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Abstract

Tree stem form in native tropical forests is very irregular, posing a challenge to establishing
taper equations that can accurately predict the diameter at any height along the stem and
subsequently merchantable volume. Artificial intelligence approaches can be useful tech-
niques in minimizing estimation errors within complex variations of vegetation. We evalu-
ated the performance of Random Forest™ regression tree and Artificial Neural Network
procedures in modelling stem taper. Diameters and volume outside bark were compared to
a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-
deciduous forest and a rainforest. Neural network models were found to be more accurate
than the traditional taper equation. Random forest showed trends in the residuals from the
diameter prediction and provided the least precise and accurate estimations for all forest
types. This study provides insights into the superiority of a neural network, which provided
advantages regarding the handling of local effects.

Introduction

Taper models (TM) have been a major topic of study in forest measurement and management
for almost 100 years, especially for the past three decades. TM has not been tailored towards
understanding the complexity of tropical natural forests, which are among the most structur-
ally complex and carbon-rich ecosystems in the world. This complexity is related to the size-
frequency distribution of wood stems [1] and the three-dimensional arrangement of canopy
elements, such as leaves, branches and trunks, from the top of the canopy to the ground [2].
Accurate information concerning wood volume in tropical forests is critical in identifying
potential areas for sustainable timber production and forest conservation, whilst providing a
more accurate estimate of carbon balance. [3] estimated biomass change in buttressed trees
using tree taper models, and demonstrated that taper-based equations that are applied to natu-
ral forest might improve the modelling of natural forests substantially.
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Typical modelling efforts attempt to enhance prediction through amplifying a pattern and
discarding the noise. Selection of an appropriate methodology is thus key when performing cal-
culations to estimate biomass accurately. According to [4], volume equations are useful in esti-
mating the average content of standing trees of various sizes and species. However, the
reliability of volume estimates is dependent on the range and extent of the available sample
data, and the suitability of the volume equations for the given sample data. According to [3],
various sources of estimation uncertainty are derived from forest inventories, likely leading to
substantially bias in forest biomass and biomass change estimations.

Tropical forests pose a special challenge—because tree taper is dramatically irregular from
stump to the top, it is necessary to make some evaluation of stem form in the construction and
application of tree volume tables. The rate of tree taper varies not only by species but also by
tree age [5], diameter at breast height (dbh), height [6] and environmental conditions [7]. In
most cases, foresters have to deal with noisy, multi-dimensional data that are strongly non-lin-
ear and which does not meet the assumptions of conventional statistical procedures [8]. Artifi-
cial intelligence tools have been increasingly adopted over the last 20 years to overcome
problems related to lack of statistical assumptions.

Artificial intelligence tools (AI) are capable of handling non-normality, nonlinearity and
co-linearity in a system. These capabilities create major advantages for the use of the Artificial
Neural Network (NN) as a tool to assess the relationships among structural forest attributes
[9]. NN’s provide a particular approach toward developing predictive models, offering a pow-
erful method for analyzing complex relationships among variables, without having to make
assumptions about the data. An Artificial Neural Network is an artificial intelligence tool spe-
cially designed to deal with complex and ill-defined problems [10]. NN’s can learn from
incomplete, disturbed and ‘noisy’ datasets [11].

Another artificial intelligence technique is the Random Forest (RF) tool [12], an ensemble
tool that uses a ‘divide-and-conquer’ approach to improving performance. RF constructs hun-
dreds of decision trees (hence ‘forest’) using randomized subsets of predicted and predictor
variables [13] These multiple trees are then selected based upon their variation, in order to
ascertain the correct prediction [14]. The RF approach has been successfully implemented
within the forested ecological system application [13]. [15] indicated RF as the most suitable
tool for the classification of various savanna tree species, within a highly heterogeneous
environment.

This study aims to evaluate the abilities of Neural Network and Random Forest models in
predicting tree diameter (d) at any height and any accumulated volume (Vac) along the length
of stem. This will be accomplished by measuring tree taper across three different sites including
a savanna, a dense rainforest, and a semi-deciduous forest. The fitted model predictions will be
compared with site-specific taper equation results.

