
GigaScience, 7, 2018, 1–8

doi: 10.1093/gigascience/giy077
Advance Access Publication Date: 28 June 2018
Review

REVIEW

Experimenting with reproducibility: a case study of
robustness in bioinformatics
Yang-Min Kim 1,2,3,4,*, Jean-Baptiste Poline 5,6 and
Guillaume Dumas 1,2,3,4

1Human Genetics and Cognitive Functions Unit, Institut Pasteur, 25 rue du Docteur Roux 75015 Paris, France,
2CNRS UMR 3571 Genes, Synapses and Cognition, Institut Pasteur, 25 rue du Docteur Roux 75015 Paris, France,
3Paris Diderot University, Sorbonne Paris Cité, 5 rue Thomas Mann 75013 Paris, France, 4Center of
Bioinformatics, Biostatistics and Integrative Biology (C3BI), USR 3756, Institut Pasteur and CNRS, 25-28 rue du
Docteur Roux 75015 Paris, France, 5Montreal Neurological Institute and Hospital, Brain Imaging Center,
Ludmer Center, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada and 6Henry H.
Wheeler, Jr. Brain Imaging Center, Helen Wills Neuroscience Institute, 132 Barker Hall, office 210S, MC 3190,
University of California, Berkeley, CA 94720, USA
∗Correspondence address. Yang-Min Kim, E-mail: yang-min.kim@pasteur.fr http://orcid.org/0000-0002-1583-3297, Human Genetics and Cognitive
Functions, Institut Pasteur, 25 rue du Docteur Roux 75015 Paris, France

Abstract

Reproducibility has been shown to be limited in many scientific fields. This question is a fundamental tenet of scientific
activity, but the related issues of reusability of scientific data are poorly documented. Here, we present a case study of our
difficulties in reproducing a published bioinformatics method even though code and data were available. First, we tried to
re-run the analysis with the code and data provided by the authors. Second, we reimplemented the whole method in a
Python package to avoid dependency on a MATLAB license and ease the execution of the code on a high-performance
computing cluster. Third, we assessed reusability of our reimplementation and the quality of our documentation, testing
how easy it would be to start from our implementation to reproduce the results. In a second section, we propose solutions
from this case study and other observations to improve reproducibility and research efficiency at the individual and
collective levels.
While finalizing our code, we created case-specific documentation and tutorials for the associated Python package StratiPy.
Readers are invited to experiment with our reproducibility case study by generating the two confusion matrices (see more
in section “Robustness: from MATLAB to Python, language and organization”). Here, we propose two options: a step-by-step
process to follow in a Jupyter/IPython notebook or a Docker container ready to be built and run.

Keywords: reproducibility; robustness; reusability; network based stratification; standard consensus dataset; cancer

Background

The collective endeavor of science depends on researchers being
able to replicate the work of others. In a recent survey of 1,576
researchers, 70% of them admitted having difficulty in reproduc-
ing experiments proposed by other scientists [1]. For 50%, this
reproducibility issue even concerns their own experiments. De-
spite the growing attention on the replication crisis in science

[2, 3], this controversial subject is far from being new. Even in
the 17th century, scientists criticized the air pump invented by
physicist Robert Boyle because it was too complicated and ex-
pensive to build [4].

Several concepts for reproducibility in computational sci-
ence are closely associated [5, 6]. Here, we define them as men-
tioned by Whitaker [6]. First, obtaining the same results using
the same data and same code is “reproducibility”. If code is dif-

Received: 22 November 2017; Revised: 11 April 2018; Accepted: 13 June 2018

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-1583-3297
http://orcid.org/0000-0002-9794-749X
http://orcid.org/0000-0002-2253-1844
mailto:yang-min.kim@pasteur.fr
http://orcid.org/0000-0002-1583-3297
http://orcid.org/0000-0002-1583-3297


2 Experimenting with bioinformatics reproducibility: a case study

Figure 1: Hidden reproducibility issues are like an underwater iceberg. Scientific
journal readers have the impression that they can almost see the full work in-

volved in the method. In reality, articles do not take into account adjustment
and configuration for significant replication in most cases. Therefore, there is a
significant gap between apparent executable work (i.e., above water portion of
iceberg) and necessary effort in practice (i.e., the full iceberg).

ferent, it is “robustness”. If we used different data but with the
same code, it is “replicability”. Last, using different data and dif-
ferent code is referred as “generalizability”. Here, we primarily
elaborate on reproducibility and robustness and acknowledge
that new datasets or hardware environments introduce addi-
tional hurdles [7]. Reproducibility is a key first step. For exam-
ple, among the 400 algorithms published during the major ar-
tificial intelligence conferences, only 6% offered the code [8].
Even when authors provide data and code, the outcome can vary
either marginally or fundamentally [9]. Tackling irreproducibil-
ity in bioinformatics thus requires considerable effort beyond
code and data availability, an effort that is still poorly recognized
in the current publication-based research community. In most
cases, there is a significant gap between apparent executable
work (Fig. 1 - i.e., the above-water portion of iceberg) and nec-
essary effort in practice (Fig. 1 - i.e., the full iceberg). Such effort
is necessary to increase the consistency of the literature and the
efficiency of the scientific research process by making research
products easily reusable.

