalization

and enables months-long

protection from microglial

phagocytosis.

Mice Viral infection N/A Tufail et al., 2017

Synapses Local externalization of PtdSer

mediates developmental synaptic

pruning by microglia.

Primary neurons and

microglia in culture; mice

N/A N/A Scott-Hewitt et al., 2020

Synapses PtdSer is precisely exposed to the

tip of the outer segment of the

photoreceptor, which drives the

RPE cells to engulf the local

membrane segment.

Cell culture of porcine N/A N/A Ruggiero et al., 2012

Negative regulators of phagocytosis

CD22 Myelin debris;

Aβ;

α-synuclein

fibrils

Mediates the anti-phagocytic effect

of α2,6-linked sialic acid.

Aged (18–24 months old) and

Young (2–4 months old)

mice; primary microglia in

culture

N/A N/A Pluvinage et al., 2019

CD47 Synapses Protects synapses from excessive

pruning during. development.

Primary neurons and

microglia in culture; AD

(APPswe and PSEN1dE9 in a

single locus) mice

AD N/A Ding et al., 2021

CD47 Synapses Prevents excess microglial

phagocytosis.

Mice N/A N/A Lehrman et al., 2018

CSF, Cerebrospinal fluid; AD, Alzheimer’s disease; MS, Multiple sclerosis; ICH, Intracerebral hemorrhage; Aβ , Amyloid beta; ECM, Extracellular matrix; SCFAs, Short-chain fatty acids;

LPS, Lipopolysaccharide; NA, Noradrenaline; VE, Voluntary exercise; SD, Sleep deprivation; PtdSer, phosphatidylserine; RPE, Retinal pigment epithelial; iPSCs, Induced pluripotent stem

cells; iMG, iPSCs-derived microglia cells.

exercise to promote neuroplasticity from the perspective of

microglial phagocytosis.

TREM2

TREM2, an immunoglobulin superfamily receptor, was

initially identified as a gene closely associated with the risk of

AD in the Genome-wide association (GWAS) study (Jansen

et al., 2019). TREM2 is expressed predominantly by microglia

in the CNS (Colonna and Wang, 2016). TREM2 enhances

microglia phagocytosis of Aβ plaques and ameliorates AD

symptoms. During development, microglia rely on TREM2 to

restrict the uptake of synapses by astrocytes while there are

additional mechanisms that restrict glial cells from improperly
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eliminating synapses in adulthood. But a high-fat diet is

sufficient to restart synaptic loss regulation dependent on

TREM2. Defects in TREM2 affect the number of synapses and

glial phagocytosis of synaptic buttons in multiple brain regions

(Jay et al., 2019). Mechanically, TREM2 binds to its associated

immune ligands and signals through tyrosine-based activation

motifs (ITAM), such as the adapter protein DNAX activation

proteins 12 (DAP12) that recruits downstream tyrosine kinase

SYK, ultimately promoting chemotaxis, phagocytosis, and

proliferation of microglia (Ulland and Colonna, 2018). The

TREM2-DAP12 interaction also activates PI3K/AKT, followed

by blocking the MAPK cascade. These signaling pathways

ultimately inhibit TLR4-driven inflammatory responses in

microglia (Mecca et al., 2018). In good correlation to these

findings, Andreone et al. recently confirmed that PLCγ2

regulates microglial survival, myelin phagocytosis, neuronal

debris processing, and lipid metabolism as a downstream

molecule in TREM2. PLCγ2 also signals TLRs independently

of TREM2, mediating an inflammatory response (Andreone

et al., 2020). TREM2 has been reported to drive microglia to

gather around amyloid-β (Aβ) plaques and engulf them (Yeh

et al., 2016). Deletions or mutations in TREM2 exacerbate

Aβ toxicity and increase the risk of AD. In the AD

model, mice with TREM2 R47H mutations had reduced

microglia proliferation, activation, and recruitment to Aβ

plaques (Hall-Roberts et al., 2020).