Materials and Methods
Data set of the investigation

Fig 1 shows the localities where forest inventories were carried out, including forest type and
biome. Mogi Guacu Biological Reserve belongs to the Instituto de Botanica (22°15’17” S, 47°
1020” W). The reserve is located at an altitude of 620 m, with 343 ha mainly covered by wood-
land Cerrado; a forested Brazilian tropical savanna. The second area was the north portion of
the “Carlos Botelho” State Park (24°03’54” S, 47°57°29” W), at an altitude of 776 m. The total
park area consists of 37,797.43 ha of dense ombrophilous montane forest, more common des-
ignated as rainforest. The third forest was carried out in the Caetetus Ecological Station (22°
24’15 S, 49°41’47” W), at an altitude of 587 m. The vegetation consists of 2,178 ha of tropical
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Fig 1. Study Sites. Location of the three study sites in Southeastern Brazil, which are included in two Brazilian biomes (Cerrado and Atlantic

Forest).

doi:10.1371/journal.pone.0154738.g001

seasonal semi-deciduous forest. The transition between coastal rainforest and Cerrado in
southeastern Brazil incorporates a much larger extension of semi-deciduous forest. This transi-
tion becomes increasingly wider towards the south and forms complex mosaics with Cerrado
vegetation to the west [16].

The Instituto de Botdnica of the State of Sdo Paulo is the regulatory authority issuing work
permissions for the Mogi Guagu Biological Reserve, and the Instituto Florestal of the Sdo Paulo
State is the authority responsible for issuing work permissions for both Caetetus Ecological Sta-
tion and “Carlos Botelho” Park Station. We confirm we were given permissions by the two reg-
ulatory authorities to conduct this study on the three sites.

The tree vegetation communities were surveyed within thirty plots of 10 x 30 meters each
(0.9 ha), with 10 plots in each tree community. In the rainforest and semi-deciduous forest, the
sample design followed a random protocol within a buffer zone of 1000 meters along the trails.
This protocol had to be used due to the difficulty of the terrain and the denseness of the under-
story. In the Cerrado, we followed a completely random protocol, distributing the plots ran-
domly within all over the forest area.

Before selecting for volume estimation, we identified trees to species level. The floristic and
forest structure held the same characteristics from previous studies carried out on the same
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Table 1. Field data summary.

Cerrado
Rainforest
Semi-deciduous forest

N
531
540
446

ht (m) dbh (cm)

Median Range Median Range
5.00 1.7-17.0 7.70 5.0-48.4
9.65 1.4-26.0 9.34 5.0-107.9
9.90 2.0-24.0 9.29 5.0-89.1

Diameter at breast height (dbh) and total height (ht) distributions collected in cerrado, rainforest and semi-deciduous forest in the Sao Paulo State, Brazil.

n = number of measured trees.

doi:10.1371/journal.pone.0154738.1001

sites [17-19]. Subsequently diameter at breast height (dbh) outside bark and total height (hf) of
all of the trees in the plots were measured, and diameter distributions determined to guide tree
selection for taper measurements (Table 1).

We then selected trees from different diameter classes for taper measurements and individ-
ual volume estimates regardless of the species. We collected data for taper measurements from
72 hardwood species spread out among all the different forest types, allowing for the fact that
individual tree stem forms could vary with the species and forest type. The relationship
between tree height and diameter at breast height of the trees selected for taper measurements
are shown in Fig 2.

We observed that some species, such as Couepia grandiflora and Qualea grandiflora in Cer-
rado, are frequently associated with a complex branching structure, with stems often character-
ised by thicker diameters. On the other hand, various species in the rainforest, such as Bathysa
australis and Alchornea triplinervea, were usually found to be buttressed and slender. Addition-
ally, we found different species of the genus Ficus in the three forest types, which were broadly
characterised by large flared stumps (buttressed trees).

Direct volume estimations of different tree parts were made to obtain the basic data under-
pinning the relationships between the various dimensions of a tree and its volume and taper.
The volume outside bark of the stem was calculated using Smalian s formula, which divides
the stem into short sections [20]. Measurements included the portion of the stem above 10 cm
height and then at 0.3, 0.7, 1.3 meters. From 1.3 m up to a minimum of 5 cm stem diameter
from the outer edge of the bark, the stem was measured at intervals of 1 meter. In order to
avoid problems with discerning the main stem, we measured all branches of trees with a mini-
mum 5 cm diameter. Above the final measurement point, the tree form was considered as a
cone. We followed the recommendation of [21] concerning multi-stemmed trees, whereby all
of the stems should be measured and combined with the equivalent diameter formula below:

D= \J@+ &+ .. + &) (1)

D, = equivalent diameter and d; = diameter of a specific stem i = 1,.. .,n from a single tree.

