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Abstract

Small molecule regulation of cell function is an understudied area of trypanosomatid biology. In Trypanosoma brucei
diacylglycerol (DAG) stimulates endocytosis of transferrin (Tf). However, it is not known whether other trypanosomatidae
respond similarly to the lipid. Further, the biochemical pathways involved in DAG signaling to the endocytic system in T.
brucei are unknown, as the parasite genome does not encode canonical DAG receptors (e.g. C1-domains). We established
that DAG stimulates endocytosis of Tf in Leishmania major, and we evaluated possible effector enzymes in the pathway with
multiple approaches. First, a heterologously expressed glycosylphosphatidylinositol phospholipase C (GPI-PLC) activated
endocytosis of Tf 300% in L. major. Second, exogenous phorbol ester and DAGs promoted Tf endocytosis in L. major. In
search of possible effectors of DAG signaling, we discovered a novel C1-like domain (i.e. C1_5) in trypanosomatids, and we
identified protein Tyr kinases (PTKs) linked with C1_5 domains in T. brucei, T. cruzi, and L. major. Consequently, we
hypothesized that trypanosome PTKs might be effector enzymes for DAG signaling. General uptake of Tf was reduced by
inhibitors of either Ser/Thr or Tyr kinases. However, DAG-stimulated endocytosis of Tf was blocked only by an inhibitor of
PTKs, in both T. brucei and L. major. We conclude that (i) DAG activates Tf endocytosis in L. major, and that (ii) PTKs are
effectors of DAG-stimulated endocytosis of Tf in trypanosomatids. DAG-stimulated endocytosis of Tf may be a T. brucei
adaptation to compete effectively with host cells for vertebrate Tf in blood, since DAG does not enhance endocytosis of Tf
in human cells.
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Introduction

Endocytosis in eukaryotes is important for uptake of nutrients

(e.g. iron, and cholesterol esters), maintenance of cell volume, and

for modulation of cell signaling (reviewed in [1]). Lipids regulate

various steps of endocytosis.

Diacylglycerol (DAG) is a second messenger for cell signaling.

Receptors and effectors, the best known of which is protein kinase

C (PKC), mediate signaling by DAG. C1-domain proteins bind

DAG (and phorbol ester) [2]. Non-kinase receptors of DAG

include chimaerins, CalDAG-GEF1, and RasGRP.

Glycosylphosphatidylinositol phospholipase C (GPI-PLC) is

expressed in bloodstream T. brucei. Products of the enzyme’s

digestion of GPI include diacylglycerols (DAGs) and inositolpho-

sphoglycans [3,4,5,6]. GPI-PLC can cleave intracellular GPIs at the

endoplasmic reticulum [6], and regulates endocytosis of transferrin

(Tf), the iron-binding protein, in bloodstream T. brucei [7]. In a

mouse model of human African trypanosomiasis, the enzyme

contributes to virulence of a pleomorphic strain of T. brucei [8].

DAG (or phorbol ester) stimulates endocytosis of Tf in T. brucei

[7]. The enzyme is not important for release of GPI-anchored

variant surface glycoprotein (VSG) from the plasma membrane

[8,9]. However, DAG regulation of Tf endocytosis in other

trypanosomatids has not been evaluated. Further, the signaling

pathway used by DAG to stimulate endocytosis in T. brucei is not

known.

Leishmania are trypanosomatid protozoans that acquire host

hemoglobin and transferrin by endocytosis [10,11,12,13,14].

Currently, no lipid regulators of endocytosis have been described

in Leishmania. In this work, we used L. major as a model

trypanosomatid to study DAG-stimulated Tf endocytosis. Heter-

ologous (stable) expression of a GPI-PLC gene in L. major promoted

endocytosis of Tf. In addition, preincubation of L. major with DAG

or phorbol ester increased endocytosis of Tf. These data document

DAG regulation of Tf endocytosis in L. major, and establish DAG

as a signaling lipid in the parasite.

To gain insight into signaling pathways used by DAG to activate

Tf endocytosis in trypanosomatids we used a combination of

bioinformatic and pharmacological approaches. We discovered a

novel C1-like domain linked to protein Tyr kinases in T. brucei:

And, in both L. major and T. brucei an inhibitor of protein Tyr

kinase (PTK) arrested DAG-stimulated endocytosis of Tf. These
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data indicate that DAG signaling to the endocytic system in

trypanosomatids is regulated by PTKs. Consistent with this model,

the genomes of T. brucei and L. major do not encode Ser/Thr

kinases with C1-domains (i.e., protein kinases C) that could be

effectors of the actions of DAG in these deeply-diverged

eukaryotes.

Results

Transferrin Endocytosis in L. major Is Stimulated by a GPI-
Phospholipase C

Leishmania acquire host transferrin (and indirectly iron) by

endocytosis [15,16]. A 70 kD Tf-binding protein has been

implicated in its uptake but mechanisms regulating acquisition of

Tf by Leishmania spp have not been studied.

GPI-phospholipase C (GPI-PLC) from T. brucei activates

endocytosis of transferrin in that parasite [7] most likely by

releasing DAG from cleavage of GPIs in the trypanosome. We

tested a possibility that endocytosis of Tf in L. major would be

affected by presence of GPI-GPI-PLC polypeptide (GPI-PLCp).