In addition, TREM2 also indirectly affects phagocytic

function by regulating microglia metabolism. It has been

reported that TREM2 senses lipids and mediates myelin

phagocytosis. TREM2 has been identified as a key transcriptional

regulator of lipid transport and metabolism. Ligands of

TREM2 include lipoprotein particles, such as LDL as well

as apolipoproteins (Yeh et al., 2016). Both Apolipoprotein E

(APOE) and Aβ oligomers are able to bind to and activate

TREM2 (Gratuze et al., 2018; Zhao et al., 2018). Yeh et al.

(2016) found that both TREM2 deficiency and APOE deficiency

inhibited plaque-associated microglia proliferation in a mouse

model of AD. Recent studies have also reported that microglia

with TREM2 mutations or lack of TREM2 can engulf myelin

fragments but fail to clear cholesteryl ester due to impaired

cholesterol transport while accumulation of cholesteryl ester

was also observed in APOE-deficient glial cells (Nugent

et al., 2020). Overall, TREM2 plays a key role in microglia

recruitment, phagocytosis of Aβ plaques, lipid transport, and

metabolism. All of these studies suggest that increasing TREM2

expression is an effective treatment to delay the onset of AD

(Zhong et al., 2017) and demyelinating disease. Intriguingly,

interactions among microglia, neurons, and oligodendrocytes

contribute to the selective phagocytosis of myelin sheaths, that

is, neuronal activity competitively attracts microglia to the

neuronal cell body, thus occupying themicroglia used formyelin

phagocytosis, while reduced neuronal activity promotes myelin

phagocytosis (Hughes and Appel, 2020). Whether this neuronal

activity-dependent myelin remodeling cooperates with TREM2

needs to be further verified.

Levels of soluble TREM2 in the cerebrospinal fluid (CSF)

were significantly increased in AD patients with long-term

physical exercise (Jensen et al., 2019). Similarly, a recent study

reported that long-term voluntary running exercise ameliorated

cognitive impairment in APP/PS1 mice by inhibiting TREM2

abscission and maintaining TREM2 protein levels while

promoting microglial glucose metabolism and hippocampal

morphological plasticity in AD mice (Zhang et al., 2022). In

brief, exercise regulates microglial phagocytosis by targeting

TREM2 directly or indirectly.

Lipid metabolism

In mice and human brains, lipid droplets accumulate

significantly in microglia with age. These cells produce an

abundance of ROS (Yousef et al., 2019; Marschallinger et al.,

2020), secrete pro-inflammatory cytokines, and are deficient in

phagocytosis, known as lipid droplet-accumulating microglia

(LDAM). More than half of the microglia were found in the

LDAM state in the aged hippocampus (Marschallinger et al.,

2020).

In activated microglia, metabolic pathways are significantly

altered. Microglia activation, phagocytosis, migration, and

release of inflammatory factors may be controlled by microglia

lipid metabolism (Chausse et al., 2021). In vitro studies indicated

that inhibition of lipid droplet formation significantly increased

the phagocytosis of BV2 cells, implying that lipid droplets

had an adverse effect on phagocytosis. Intriguingly, LDAM

contain a large number of lysosomes, which accumulate near

the lipid droplets. Therefore, it is hypothesized that in LDAM,

lysosomes are more inclined to degrade lipid droplets than the

substances being swallowed, resulting in impaired phagocytosis.

In addition, there is evidence of lysosome dysfunction in

senescent microglia (Mosher andWyss-Coray, 2014). Therefore,

in elderly LDAM, lysosome dysfunction may lead to both

phagocytosis impairment and lipid droplet accumulation, which

further damages the phagocytosis.