We used the electronic dendrometer Criterion RD 1000 (Laser Technology, Inc., USA) to
measure stem diameter. It is an optical instrument that provides real-time results for tree
height and diameter calculation along the stem with high accuracy[22]. [23] did not detect sig-
nificant differences in precision and accuracy between destructive measurement techniques
and the Criterion RD 1000. The dendrometer uses angular measurement and horizontal dis-
tance to the target tree in order to calculate the diameter of the tree stem at any given height.

The advantage of this definition is that nearly all potentially useful wood is included. Total
tree volume estimated using equivalent diameters is equal to totalling the estimates of
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Fig 2. Diameter versus total height scatterplot. Diameter at breast height and total height relationships of trees used as data set in
Cerrado, semi-deciduous and rainforest.

doi:10.1371/journal.pone.0154738.9002

individual stem volume in a multi-stem tree. Using equivalent diameter also permits calculat-
ing the real tree basal area which can be used as a predictor of individual tree volume. Relation-
ships between tree basal area and cubic volume are stronger than relationships between tree
basal area and merchantable volume such as board foot volume.

Artificial Neural Network

Two multi-layer perceptron (NN) were calibrated in the context of regression analyses, one to
estimate the diameter (d) and another to estimate the accumulated volume (Vac) from the base
up to a given height (/). Both contained two hidden layers: 25 neurons in the first and 10 neu-
rons in the second, all containing the logistic as the activation function. The NN training was ori-
ented to minimize the sum of squared errors through resilient backpropagation algorithm with
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weight backtracking. For each iteration of the cross-validation the NN was initialized 50 times,
and the training ended when the absolute partial derivative of the error function, with respect to
the weights, was smaller than 0.01. Similar to regular taper equations, we used NN to estimate
either diameter or accumulated volume at h based on dbh, ht and h. However, these variables
were scaled before NN analysis by dividing them, respectively, by 100, 10 and 10. Besides the
continuous variables dbh, ht and h, the NN also received as input three dummy (categorical) var-
iables representing the forest type. In Cerrado the dummy variable 1 (d1) received value 1, while
the other forest types received value 0. In semi-deciduous the dummy variable 2 (d2) received
value 1 and the others received value 0. In rainforest the dummy variable 3 (d3) received value 1,
while cerrado and semideciduous received value 0. For instance, in order to estimate either d or
Vac for a given height equal to 4.3 meters in a tree from Cerrado, with dbh equal to 53 cm and
8.7 meters in height, the input vector should be [0.53, 0.87, 0.43, 1, 0, 0]. The implementation of
the neural network was based on the neuralnet package [24] for R statistical software [25].

Random Forest

Two random forests (RF) were used, one to estimate Vac and another to estimate d. The RF
inputs include dbh in cm, ht and h, both in meters, as well as three dummy variables indicating
the forest type (Cerrado = d1, semi-deciduous = d2 or rainforests = d3). The RF was imple-
mented through the algorithm developed by [12], and built using 300 decision-trees, m (ran-
domly sampling from the predictors) equal to 2 and the minimum observation per node equal
to 5 after split. The objective of the training section was to minimize the sum of squared errors.
We built the RF models using the R package randomPForest [26].

The parameters mentioned for NN and RF were selected by a trial-and-error method, test-
ing a range of possible values and then verifying the graphs of residuals against the predicted
variables and fitting statistics. Trial-and-error method is commonly used to define parameters
in the field of artificial intelligence [27].

Taper model

We selected 6 taper models proposed in the literature with different number of parameters that
had previously shown good performance (Table 2) [28-33]. The taper equations were adjusted
using nonlinear least-squares estimates through a Gauss-Newton algorithm, implemented in

Table 2. Taper equations.

Demaerschalk [26] d = dbhy /(10" P xabh>b—2sht*bex(ht — ) )

Biging [29] d = dbhs{p, + piin[1 — () (1 - exp) |}

Bi [301 In sing’] P1HB2singa +3005?7”q—ﬁ45'2%q+53dbh+ Bqv/dbh+p;qvht
d = dbh* [In sinél(t?]