Reproducibility and robustness in
bioinformatics: a case study
Reproducibility: from MATLAB to MATLAB, OS and
environment

Our team studies autism spectrum disorders, a group of neu-
rodevelopmental disorders well known for their heterogeneity.
One of the current challenges of our research is to uncover ho-
mogeneous subgroups of patients (i.e., stratification) with more
precise clinical outcomes, improving their prognosis and treat-
ment [10, 11]. An interesting stratification method was proposed
in the field of cancer research [12], where the authors proposed
combining genetic profiles of patients’ tumors with protein-
protein interaction networks in order to uncover meaningful ho-

mogeneous subgroups, a method called network-based stratifi-
cation (NBS).

Before using the NBS method on our data, we studied the
method by reproducing results from the original study. We are
very grateful to the main authors who kindly provided all the
related data and code online and gave us invaluable input upon
request. The authors of this study did much more to help re-
produce their results than is generally done. Despite their help,
we experienced a number of difficulties that we document here,
hoping that this report will help future researchers improve the
reproducibility of results and reusability of research products.

Our first step was to execute the original method code with
the given data: reproducibility (Table 1). To improve execution
speed, the original authors used a library for MATLAB on a
Linux platform, using executable compiled code MEX file [13],
i.e., MTIMESX [14], a library allowing acceleration of large matrix
multiplication. MEX files, however, are specific to the architec-
ture and have to be recompiled for each operating system (OS).
Since our lab was using Mac OS X Sierra, the compilation of this
MEX file into a mac64 binary required a new version of MTIMESX.
It was also necessary to install and configure properly OpenMP
[15], a development library for parallel computing. After this, the
original MATLAB code was successfully run in our environment.

These issues are classic but may not be overcome by re-
searchers with little experience in compilation or installation is-
sues. For these reasons alone, many individuals may turn down
the opportunity of reusing code and therefore the method.

In the next section, we focus on code re-implementation, a
procedure that can increase understanding of the method but is
even more time consuming.

Robustness: from MATLAB to Python, language and
organization

To fully master the method, we developed a complete open-
source toolkit of genomic stratification in Python [16]. Python is
also an interpreted programming language. However, contrary
to MATLAB, it is free and has a GNU General Public License (GPL)
-compatible license [17], which fosters both robustness and gen-
eralizability. Recoding in another language in a different envi-
ronment will lead to some unavoidable problems such as vari-
ation in low-level libraries (e.g., glibc); it is likely that the out-
comes will vary even if the same algorithm is implemented [18].
In addition, we rely on Python packages to perform visualization
or linear algebra computations (e.g., Matplotlib, SciPy, NumPy
[19–21]), and results may depend on these packages’ versions.
Python is currently in a transitional period between two major
versions, 2 and 3. We chose to write the code in Python 3, which
is the current recommendation.

Metadata and file formats
Even if the original code could be run, we had to handle several
file formats to check and understand the structure of the original
data. For instance, the data were provided by the Cancer Genome
Atlas (TCGA) [22] and made available in a MATLAB .mat file for-
mat v7.2 as compressed data (sparse matrices). Thanks to SciPy,
Python can load the MATLAB files version. We wanted to use the
open format HDF5 to save the results; however, Scipy’s sparse
matrices could not be stored in HDF5 format (Table 1). We thus
decided to continue saving in .mat format. Moreover, the original
authors had denoted download dates of patients’ data of TCGA,
thereby clarifying the data provenance. However, in the absence
of structural metadata, we had to explore the hierarchical struc-
ture of the variables (e.g., patient ID, gene ID, phenotype).



Kim et al. 3

Table 1: Technical problems encountered during our reproducibility and robustness case study

Code Data Technical issues Other issues

Reproducibility Same: MATLAB Same OS: MEX file specificity linked to OS (e.g.,
Linux → OSX)

Robustness MATLAB to
Python

Same File format: we can load sparse matrices
from .mat file but cannot save them into
HDF5 using h5py package
Default parameters: e.g linkage methods of
hierarchical clustering with
• MATLAB (MathWorks) using Unweighted
Pair Group Method with Arithmetic Mean
(UPGMA) and
• Python (SciPy) using single method

• Metadata structure
• Important parameter value not explained
in the original paper
• Remaining discarded work (“code ruins”)
and traces of debugging

Reproducibility of
Robustness

Same: Python Same OS: Numpy package and basic linear
algebra subprogram library compiled for
specific OS (e.g., OSX → Linux)

Documentation

Figure 2: Normalized confusion matrices between original and replicated results. Before (a) and after (b) applying the appropriate value of the graph regularization

factor on the NBS method. Each row or column corresponds to a subgroup of patients (here three subgroups). The diagonal elements show the frequency of correct
classifications for each subgroup. A high value indicates a correct prediction.