Consistent with this, phagocytosis in macrophages depends

on accessible free fatty acids, which are released when the

lipid droplets degrade (Chandak et al., 2010). The phagocytic

activity of lipid droplet-enriched foam macrophages was lower

than that of lipid droplet-free macrophages in atherosclerotic

lesions (Chinetti-Gbaguidi et al., 2011). In parallel, recent

studies have suggested that acetate, a critical microbiome-

derived short-chain fatty acid, regulates disease progression in

the mouse model of AD by inhibiting microglial phagocytosis of

amyloid-beta (Erny et al., 2021). This suggests that the normal

phagocytosis of microglia requires the assistance of increased

lipid metabolism (Loving and Bruce, 2020).
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At the transcriptional level, genes such as APOE, TREM2,

and Lipoprotein Lipase (LPL are increased in microglia both

during development and in disease states (Loving and Bruce,

2020). Regulation of lipid metabolism in TREM2 has been

described above. In parallel, Nugent et al. reported that

TREM2 upregulatesAPOE and othermicroglial genes associated

with chronic demyelinating injury (Nugent et al., 2020).

On the whole, there are some interactions among various

lipid metabolism-related genes in microglia, which jointly

regulate phagocytosis in different pathological conditions. The

specific mechanism by which lipid droplets affect phagocytosis

remains to be studied. However, whether exercise training may

affect microglial phagocytosis by regulating lipid metabolism

remains unclear.

Metabolic reprogramming

Metabolic reprogramming is a process in which cells

exhibit different metabolic characteristics in response to changes

in the microenvironment in order to provide energy and

biological matter (Mo et al., 2019). Immune cells have a

variety of functions, and they would adjust their alternative

metabolic pathways in real-time to meet their energy needs

based on cell phenotypes. There is increasing evidence that

metabolic reprogramming is a key energy basis for the immune

response of microglia. Microglia homeostasis depends on

oxidative metabolism, while the metabolism of microglia shifts

to glycolysis under pro-inflammatory stimulation (Lynch, 2020).

The transition from oxidative phosphorylation (OXPHOS) to

glycolysis interferes with its phagocytosis. An in vitro study

showed that the combination of interferon -γ (IFN-γ) and Aβ

can induce glycolysis in microglia and its ability for phagocytosis

and chemotaxis is decreased (McIntosh et al., 2019). Besides,

TREM2, as mentioned above, is thought to play a key role in

regulating microglial metabolic patterns.

Although glycolysis is not as efficient at producing ATP

as OXPHOS, glycolysis has a glucose metabolism rate 10–100

times faster than OXPHOS, which enables microglia to complete

energy-intensive processes such as phagocytosis. However, only

2 molecules of ATP are produced per glucose due to inefficient

glycolysis metabolism, while oxidative metabolism produces

about 36 molecules of ATP, so cellular fatigue may lead to the

occurrence of functional deficits. Baik et al. have reported acute

administration of Aβ-activated microglia, along with metabolic

processes fromOXPHOS to glycolysis. This process relies on the

mTOR-HIF-1a pathway. However, the physiological processes

of microglia such as cytokine secretion and phagocytosis are

defective in the long run. IFN-γ administration, as a potential

treatment, can restore microglia glycolytic metabolism and

immune function (Baik et al., 2019). In short, regulating

microglia metabolism may be a potential therapeutic strategy.

In contrast, an in vitro study showed that anti-TLR2

antibodies increased the phagocytosis of Aβ by LPS-

stimulated microglia, which is associated with inhibition

of the activity of the key glycolysis enzyme fructose-6-phospho-

2-kinase/fructose-2, 6-bisphosphatase (PFKFB3), and the

metabolic pattern of microglia shifted from glycolysis to

oxidative metabolism (Rubio-Araiz et al., 2018). The glycolysis,

glycolytic capacity, and PFKFB3 were significantly increased in

elderly microglia, and exercise could alleviate the above effects

and increase the phagocytosis ability (Mela et al., 2020). In brief,

exercise reduces the dependence of microglia on metabolically

inefficient glycolysis.