Lee et al. [31] d = B, dbh™ (1— q)u; q%+ By g+ Bs

Kozak [32]

d= dbh®: hit® XB4q‘+ Bs (W) + X"+ 7 (ﬁ)Jr Bsht? +ByX
- F1

Metcalf et al. [33] d = DeP (h-13)
Taper equations compared in this study, where dbh is the over bark diameter at breast height (at 1.3 m
above the top of the base, cm), d is the over bark diameter at height h (cm), ht is the total tree height (m), h

is the height from the base to diameter d (m), Bs,. . .,Bg are the model parameters to be estimated, g is
equal to h/ht, X is equal to [1 — (h/ht)"3J[1 - (p)""3], Z is equal to [1 — (h/ht)"®] and p is equal to 1.3/ht.

doi:10.1371/journal.pone.0154738.t002
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stats package in R [25] and then we compared the goodness-of-fits using the Akaike Informa-
tion Criterion corrected for finite sample sizes (AICc). We determined the best overall taper
model by counting the number of times that each model provided the lowest AICc for the
three forest types.

Integrating taper functions over the length desired in meters gives the volume in cubic
meters for that segment, after multiplying by a constant (K = w40,000).

h
Vac = / Kxd® d, (2)
0.1

As the tree volume is the integral of cross-sectional stem area over the tree height, a model
for d* provides unbiased predictions for the cross-sectional area and volume [34]. The category
of the taper model we used is very flexible in a computational sense, since it is possible to deter-
mine the continuous stem taper with the model itself and no interpolation method, such as
spline interpolation, is needed [35]. We also did not consider eventual autocorrelation and
multicollinearity effects in this paper, as [36] evaluating these problems on tree taper modelling
stated that they do not seriously affect the predictive ability of taper modelling. One specific
equation had to be adjusted for each study site, consequently returning a site-specific model
(one taper model to Cerrado, one to semi-deciduous and one to rainforest), while the RF and
NN modelling processes considered all the forest types together.

Evaluation criteria. For Neural Network (NN), Random Forest (RF) and taper equation
modelling (TM), the cross-validation approach was used as training routine, including a toler-
ance limit to avoid overfitting. The cross-validation by itself does not avoid overfitting but
allowed us to understand how the model behaves whilst estimating known and unknown data.
For all the three proposed techniques, the data were divided into training and validation data-
sets. For that, we set aside randomly 25% of the trees for cross-validation purposes, while 75%
of the data remained as training dataset for fitting the models. The data splitting was repeated
500 times (iterations) with repetition of the training and the validation steps.

In each iteration, the performance indicators were calculated for both training and valida-
tion datasets. Evaluation criteria included the root mean squared error Eq (3), the average rela-
tive bias Eq (4) and the model efficiency Eq (5).

1 - ;
— Root mean square error (RMSE) = N \/Z Z (Y, — Yi].)Z (3)
Y, - Y,
— Relative average bias (Bias) = 22 IG i) (4)

S (Y, - ¥

- 2 (5)
ZZ(Yij - Y)

— Efficiency (EF) = 1

where Y; is the measured data point jth in the ith tree, Y, is the predicted value jth in the ith
tree and Y is the mean of the Y;; values and N the number of points. For detailed descriptions
of model evaluation criteria see [37].

Results

The number of trees surveyed resulted in 52 individuals in the Cerrado, 53 in the semi-decid-
uous forest and 55 in the rainforest, in different diameter classes. The diameter ranged between
5.0 to 52.0 cm in Cerrado, 5.0 to 135.0 cm in semi-deciduous and 5.1 to 157.0 in rainforest.
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Table 3. Taper models performance.

Taper Model Cerrado Semi-deciduous Rainforest
Demaerschalk [28] 2530.21 3530.21 4731.91
Biging [29] 2607.78 3550.15 4715.24

Bi [30] No convergence No convergence No convergence
Lee [31] 2546.00 3462.49 4391.26
Kozak [32] 2474.62 No convergence No convergence
Metcalf [33] 2829.13 3970.84 4905.55

Model fit comparisons in terms of AICc for 6 taper models. Bold values indicate the lowest AICc for each forest type

doi:10.1371/journal.pone.0154738.1003

The TM selected in this study was proposed by [31] with the lowest AICc in semi-deciduous
forest and rainforest (Table 3). We used initial parameters based upon the literature to find
convergence, however we found no convergence by using Bi model for the three forest types
and Kozak model for semi-deciduous and rainforest.

Table 4 summarizes the RMSE and model efficiency estimates of the NN, the RF and the
TM for d and Vac estimations from both training and validation datasets.