Codes and parameters
Beyond documentation and file formats, code initialization and
parameter settings are also keys for reproducibility. Upon execu-
tion of the code, “unexpected” results were obtained. One cause
was application of the hierarchical clustering step for which we
used the clustering tools of SciPy. Both SciPy and MATLAB (Math-
Works) functions offer seven linkage methods. However, SciPy’s
default option (single method) [23] differs from MATLAB’s de-
fault option (Unweighted Pair Group Method with Arithmetic
Mean: UPGMA) [24], which was used in the original study (Table
1). Another cause for the variation in results is the value of one of
the most important parameters of the method, the graph regula-
tor factor, which was not clarified in the original article. From the
article, we believed that this factor had a constant value of 1.0
until we found that in the original code its value varies across it-
erations and converges to an optimal value around 1,800. There-
fore, we initially obtained very different results from the original
NBS (Fig. 2 - a) with heterogeneous subgroups. Once the optimal
value was set up, we finally observed homogenous clusters (Fig.
2 - b). Moreover, during our attempts to run the original code in

order to understand the causes of the errors, we realized that
some parts of the code were not run any longer (e.g., discarded
work, remaining traces of debugging), which made understand-
ing the implementation harder.

To allow others to reproduce our results, we wrote some doc-
umentation and tutorials for the Python package StratiPy [16].
Readers are invited to experiment with reproducibility by gen-
erating the two confusion matrices of Fig. 2. This is described by
the following tools: GitHub, Docker, and Jupyter/IPython note-
book.

Documentation and examples
During the recoding process, we used an enhanced Python in-
terpreter, IPython, which is an interactive shell supporting both
Python 2 and 3, to debug. Since the dataset is large and the ex-
ecution takes a significant amount of time, we used IPython to
re-run interactively some subsections of the script, which is one
of the most helpful features. IPython can be integrated in the
web interface Jupyter Notebook, offering an advanced structure
for mixing code and documentation. While the Jupyter/IPython



4 Experimenting with bioinformatics reproducibility: a case study

Figure 3: Analogy between robustness issues and road transport. The aim is to
achieve the same output (i.e., to reach the same location) using published meth-
ods (i.e., engine). Despite the same input data (i.e., gasoline), we obtained differ-

ent results due to different programming languages, e.g., MATLAB and Python
(i.e., different roadways), and different environments (i.e., different vehicles).

notebook was initially convenient, it does not scale well to large
programs and is not well adapted to versioning. However, the
ability to mix code with document text is very useful for tutori-
als. A user of the code can read documentation (docstring) and
text explanations and see how to run the code, explore param-
eters, and visualize results in the browser. Our work on NBS, as
related here, can be reproduced with a Jupyter/IPython notebook
available via our GitHub repository [16]. One can find more ex-
amples and several helpful links via this “gallery of interesting
Jupyter Notebooks” [25], which contains a section about “Repro-
ducible academic publications.”

To conclude, we were able to test the robustness of the
method with our Python implementation. However, this took ap-
proximately two months for a senior researcher and six months
for a master student. Fig. 3 illustrates this work through an anal-
ogy between robustness issues and road transport. Driving in a
different environment (e.g., OS), we attempt to obtain identical
results (i.e., to reach the same location) using the same input
data (i.e., gasoline), but with a different computational environ-
ment (i.e., cars), different implementation of the method (i.e.,
engine), and different programming languages (i.e., MATLAB and
Python roads).

Collaborative code development and best practices

Throughout the project we used the version control system
(VCS) Git to document the development of our Python package.
Git is arguably one of the most powerful VCSs, allowing easy de-
velopment of branches and allowing the distributed team (Paris,
Berkeley, Montreal) to work collaboratively on the project. This
project, StratiPy, is hosted on GitHub, a web-based Git repository
hosting service [16]. While the original code was not available
on GitHub, the main authors shared their code on a website.
This should be sufficient for reproducibility and replicability for
our purposes but makes it less easy to collaborate on the code.
While working on our GitHub repository, researchers from the
USA, India, China, and Europe contacted us about our robust-
ness experiment. GitHub not only supports a better organization
of projects, it also facilitates the collaboration on open-source
software projects, thanks to its social network functions [26]. We
adopted open-source coding standards and learned how to effi-

ciently use Git and GitHub. Both required considerable training
in the short-term, but brought clear benefits in the long-term,
especially regarding collaboration and debugging.