Complement receptors

C1q and C3, the components of the classical complement

cascade, bind to the surface of invading pathogens, which

are then cleared by phagocytes expressing corresponding

complement receptors in the peripheral immune system

(Morgan and Kavanagh, 2018; Reis et al., 2019). Similarly, in the

CNS,microglia rely on classical complement cascades tomediate

phagocytic signaling, removing excess synapses. Mice with C3,

C1q, or complement receptor 3 (CR3) deficiency had persistent

synaptic pruning defects, and about 50% of microglial synaptic

phagocytosis was blocked in CR3-deficient mice (Schafer et al.,

2012; Hong et al., 2016). In parallel, C1q andC3 are also localized

in the visual thalamus of developing rodents (Stevens et al.,

2007). Microglia expressing CR3 engulf these complement-

associated synapses. On the contrary, viral overexpression of

the complement inhibitor Crry protects visual function by

decreasing microglial engulfment of synapses (Werneburg et al.,

2020).

Similar molecular mechanisms also modulate early synaptic

loss in neurodegenerative model mice. For example, in

demyelinating disease, microglia eliminate synapses through

selective complement cascades (Vasek et al., 2016). In a mice

model of AD, aggregation of Aβ can activate complement,

which influences microglial phagocytosis through complex

crosstalk with TLR and inflammasome signaling pathways,

thereby, regulating synaptic pruning and loss (Yang et al., 2020).

After both reperfused and non-reperfused stroke, complement

activation directs ongoing microglia-dependent phagocytosis of

synapses for at least 30 d after stroke, leading to a loss of synaptic

density that is associated with cognitive decline (Alawieh et al.,

2020). Another postmortem report of a multiple sclerosis (MS)

patient also showed that C1q and C3 co-located with synaptic

proteins in the hippocampus (Michailidou et al., 2015).

The specific mechanism that transforms the combination

of complement and complement receptor into the phagocytosis

of the synaptic remains unclear. Some studies have suggested

that this is associated with Ca2+ influx into boutons in
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activated neurons, followed by the activation of local Ca2+-

dependent scramblases, which lead to the externalization of

phosphatidylserine (PtdSer). The externalized PtdSer eventually

binds to C1q to trigger synaptic pruning (Païdassi et al., 2008;

Lemke, 2017). It is not clear whether the binding of C3 to its

receptor requires PtdSer, but Allendorf et al. have suggested

that increased sialidase activity in activated microglia leads to

desialylation in the cell surface, which stimulates microglia to

phagocytose neurons in a CR3-dependent manner (Allendorf

et al., 2020).

It has been reported that chronic aerobic exercise can

maintain the integrity and function of neurovascular units

in aging mice by reducing C1q+ microglia and increasing

neuroplasticity (Soto et al., 2015). Furthermore, physical exercise

may promote cellular crosstalk between microglia and neurons

through complement molecules (Li F. et al., 2021).

Most of these studies have been conducted in the

mouse model. However, it has been suggested that mouse

models cannot fully solve this problem because human

microglia are markedly different from rodent microglia, with

higher complement components and multiple important gene

expressions during brain development (Gosselin et al., 2017).

There is no doubt that further research is needed to clarify

this point.

Chemokine receptors

CX3CL1 is one of the critical chemokines and is mainly

expressed in neurons in a soluble or membrane-bound state.

CX3CR1, a G protein-coupled chemokine receptor, which is

highly expressed in microglia (Wolf et al., 2013), keeps microglia

homeostasis by binding to CX3CL1 (Madrigal et al., 2017). The

CX3CR1/CX3CL1 axis plays an important role in maintaining

CNS homeostasis under physiological conditions.