The validation results showed that the site-specific taper equation was the most precise and
efficient modelling technique for diameter estimation, with a RMSE of 0.31 cm for TM, 0.43
cm for NN and 0.50 cm for RF. The TM training efficiency declined from 0.94 to 0.91 at the
validation level, whilst both NN and RF efficiency declined more than the TM, varying from
0.93 to 0.83 and 0.91 to 0.78, respectively.

TM did not show the same performance for Vac estimation, whilst NN appeared to have
the best performance and the higher efficiency. The RF has also presented the worst perfor-
mance for volume estimation for all the evaluated criteria. Although the TM showed an inter-
mediate RMSE (0.0225 m?), its distribution had an undesirable bimodal shape, ranging
approximately from 0 to 250% (Fig 3). All the three methods showed a skewed bias distribution
during the training level for both d and Vac, especially the NN. However, the bias distribution
in the validation level did not show the same tendency, appearing centred on zero for all the
three techniques (Fig 4).

We plotted the residuals of d and Vac predictions versus diameter (d) for Cerrado, semi-
deciduous forest and rainforest (Fig 5). Residuals were calculated using the model with the low-
est RMSE along 500 iterations for the three modelling techniques. RF and TM showed residual
patterns that reveal likely variance heterogeneity in diameter estimation. They tended to under-
predict large diameters, which are typically associated with diameters on lower and thicker por-
tions of the stem or diameters of large trees. TM and RF also tended to overpredict small

Table 4. Modelling techniques performance.

Diameter (d) Accumulated volume (Vac)
Approach RMSE (cm): training / validation EF: training / validation RMSE (m?3): training / validation EF: training / validation
NN 0.15/0.43 0.93/0.83 0.0037/0.0149 0.98/0.89
RF 0.18/0.50 0.91/0.78 0.0082 / 0.0281 0.92/0.66
™ 0.15/0.31 0.94/0.91 0.0080 / 0.0225 0.93/0.80

The average root mean square error (RMSE) and model efficiency (EF) for diameter (d) and accumulated volume (Vac) prediction within all forest types
using Neural Network (NN), Random Forest (RF) and taper model (TM).

doi:10.1371/journal.pone.0154738.t004
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Fig 3. Root mean square error. The root mean squared error (RMSE) distribution of diameter (d) and accumulated volume
(Vac) for both training (black line) and validation (grey line) data sets, considering five hundred iterations for Artificial Neural
Network (NN), Random Forest (RF) and taper model (TM).

doi:10.1371/journal.pone.0154738.9003
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Fig 4. Bias distribution. The bias distribution of diameter (d) and accumulated volume (Vac) for both training (black line) and validation (grey line) data
sets, considering five hundred iterations for Artificial Neural Network (NN), Random Forest (RF) and taper model (TM).

doi:10.1371/journal.pone.0154738.9004

diameters, which are related to diameters of smaller trees or diameters on the midrange or
upper portions of the stem.

Unlike the residual plots for diameter estimation, we observed no pattern in residuals of vol-
ume prediction for any method used to modelling stem taper. Nevertheless, NN plots visually
seem to lead to more accurate and precise volume estimation at any diameter class in compari-
son to the TM and RF. We randomly selected one tree from a group of species which has con-
sistent stem taper and one individual from a group which includes highly irregular stem. The
best model for each modelling technique based upon the RMSE predicted diameters along
both trees and predictions were compared to actual diameters (Fig 6). Xylopia aromatica is a
tree species in Cerrado which has a simple and rectilinear stem form, whilst Bathysa australis is
commonly found in the rainforest with a complex and buttressed stem. The NN technique was
more consistent with the actual taper for both species whilst RF tended to overpredict the
diameter on both stems.

Discussion

Our objective was to modelling the stem form as a dependent variable upon the diameter at
breast height and the total tree height in different forest types. Taper variation differed
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doi:10.1371/journal.pone.0154738.9006
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according to species composition and tree size; nonetheless several other factors that were not
examined here would also influence this variation on stem form. Trees get increasingly more
cylindrical as they grow, and dominant individuals are more tapered than suppressed trees. It
indicates the likely dependence of taper upon the variables of stand density and tree [38].
Genetics, environmental conditions, which include climatic conditions [39,40], altitude [40]
and edaphic variables [41], as well as geographical locations were also listed as factors that can
affect the stem taper [42, 43]. Tree stem typically varies according to conditions of the forest,
usually as a response to surrounding species and competition. In this cases, individuals are
forced to develop more complex structures gradually in order to optimise biomass production
[7]. Because of these many sources of variations on stem form, establishing efficient methods
that can provide accurate estimates of stem taper is often a challenging process in natural tropi-
cal forests.