Reproducibility of robustness: from Python to Python

Knowing how difficult it can be to re-run someone else’s code,
we then attempted to start the analysis from scratch and to re-
produce the results on another platform from our newly devel-
oped Python package. While the Python code was developed un-
der Mac OS X Sierra (10.12), we used an Ubuntu 16.04.1 (Xenial)
computer to test the Python implementation. Some additional
issues emerged (Table 1). First, our initial documentation did
not include the list of the required packages and instructions
to launch the code. Second, the code was very slow to the ex-
tent that it was impractical to run it on a laptop because the
Numpy package had not been compiled with a basic linear alge-
bra subprogram that speeds up low-level routines that perform
basic vector and matrix operations. Last, there was (initially) no
easy way to check whether the results obtained on a different
architecture were the expected ones. We added documentation
and tests on the results files md5sum to solve this. To summa-
rize, although the reuse and reproducibility of the results of the
developed package were improved, these were far from being
optimal in the first attempt.

Potential Solutions: From Local to Global
Act locally: simple practices and available tools

We conclude this reproducibility case study experiment by sug-
gesting tools and best practices following the programming best
practices of Wilson et al., such as modularizing and re-using
code, unit testing, document design, data management, and
project organization [2, 27], as well as keeping data provenance
and recording all intermediate results [28].

Publish software and their environment
Increased reproducibility and replicability can be obtained by
following Buckheit and Donoho’s long-standing motto: “When
we publish articles containing figures which were generated by
computer, we also publish the complete software environment
which generates the figures” by offering a complete and free
package (WaveLab) to reproduce the published output [29]. Con-
tainer and virtual machine technologies such as Docker [30],
Vagrant [31], and Singularity [32, 33] (easily works in cluster
environments) are becoming a standard solution to mitigate
installation issues. These rely, however, on competencies that
we think too few biologists possess today. While a container
might encapsulate everything needed for a software execution,
it can be hard to develop in a container. For instance, running
Jupyter/IPython notebooks in Docker containers requires knowl-
edge on advanced port forwarding, which may be discouraging
for many biologists. Therefore, we propose two options in our ex-
ample implementation of reproducibility: a step-by-step process
to follow in a Jupyter/IPython notebook or a Docker container
ready to be built and run. Mastering Docker, or other container
tools, is increasingly becoming an important skill for biologists
who use computational tools.

Document with appropriate metadata
Standard metadata are vital for efficient documentation of both
data and software. In our example, we still lack the standard lex-
icon to document the data as well as document the software.



Kim et al. 5

However, we aim to follow the recommendations of Stodden
et al. [34]: “Software metadata should include, at a minimum,
the title, authors, version, language, license, uniform resource
identifier/digital object identifier (DOI), software description (in-
cluding purpose, inputs, outputs, dependencies), and execution
requirements.” The more comprehensive the metadata descrip-
tion, the more likely the reuse will be both efficient and appro-
priate [35].

Write readable code
We draw the following conclusions from our experience in work-
ing with others code. First, the structure of the program should
be clear and easily accessible. Second, good, concise code doc-
umentation and naming convention will help readability. Third,
the code should not contain leftovers of previously tested so-
lutions. When a solution takes a long time to compute, an op-
tion to store it locally can be proposed. Use of standard cod-
ing and documentation conventions (e.g., PEP 8 and PEP 257 in
Python [36, 37]) with detailed comments and references of ar-
ticles makes the code more accessible. When an algorithm is
used, any modification from the original reference should be ex-
plained and discussed in the article as well as in the code. We ad-
vocate for researchers to write code “for their colleagues,” hence,
ask for the opinion and review of co-working or partner lab-
oratories. Furthermore, the collaboration between researchers
working in different environments can more easily isolate repro-
ducibility problems. In the future, journals may consider review
of code as part of the standard review process [38].

Test the code
To check if the code is yielding a correct answer, software de-
velopers associate test suites (unit tests or integration tests)
with their software. While we developed only a few tests in this
project, we realized that this practice has a number of advan-
tages, such as checking if the software installation seems correct
and checking if updates in the code or in the operating system
impact the results. In our case, we propose to check for the in-
tegrity of the data and for the results of some key processing.