In the developing thalamic cortex, microglia accumulate at

synaptic concentration sites and control synaptic maturation

through the CX3CR1/CX3CL1 signaling pathway. CX3CR1-

deficient mice showed delayed functional maturation of

postsynaptic glutamate receptors (Paolicelli et al., 2011; Hoshiko

et al., 2012). In addition, artificial removal of whisker induces

microglial synaptic phagocytosis and synaptic elimination

during development through the CX3CR1-CX3CL1 rather than

the CR3 signaling pathway. Gunner et al. showed that Adam10,

a gene that encodes a metalloproteinase, plays an important role

in cleaving CX3CL1 into a secretory phenotype, and the cleaved

CX3CL1 then binds to CX3CR1 and initiates phagocytosis and

remodeling of synapses by microglia (Gunner et al., 2019).

Tau and CX3CL1 interact competitively with CX3CR1,

and the expression level of CX3CL1 is reduced in the AD

brain, so CX3CR1 directly binds to Tau and promotes its

internalization and uptake (Chidambaram et al., 2020). In

intracerebral hemorrhage model mice, microglial phagocytosis

is an important channel to promote hematoma regression.

It has been reported that treatment with CCL17, a specific

ligand of CCR4, promotes hematoma resolution through

the CCR4/ERK/Nrf2/CD163 pathway, thereby, improving

neurological function, which is associated with microglia-

mediated erythrocyte phagocytosis and clearance of tissue

debris (Deng et al., 2020). Additionally, CXCR3b, another

splicing variant of CXCR3 expressed in human microvascular

endothelial cells, has been shown to bind to CXCL4, which

is mainly derived from microglia under neurodegenerative

conditions in vitro and in vivo. CXCL4 reduces LPS-induced

phagocytosis of microglia and BV-2 cells and the production of

nitric oxide (de Jong et al., 2008). Overall, microglia in various

disease models appear to activate different chemokine receptors

to demonstrate phagocytosis.

Physical exercise is reported to ameliorate cognitive function

and neuroplasticity in depressed mice through microglia-

mediated CX3CL1-CX3CR1 signaling (Eyre et al., 2013).

Similarly, it has been suggested that physical exercise could

accelerate the response of the CX3CL1-CX3CR1 axis to

stressors and rapidly quieten the activated microglia, thus

avoiding the negative cognition-related effects of stress (Fleshner

et al., 2014). However, whether exercise training may affect

microglial phagocytosis by regulating CX3CL1-CX3CR1 needs

further study.

Adrenergic receptors

NA in the cortex was derived only from noradrenergic

neurons in the locus coeruleus (Berridge and Waterhouse,

2003). Although adrenergic receptors are widely expressed in

the neurons and glia (O’Donnell et al., 2012), microglia are the

major sites of NA signaling in the cortex.Within the cortex, there

is considerable evidence that β1-adrenergic receptor (β1-AR)

and β2-adrenergic receptor (β2-AR) are the only functionally

significant adrenergic receptors in microglia (Heneka et al.,

2010). Moreover, in the non-injured brain, microglia are highly

enriched with β2-AR relative to other CNS cell types (Zhang

et al., 2014). NA acts as a powerful regulator of microglia

function in physiological or pathological settings, including

microglial processes motility, arborization, and contact with

dendrites (Liu et al., 2019; Stowell et al., 2019). Previous

studies have also shown that microglia β2-AR are essential for

microglia locomotion, migration, phagocytosis, proliferation,

and inflammatory responses (O’Donnell et al., 2012).

In models of AD, there is evidence that the non-selective

β-adrenergic receptor agonist isoproterenol indirectly enhances

the phagocytosis of Aβ plaques (Heneka et al., 2010) in addition

to promoting microglia migration toward Aβ plaques in culture

(Kettenmann et al., 2011). Degeneration of the locus coeruleus

may contribute to the pathogenesis of AD (Kalinin et al., 2007).
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Both the activity of norepinephrine neurons in locus

coeruleus and the expression of adrenergic receptors in healthy

rats can be regulated by wheel running (Van Hoomissen

et al., 2004). Furthermore, voluntary exercise is beneficial

to the normalization of dendritic spine’s increment and the

maintenance of microglial phagocytosis in sleep-deprived mice.