Random Forest appears as a competitive tool in ecological applications for both classifica-
tion and regression [44]. However, the least accurate results for diameter and wood volume
were obtained by using RF. This model tended to overpredict low diameter and underpredict
high diameter values. This particular trend is intrinsic to regression tree-based models whose
predictions are the average of the values within the terminal node [45]. These authors also
observed a reduction in the prediction accuracy when testing an independent set of data with
RF in an effort to estimate biomass across tropical Africa. [46], when studying climatic and
human influences on fire regime in Africa, also found overprediction in lower classes and
underprediction in higher classes of burned areas.

Very few studies have used taper functions for profile modelling in either Cerrado or Atlan-
tic forests in Brazil. Few of them attempt to describe the stem form and estimate taper-equation
parameters for overall stands [47,48], or for specific species [49]. TM provided a flexible tool
for estimating the change in total and merchantable product specifications, even though this
regression technique requires a specific model for each different forest type. In comparison, the
NN and RF techniques required only one model for all three datasets. One problem found in
this study regarding the traditional taper modelling is the lack of convergence of parameters in
more complex models, which was previously addressed in other studies on taper [50-52].

Given the difficulty in separating out the influences of the stem form drivers using standard
statistical analyses, NN appears to be a promising approach for complex vegetation mosaics. It
included uneven-aged multi-stemmed, buttressed, sinuous and slender trees and shrubs, vary-
ing substantially within forests where the inventories were carried out. Another interesting NN
property is that all the knowledge is stored in the weights. If new trees become available, the
training can occur on the weights already known keeping all the knowledge accumulated from
previous data sets.

[53] verified poor results when using NN for estimating tree height with diameter as the
input variable in uneven-aged forests. Considering that these forest stands consist of trees of
various ages and therefore of various sizes, each diameter class is consequently associated with
a likely height class. However, those authors suggest that the diversity in stem form derived
from multi-site variables may hinder the learning, due to each diameter class that may be asso-
ciated with a larger height class. Backpropagated errors in this scenario are, therefore, larger
and the fitting statistics poorer. In this particular study, we attempted to predict stem form
based on the highly dependent height and diameter [54]. Small backpropagated errors are
expected due to the high correlation between independent and dependent variables.

Studies have demonstrated the superiority of NN’s over regression models for even-aged
forests [55-58]. NN offers some advantages when compared to traditional modelling tech-
niques. Firstly, there is no need to assume an underlying data distribution (as is usually done in
statistical modelling). Secondly, it can implicitly detect complex nonlinear relationships
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between output and input variables [59]. Furthermore, the ability to learn from new data allows
for continued implementation in situations where only limited amounts of data have been col-
lected [60]. It is important to mention, however, some barriers to the widespread successful
application of artificial intelligence. AT demands much training time and can easily incur data
overfitting [59, 61]. Another serious limitation is that the most important decision support sys-
tems in forestry are not yet able to handle with AI. Moreover, whilst visible, the process of
establishing causation between inputs and outputs is not clear, implying limited ecological
interpretability [62, 58].

The NN implementation does offer a number of advantages for taper prediction in tropical
forests over the traditional methods. It may be potentially applied to large geographic regions
in Brazil, handling local effects concerning timber inventory and forest management plans.
Furthermore, Al can be continuously trained as new data are obtained and disposable. These
statistical considerations discussed above should be taken into account when choosing a tree
taper estimating method for operational applications.

Conclusions

The neural network handled well with data from three different forest types within a complex
vegetation mosaic in Brazil. Additionally, the neural network procedure provided an under-
standing of the patterns that arise from complex phenomena, insofar as correctly training the
model and performing prediction. Thereby we recommend NN for taper and volume predic-
tions in tropical forests, especially when stem form and variation in tree architecture is com-
plex. However, our recommendation must be followed by an effort to integrate artificial
intelligence tools into current forestry support decision systems.

Supporting Information

S1 File. Brazilian taper data. Comma separated value file with the measured trees.
(CSV)

S2 File. RData. Adjusted models for each technique: Random Forest, Neural Network and
Taper Models.
(ZIP)
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