Think Globally: From Education to Community
Standards

Training the new generation of scientists on digital tools and prac-
tices
The training for coding and software development is still too
limited for biologists. Often, it is limited to self-training from
searching answers on Stack Overflow or equivalent. Despite ef-
forts by organizations such as Software [39] or Data Carpentry
[40] and the growing demand for “data scientists” in the life sci-
ences, university training and assessment on coding practices is
still not generalized. The difficulty in accessing and understand-
ing code may lead to applying code blindly without checking the
validity of the results. Often, scientists prefer to believe that re-
sults are correct because checking the validity of the results may
require significant time. Mastering a package such that results
are truly understood can take a long time, as was the case in our
experiment.

Academia could, and we argue should, instruct young scien-
tists in best practices for reproducibility. For instance, Hothorn
and Leisch organized a reproducibility workshop, gathering
mostly PhD students and young post-docs specialized in bioin-
formatics and biostatistics. Then, they evaluated 100 random
sample papers from Bioinformatics [3]. Their study revealed how
such a workshop can raise young scientists’ awareness about

“what makes reproduction easy or hard at first hand.” Indeed,
they found out that only a third of the original papers and two-
thirds of applications notes had given access to the source code
of the software used.

Standard consensus dataset and testing ecosystem
Here, we propose that publications related to bioinformatics
methods are systematically accompanied with a test dataset,
code source, and some basic tests (given ethical and legal con-
straints). As the method is tested on new datasets, the number
of tests and range of applications would expand. We give a first
example with our NBS re-implementation.

A schematic overview of a possible testing ecosystem gener-
alizing our test study is shown in Fig. 4. The core of this system
would be a set of standard consensus datasets used to validate
methods. For instance, in the field of machine learning, standard
image databases are widely used for training and testing (e.g.,
MNIST for handwritten digits [41]). In the case of our proposal,
data could be from different categories such as binary, text, im-
age (shown as folders in different colors, Fig. 4 - b), and subcate-
gories to introduce criteria such as size, quantitative/qualitative,
and discrete/continuous, using a tagging system. Datasets could
be issued from simulations or from acquisition and would vali-
date a method on a particular component. This testing ecosys-
tem would help scientists who cannot release their data because
of privacy issues (Fig. 4 - a.1), although this can often be over-
come, but also give access to data and tests to a wide community
including establishments with limited financial resources.

We divide those who interact with scientific software or anal-
ysis code into two broad categories. First, the authors who pro-
pose a method and need to verify its validity and usefulness with
open and/or private data. Second, the users (e.g., developers, en-
gineers, bioinformaticians) who need to test and evaluate the
proposed methods with other data.

When authors propose a new method, we propose that au-
thors and users progressively build its reproducibility profile (
Fig. 4 - b.3, b.4) to document what method works best with what
data. During the optimization of a project, the software code
and associated documentation should be accessible to foster
collaboration on additional use cases and data. When the work
reaches some level of maturity, a complete article can be posted
on a preprint server such as bioRxiv [42, 43] and be associated
with a GitHub/GitLab repository with a DOI. With considerable
effort, Stodden et al. conducted a reproducibility study on 204
random articles that appeared in Science. Despite some avail-
ability of the code, it had often been changed after publication,
causing difficulties in replication [44]. In our proposed testing
ecosystem, users will be able to launch reproducibility projects
more easily thanks to code and article versioning.

Users who test and approve reproducibility on original or
new data could be accredited and recognized by the scien-
tific and developer communities (i.e., Stack Overflow, GitHub).
This testing ecosystem could facilitate collaborations between
methodology development and biological research communi-
ties.

Conclusions and Perspective

In the 19th century, Pasteur introduced a detailed “Methods” sec-
tion in his report. This advanced approach was necessary to re-
produce his experiments and became the norm in the practice
of science [45]. Today, with the advent of computational science,
the reproducibility issue is seen as a growing concern. To sum-



6 Experimenting with bioinformatics reproducibility: a case study

Figure 4: Working principles of testing ecosystem with private data. (a) A classic case: (a.1) Authors take private data (e.g., blue data) and then publish their method

and corresponding results. (a.2) Users who have their own data (e.g., orange data) find a relevant paper but will be lost in the labyrinth of reproducibility. (b) Testing
ecosystem with standard consensus dataset: (b.1) If authors work with their own data, they must identify corresponding standard data tag(s) (e.g., blue data). (b.2)

Authors start to develop their method with corresponding standard data, and a reproducibility profile will be progressively built (bar length on iceberg corresponds
to progression of replication test.) (b.3) Users can test a proposed method with other standard data (e.g., orange and green data) and thus participate to enhance the

reproducibility profile. (b.4) Thanks to the collective work on testing, the method could be optimized and authors can upgrade their initial article (versioning).

marize, our experiment at reproducing initial results led to the
following recommendations:

� Improve life scientists software development skills.
� Use online repositories and tools to help other scientists in

their exploration of the method [25, 26, 30].
� Enhance the cooperation between academia and industry

[39, 40, 46].
� Develop an open-source continuous testing ecosystem with

community standards, well-identified datasets to validate
tools across versions and datasets, and go beyond the pub-
lication of a PDF file.