The modification of norepinephrine signaling in the CNS

may be responsible for the preventive effect of voluntary

exercise on microglia and neuron dysfunction induced by

sleep deprivation (Tuan et al., 2021). Yet, the impact of

physical exercise on the norepinephrine system during brain

development remains elusive.

IL-33/ST2

IL-33 is normally inactive in the nucleus and acts as

a transcriptional regulator. When cells are subjected to

mechanical stress, inflammatory cytokines stimulation, or

necrosis, IL-33 is released into the extracellular space and

hydrolyzed. Subsequently, the hydrolyzed IL-33 signals adjacent

immune cells expressing ST2 receptors in an autocrine/paracrine

manner (Altara et al., 2018). During the early stages of

synaptic maturation after birth, IL-33 expression is increased in

astrocytes in the gray matter of the spinal cord and thalamus,

where most synapses are concentrated. In this process, IL-

33/ST2 is primarily responsible for driving microglial synapse

engulfment and restricted excitatory synapse numbers (Sun

et al., 2021). On the other hand, IL-33 is widely expressed in

adult brain regions such as the corpus callosum, hippocampus,

thalamus, and the granular layer and white matter of the

cerebellum. It is also primarily located in astrocytes in the mouse

brain and spinal cord (Pichery et al., 2012).

Interestingly, a recent study has shown that most IL-33-

expressing cells in the adult hippocampus are neurons and

are primarily responsible for instructing microglial engulfment

of the extracellular matrix (ECM) and reshaping synapses,

which are required for memory consolidation. IL-33 deficiency

leads to impaired phagocytosis of ECM by microglia, along

with the accumulation of ECM proteins, especially around

the synapses and dendritic spines. Treatment with exogenous

ECM enzymes contributes to restoring the number of dendritic

spines in IL-33-deficient mice (Nguyen et al., 2020). Neuronal

IL-33 expression levels are progressively decreased with age,

which is consistent with deficits in memory accuracy and

the accumulation of ECM around synapses (Végh et al.,

2014b). Notably, elimination of ECM or administration of

exogenous recombinant IL-33 reverses cognitive decline and

memory deficits in the mouse model of AD (Végh et al.,

2014a; Fu et al., 2016). Besides, He et al. demonstrated the

functional combination of mitochondrial bioenergetics and the

phagocytic activity of microglia. They propose a microglia-

astrocyte signaling pathway, the IL-33-ST2-Akt signaling

axis, which is a crucial pathway for maintaining metabolic

adaptation and phagocytic function of microglia during early

development and is associated with neurodevelopment and

neuropsychiatric disorders. Mechanistically, the IL-33-ST2 axis

promoted microglia phagocytosis and energetic metabolism

in an AKT-dependent manner. PTEN or SHIP-1 negatively

regulates microglial phagocytosis and energy metabolism

by inhibiting AKT activation. Inhibition of mitochondria-

dependent energy metabolism reduces the ability of microglia

to phagocytic synaptosomes (He et al., 2022).

IL-33 and ST2 can also act on their downstream molecules

alone and indirectly affect microglial phagocytosis. For example,

studies have found that injection of IL-33 in AD transgenic mice

enhanced Aβ clearance by reprogrammingmicroglia epigenetics

and transcriptome profiling, thereby alleviating AD pathology

(Lau et al., 2020). Similarly, inmousemodels, microglia promote

hematoma regression and functional recovery after intracerebral

hemorrhage through the IL-4/STAT6/ST2 signaling pathway.

Both in vivo and in vitro experiments showed that STAT6-KO

impaired the ability of microglia to phagocytose red blood cells

(Xu et al., 2020).

In general, IL-33/ST2 is closely related to microglial energy

metabolism, phagocytosis, epigenetics, and transcriptome

profiles. A further understanding of how these mechanisms

translate between physiological states and different pathologies

requires a better understanding of the temporal process of IL-33

expression, defining the dynamics of IL-33 expression at a more

precise time and individual neuron level, and mastering the

regularity of IL-33 protein release, which are important areas

for future research. So far, no studies have examined the impact

of exercise training on ST2 in microglia.

TAM system

Studies have shown that the TAM system is an important

mediator for microglia to recognize and phagocytose apoptotic

cells (ACs) (Lu and Lemke, 2001) and amyloid plaques (Huang

et al., 2021). TAM proteins include cell surface receptor tyrosine

kinases (RTKs)- Tyro3, Axl, and Mer (encoded by Mertk)

(Lemke, 2013). Human and mouse microglia normally express

high levels of Mer and low levels of Axl (Fourgeaud et al., 2016;

The ImmGen Consortium, 2016).

PtdSer is present in many different membranes in every

cell of the body, including the endoplasmic reticulum,

mitochondria, Golgi apparatus, and plasma membrane. In the

plasma membrane of normal cells, PtdSer is almost entirely

confined to the inner leaflet of the lipid bilayer (Leventis and

Grinstein, 2010; van Meer, 2011). When programmed death is

initiated, or in some pathological cases, local externalization of

eat-me signals such as PtdSer in specific areas of the cell surface

allows microglia to recognize and phagocytize pruning of these

“locally dead” domains or cells with metabolic damage that are
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FIGURE 1

The regulatory mechanism of microglia phagocytosis and exercise.

still alive (Lemke, 2019). Inhibition of phospholipid scramblase

1 (PLSCR1) activity avoided intracellular calcium imbalance,

prevented extravasation of PtdSer, and protected target cells

from microglial phagocytosis for several months (Tufail et al.,

2017).

However, PtdSer activates TAM receptors through bridging

molecules such as growth arrest-specific (GAS6) and protein

S (PROS1) rather than binding directly to TAM proteins

(Dransfield et al., 2015). Therefore, GAS6 and PROS1 may

be regarded as co-receptors. Specifically, the carboxy-terminal

SHBG domain of these ligands binds to Axl and Mer on

microglia, whereas the gamma- carboxyglutamic acid (GLA)

domain binds to PtdSer (Lemke, 2017).

During synaptic development, microglia engulf PtdSer-

labeled hippocampal and retinogeniculate synapses. Blockade of

the PtdSer-exposed pathway with Annexin V partially prevents

synaptic elimination (Scott-Hewitt et al., 2020). In the APP/PS1

mouse model of AD, gene ablation of Axl and Mer causes

microglia to fail to detect, respond to, organize, or engulf

amyloid -β plaques properly (Huang et al., 2021). Furthermore,

PtdSer and GAS6 were detected on all Aβ plaques surfaces

(Huang et al., 2021). After Axl is activated, metalloproteinases

cleft the extracellular domain of Axl exposed on the cell surface

(Zagórska et al., 2014). Increased levels of the soluble outfield

(sAxl) in CSF, combined with GAS6 complex, could predict

disease progression and progression in human AD (Mattsson

et al., 2013; Sainaghi et al., 2017). Interestingly, the Aβ that was

swallowed by microglia mediated by TAM was not eliminated

but deposited in the cells. These Aβ fibrils entering the lysosome

are compacted into indigestible dense nuclear plaques (Huang

et al., 2021). Similarly, the elimination of apoptotic neurons

requires Mer and CR3, while Axl is negligible in this process

(Anderson et al., 2022). During ACs phagocytosis, GAS6 and/or

PROS1 act as a bridge between the externalized PtdSer on ACs

and TAM receptors on microglia (Lemke, 2019).