Verifying a previously published method can be very time
consuming and is often poorly acknowledged. Some top-down
initiatives already provide some incentives for such a process,
e.g., the Horizon 2020 (H2020) [47] project of the European Com-
mission (EC) that mandates open access of research data while
respecting security and liability. H2020 supports OpenAIRE [48],
a technical infrastructure of the open access, that allows the in-
terconnection among projects, publications, datasets, and au-
thor information across Europe. Thanks to common guidelines,
OpenAIRE interoperates with other web-based generalist scien-
tific data repositories such as Zenodo, hosted by CERN, which
allows the combination of data and GitHub repository via DOIs.
The Open Science Framework also hosts data and software for
a given project [49]. Respecting standard guidelines to transpar-
ently communicate the scientific work is a key step toward tack-
ling irreproducibility and ensures a robust scientific endeavor.

Key points
� The main barrier to reproducibility is the lack of compatibil-

ity among environments, programming languages, software
versions, and the like.

� At the individual level, the key is research practices such
as well-written, tested, and documented code; well-curated
data; and the use of online repositories and collaborative
tools.

� At the community level, we propose a testing ecosystem
where standard consensus datasets are used to validate new
methods and foster their generalizability.

Availability of supporting data

The latest version of StratiPy (Python) with two examples of re-
producibility and dataset are available at GitHub [https://github
.com/GHFC/Stratipy; 16] and archived via a Zenodo DOI [50].

Abbreviations

DOI: digital object identifier; H2020: Horizon 2020; NBS: network-
based stratification; OS: operating system; TCGA: the Cancer
Genome Atlas; VCS: version control system.

Ethics approval and consent to participate

We used the uterine endometrial carcinoma dataset down-
loaded on 1 January 2013 from the TCGA portal as used by Hofree
and colleagues in their previous paper [12].

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the following: Institut Pasteur
(http://dx.doi.org/10.13039/501100003762); H2020 Societal Chal-
lenges (http://dx.doi.org/10.13039/100010676); Centre National
de la Recherche Scientifique (http://dx.doi.org/10.13039/501100
004794); Université Paris Diderot (http://dx.doi.org/10.13039/50
1100005736); Conny-Maeva Charitable Foundation; Cognacq-Jay
Foundation; Orange (http://dx.doi.org/10.13039/501100003951);
Fondation pour la Recherche Médicale (http://dx.doi.org/10.1303
9/501100002915); GenMed Labex; and BioPsy Labex. J.-B.P. was
partially funded by NIH-NIBIB P41 EB019936 (ReproNim) NIH-

https://github.com/GHFC/Stratipy
http://dx.doi.org/10.13039/501100003762
http://dx.doi.org/10.13039/100010676
http://dx.doi.org/10.13039/501100004794
http://dx.doi.org/10.13039/501100005736
http://dx.doi.org/10.13039/501100003951
http://dx.doi.org/10.13039/501100002915


Kim et al. 7

NIMH R01 MH083320 (CANDIShare) and NIH 5U24 DA039832
(NIF), as well as the Canada First Research Excellence Fund,
awarded to McGill University for the Healthy Brains for Healthy
Lives initiative.

Author contributions

Y-M.K., J-B.P., and G.D. wrote the manuscript. Y-M.K. and G.D. de-
veloped the StratiPy module. Y-M.K. was responsible for concep-
tualization, software, validation, writing the original draft, and
reviewing and editing the manuscript. J.B.P. was responsible for
validation, writing the original draft, and reviewing and editing
the manuscript. G.D. was responsible for conceptualization, soft-
ware, supervision, validation, writing the original original draft,
and reviewing and editing the manuscript. All authors read and
approved the final manuscript.

Acknowledgements

We thank Thomas Rolland and Freddy Cliquet for sharing their
technical advice and comments. Y-M.K. and G.D. thank Thomas
Bourgeron for his continuous support on this project.

References

1. Baker M. 1,500 scientists lift the lid on reproducibility. Nat
News 2016;533:452.

2. Wilson G, Bryan J, Cranston K, et al. Good enough practices
in scientific computing. PLoS Comput Biol 2017;13:e1005510.

3. Hothorn T, Leisch F. Case studies in reproducibility. Brief
Bioinform 2011;12:288–300.

4. Shapin S, Schaffer S. Leviathan and the Air-Pump: Hobbes,
Boyle, and the Experimental Life (New in Paper), 41 William
Street, Princeton, New Jersey, USA.. Princeton University
Press; Reprint edition 2011,

5. Peng RD. Reproducible research in computational science.
Science 2011;334:1226–7.

6. Whitaker K. Showing your working: a how to guide to repro-
ducible research. Figshare 2017. https://doi.org/10.6084/m9.f
igshare.5443201.v1, Slide number 7.

7. Nekrutenko A, Taylor J. Next-generation sequencing data
interpretation: enhancing reproducibility and accessibility.
Nat Rev Genet 2012;13:667–72.

8. Hutson M. Missing data hinder replication of artificial intel-
ligence studies. Science 2018. doi: 10.1126/science.aat3298.

9. Herndon T, Ash M, Pollin R. Does high public debt consis-
tently stifle economic growth? A critique of Reinhart and Ro-
goff. Camb J Econ 2014;38:257–79.

10. Bourgeron T. From the genetic architecture to synaptic
plasticity in autism spectrum disorder. Nat Rev Neurosci
2015;16:551–63.

11. Loth E, Spooren W, Ham LM, et al. Identification and valida-
tion of biomarkers for autism spectrum disorders. Nat Rev
Drug Discov 2016;15:70–73.

12. Hofree M, Shen JP, Carter H, et al. Network-based stratifica-
tion of tumor mutations. Nat Methods 2013;10(11):1108–15.

13. Introducing MEX Files - MATLAB & Simulink - MathWorks
France https://fr.mathworks.com/help/matlab/matlab ext
ernal/introducing-mex-files.html?requestedDomain=www.
mathworks.com. Accessed 1 June 2018.

14. Tursa. MTIMESX - Fast Matrix Multiply with Multi-
Dimensional Support - File Exchange - MATLAB Central.
2009 http://fr.mathworks.com/matlabcentral/fileexchange/

25977-mtimesx-fast-matrix-multiply-with-multi-dimensio
nal-support. Accessed 1 June 2018.

15. tim.lewis. OpenMP Specifications. http://www.openmp.org
/specifications/. Accessed 1 June 2018.KI

16. G. , Kim Y, Dumas G, Stratipy: Graph regularized nonneg-
ative matrix factorization (GNMF) in Python. GHFC 2017.
https://github.com/GHFC/Stratipy

17. Python Software Foundation. History and License — Python
3.6.1 documentation. 2017 https://docs.python.org/3/licens
e.html#licenses-and-acknowledgements-for-incorporated-
software. Accessed 1 June 2018.

18. Glatard T, Lewis LB, Ferreira da Silva R, et al. Reproducibility
of neuroimaging analyses across operating systems. Front
Neuroinformatics 2015;9:12.

19. Droettboom M, Caswell TA, Hunter J, et al. (2018). mat-
plotlib/matplotlib v2.2.2 (Version v2.2.2, March 17, 2018).
Zenodo. http://doi.org/10.5281/zenodo.1202077. March 17,
2018

20. Virtanen P, Gommers R, Burovski E et al. (2018 ). scipy/scipy:
SciPy 1.0.1 (Version v1.0.1). Zenodo. http://doi.org/10.5281/ze
nodo.1206941

21. NumPy homepage http://www.numpy.org/ Accessed 1 June
2018.

22. TCGA. Cancer Genome Atlas - Natl. Cancer Inst https://canc
ergenome.nih.gov/ Accessed 1 June 2018.

23. Eads. Hierarchical clustering (scipy.cluster.hierarchy) —
SciPy v0.19.0 Reference Guide. (2007). https://docs.scipy
.org/doc/scipy/reference/cluster.hierarchy.html. Accessed 1
June 2018.

24. Hierarchical Clustering - MATLAB & Simulink - MathWorks
France. https://fr.mathworks.com/help/stats/hierarchical-c
lustering-12.html. Accessed 1 June 2018.

25. A gallery of interesting Jupyter Notebooks · jupyter/jupyter
Wiki. https://github.com/jupyter/jupyter/wiki/A-gallery-of
-interesting-Jupyter-Notebooks. Accessed 1 June 2018.

26. Blischak JD, Davenport ER, Wilson G. A quick introduction
to version control with Git and GitHub. PLoS Comput Biol
2016;12:e1004668.

27. Wilson G, Aruliah DA, Brown CT, et al. Best practices for sci-
entific computing. PLoS Biol 2014;12:e1001745.

28. Sandve GK, Nekrutenko A, Taylor J, et al. Ten simple rules
for reproducible computational research. PLoS Comput Biol
2013;9:e1003285–4.

29. Buckheit JB, Donoho DL. WaveLab and Reproducible Re-
search. Wavelets Stat. New York, NY: Springer; 1995:55–
81. https://link.springer.com/chapter/10.1007/978-1-4612-2
544-7 5.