It is worth noting that microglia can selectively phagocytose

parts of the cell, instead of the whole cell. For instance, PtdSer

is precisely exposed to the tip of the outer segment of the

photoreceptor, which drives the retinal pigment epithelial (RPE)

cells to engulf the local membrane segment (Ruggiero et al.,

2012), while how PtdSer externalization is limited to the small

membrane domain of cells remains unknown. It has been
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suggested that this is related to the local aggregation of Ca2+

channels in the plasmamembrane, which locally activates Ca2+-

dependent scramblases, thereby promoting the local cleavage

of caspase 3 and Caspase 7 (Lemke, 2019). Further research is

needed to provide evidence of those processes.Whether physical

exercise would drive the externalization of PtdSer or the change

of TAM protein expression needs further study.

Negative regulators of phagocytosis

“Don’t-eat-me” is a signal that inhibits the phagocytosis

of immune cells. By combining the CRISPR–Cas9 knockout

screens with RNA sequencing analysis, Pluvinage et al. screened

out CD22, a typical B cell receptor, as a “Don’t-eat-me” signal

protein, which was upregulated in aging microglia. The anti-

phagocytosis of α2, 6-linked sialic acid depends on CD22,

which may cooperate with clearance pathways including the

perivascular glymphatic (Kress et al., 2014) and meningeal

lymphatic systems (Da Mesquita et al., 2018) to control the

accumulation of debris and local cytokine concentrations in

the aging brain. Inhibition of CD22 by antibody blocking or

gene knockout promotes clearance of myelin fragments, Aβ,

and α -synuclein fibrils by microglia in vivo (Pluvinage et al.,

2019). CD47, a transmembrane protein, is another negative

regulator of microglia phagocytosis. It is expressed in most

mammalian cells, including neurons, and inhibits phagocytosis

in neurodegenerative diseases through signal-regulatory protein

alpha (SIRP α) on microglia (Ding et al., 2021). CD47 is

also expressed at developing synapses and inhibits microglia-

mediated synaptic clearance (Lehrman et al., 2018).

Conclusion

Together, microglial phagocytosis is particularly important

in developing synaptic pruning and amyloid clearance in

AD mice while evidence for microglial phagocytosis in other

disease models is lacking. Many scholars have conducted

extensive research on the mechanism of microglial metabolic

reprogramming, lipid metabolism, ligand, and receptor binding

related to phagocytosis, which provides new targets and new

ideas for the treatment of synaptic pruning deficiency and

Aβ clearance disorder and also is one of the ways for

some drugs and physical exercise to exert neural remodeling

effect. TREM2 not only plays a role through its downstream

tyrosine kinase SYK, but also indirectly regulates microglia

lipid metabolism and glucose metabolism, which may be

a vital intervention target for drugs or physical therapy.

Based on the previous research, exercise training has been

shown to influence microglial phagocytosis by modulating

the glycolysis process and expression of TREM2, complement

and adrenergic receptors. However, the specific cellular and

molecular mechanisms of the effect of exercise training on

microglia phagocytosis are still lacking solid evidence and in-

depth discussion [Figure 1, created with Adobe Illustrator CC

2018 (USA) and Figdraw].

In summary, the phagocytosis levels of different microglia

may be heterogeneous due to the expression levels of immune

receptors on the cell surface and their metabolic status. Further

research is needed to determine how microglia respond to

the regulation of different immune pathways. Deciphering

microglia heterogeneity may depend on a combination of

single-cell sequencing techniques and targeted mouse models in

further study. Furthermore, although microglia are the primary

phagocytes scavenging cell debris in the CNS, a growing number

of studies have reported astrocyte phagocytosis in microglia-

deficient or dysfunctional mice. It has been suggested that

astrocytes are on standby when microglia are damaged (Konishi

et al., 2020). This compensatory mechanism may be conducive

to maintaining or prolonging a healthy CNS, but the extent and

duration of this compensation are unclear. However, what kind

of “eat-me” signal drives astrocyte phagocytosis remains unclear,

which may be a direction for further research.
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