30. Boettiger C. An introduction to Docker for reproducible re-
search, with examples from the R environment. ACM SIGOPS
Oper Syst Rev 2015;49:71–9.

31. Introduction. Vagrant HashiCorp. https://www.vagrantup.co
m/intro/index.html. Accessed 1 June 2018.

32. Singularity homepage. http://singularity.lbl.gov/. Accessed
1 June 2018.

33. Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific con-
tainers for mobility of compute. PLoS One 2017;12:e0177459.

34. Stodden V, McNutt M, Bailey DH, et al. Enhancing
reproducibility for computational methods. Science
2016;354:1240–1.

35. Hill SL. How do we know what we know? Discovering neuro-
science data sets through minimal metadata. Nat Rev Neu-
rosci 2016;17:735–6.

36. PEP 8 – Style Guide for Python Code. Python.org. [cited 2017
Aug 21]. https://www.python.org/dev/peps/pep-0008/

https://doi.org/10.6084/m9.figshare.5443201.v1
https://fr.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html?requestedDomain=www.mathworks.com
http://fr.mathworks.com/matlabcentral/fileexchange/25977-mtimesx-fast-matrix-multiply-with-multi-dimensional-support
http://fr.mathworks.com/matlabcentral/fileexchange/25977-mtimesx-fast-matrix-multiply-with-multi-dimensional-support
http://www.openmp.org/specifications/
https://github.com/GHFC/Stratipy
https://docs.python.org/3/license.html#licenses-and-acknowledgements-for-incorporated-software
http://doi.org/10.5281/zenodo.1202077
http://doi.org/10.5281/zenodo.1206941
http://www.numpy.org/
https://cancergenome.nih.gov/
https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
https://fr.mathworks.com/help/stats/hierarchical-clustering-12.html
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://link.springer.com/chapter/10.1007/978-1-4612-2544-7_5
https://www.vagrantup.com/intro/index.html
http://singularity.lbl.gov/
https://www.python.org/dev/peps/pep-0008/


8 Experimenting with bioinformatics reproducibility: a case study

37. PEP 257 – Docstring Conventions. Python.org. https://www.
python.org/dev/peps/pep-0257/

38. Eglen SJ, Marwick B, Halchenko YO, et al. Toward standard
practices for sharing computer code and programs in neuro-
science. Nat Neurosci 2017;20:770–3.

39. Software Carpentry. http://software-carpentry.org//index.ht
ml. Accessed 1 June 2018.

40. Data Carpentry. http://www.datacarpentry.org/. Accessed 1
June 2018.

41. MNIST handwritten digit database, Yann LeCun, Corinna
Cortes and Chris Burges. http://yann.lecun.com/exdb/mnist/

42. Bourne PE, Polka JK, Vale RD, et al. Ten simple rules to
consider regarding preprint submission. PLoS Comput Biol
2017;13:e1005473.

43. Preprints in biology. Nat Methods 2016;13:277–.
44. Stodden V, Seiler J, Ma Z. An empirical analysis of journal

policy effectiveness for computational reproducibility. Proc
Natl Acad Sci 2018;115:2584–9.

45. Day RA, Gastel B. Historical Perspectives. Write Publ Sci Pap
Seventh Ed. ABC-CLIO, Greenwood, Santa Barbara, CA, USA.;
2011:6–8.

46. Academia – Industry Software Quality & Testing summit -
ISTQB R© International Software Testing Qualifications Board.
http://www.istqb.org/special-initiatives/istqb-conference-n
etwork-2istqb-conference-network-academia/academia-%
E2%80%93-industry-software-quality-testing-summit.html

47. Open Research Data in Horizon 2020. https://ec.europa.eu/r
esearch/press/2016/pdf/opendata-infographic 072016.pdf

48. Open Access in Horizon 2020 - EC funded projects.
https://www.openaire.eu/edocman?id=749&task=docu
ment.viewdoc

49. Foster ED, Deardorff A. Open Science Framework (OSF). J Med
Libr Assoc 2017;105:203–6.

50. Yang-Min K, Jean-Baptiste P, Guillaume D. StratiPy. Zenodo;
2017. https://doi.org/10.5281/zenodo.1308858

https://www.python.org/dev/peps/pep-0257/
http://software-carpentry.org//index.html
http://www.datacarpentry.org/
http://yann.lecun.com/exdb/mnist/
http://www.istqb.org/special-initiatives/istqb-conference-network-2istqb-conference-network-academia/academia-%E2%80%93-industry-software-quality-testing-summit.html
https://ec.europa.eu/research/press/2016/pdf/opendata-infographic_072016.pdf
https://www.openaire.eu/edocman?id=749\&task=document.viewdoc
https://doi.org/10.5281/zenodo.1042546