(The L. major genome does not encode a GPI-PLC gene.) For this

objective, L. major stably harboring plasmid pUTK-GPIPLC

(pUTK-GPIPLC/L.major) and a control strain transfected with

the vector alone (pUTK/L.major) were used in Tf endocytosis

assays. L. major expressing GPI-PLC accumulated 200–300% more

transferrin-Alexa Fluor 594 than control pUTK/L. major (Fig. 1A).

Hence a GPI-PLC can regulate Tf endocytosis in L. major. GPI-

PLC expression had no effect on the growth rate of L. major

(Fig. 1B).

When expressed in L. major, GPI-PLCp can be directed either to

endosomes or to glycosomes (peroxisomes). The unmutated

enzyme associates with endosomes, whereas Cys-to-Ser mutations

at positions 269, 270, and 273 in GPI-PLCp targets the protein to

endosomes [17]. We tested whether different sub-cellular locations

of enzymatically active Cys mutants of GPI-PLCp affected Tf

endocytosis in L. major.

Unmutated GPI-PLCp facilitated Tf uptake in L. major (Fig. 1).

Similarly, in pUTK-GPIPLC-C269,273S/L.major and pUTK-

GPIPLC-C269,270,273S/L.major uptake of Tf was increased in

comparison to L. major expressing vector (pUTK/L.major) alone

(Fig. 2). Tf accumulation in these Cys mutants was comparable to

levels observed with L. major expressing unmutated GPI-PLC. We

conclude that glycosome location of GPI-PLCp is equally effective

as endosomal GPI-PLCp in stimulating uptake of Tf into L. major.

Thus endosome localization of GPI-PLCp is not required for the

enzyme’s stimulation of Tf endocytosis in L. major.

Enzyme Activity Is Important for GPI-PLC Stimulation of
Tf Endocytosis in L. major

Since GPI-PLC promoted Tf endocytosis from either endo-

somes or glycosomes, we considered a hypothesis that the enzyme

produced a diffusible second messenger (e.g. DAG) that mediated

its physiological effect. As a first step to evaluate this theory, we

analyzed the effect of an enzymatically inactive Gln81Leu (Q81L)

GPI-PLCp mutant [18] on Tf endocytosis in L. major.

The enzymatically inactive GPI-PLCp mutant (i.e. pUTK-

Q81L_GPIPLC) did not augment Tf uptake in L. major, as the

amount of Tf endocytosis in pUTK-Q81L_GPIPLC/Lmajor was

comparable to that obtained from cells expressing the vector

(pUTK) alone (Fig. 3). These data suggest that a product of

GPI-PLC enzyme activity (i.e. either DAG or inositolpho-

sphoglycan) is probably needed for the enzyme’s effect on Tf

endocytosis.

Phorbol Ester or Diacylglycerols Stimulate Endocytosis of
Tf in L. major

Since enzyme activity is important for GPI-PLCp activation of

endocytosis we tested if a lipid product of GPI cleavage (i.e. DAG)

was a second messenger for the enzyme. Phorbol esters bind C1-

domains and are used to characterize DAG signaling pathways

[19]. Therefore we tested whether phorbol ester or DAG would

stimulate endocytosis of Tf in L. major.

Pre-incubation of L. major harboring either pUTK or pUTK-

GPIPLC with phorbol-12-myristate-13-acetate (PMA) increased

Tf endocytosis two to three-fold (Fig. 4A) in comparison to control

cells that were treated with vehicle (DMSO). In another control

experiment, the alpha isomer of PMA (i.e. 4a-PMA) did not

stimulate endocytosis of Tf (Fig. 4A), indicating that the effects of

PMA are limited to the physiologically active 4b-PMA isomer

[20].

Figure 1. Heterologously expressed GPI-PLCp activates endo-
cytosis of Tf in Leishmania major. (A) Leishmania major CC1
promastigotes expressing GPI-PLC (pUTK-GPIPLC) or vector alone
(pUTK) were cultured in a medium containing G418 (50 mg/ml). Cells
(16106/ml) were incubated with transferrin-Alexa Fluor 594 (25 mg/ml)
at 27uC, and at specified time intervals cell-associated fluorescence was
measured. Relative Fluorescence Units was plotted after subtracting
background fluorescence of an equivalent number of control cells.
Mean6standard deviation of triplicate determinations are plotted. (B)
Promastigote L. major (pUTK/L. major and pUTK-GPIPLC/L. major) were
seeded at a density of 56105 cells/ml in medium containing G418
(50 mg/ml), and every 24 h cells were counted microscopically.
Mean6standard deviation of duplicate measurements is plotted.
doi:10.1371/journal.pone.0008538.g001

Trypanosome Tf Endocytosis
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The results from the PMA studies were confirmed with

experiments involving DAGs. For this objective, either OAG (1-

oleoyl-2-acetyl-sn-glycerol) or DMG (1,2-dimyristoyl-sn-glycerol)

was pre-incubated with L. major for 30 min prior to endocytosis of

Tf. OAG or DMG (250 nM) stimulated Tf endocytosis three-fold

in L. major (as compared to untreated cells (Fig. 4B)). These data

confirm that a (i) DAG regulates Tf endocytosis in L. major, and (ii)

DAG is a second messenger in L. major.

Protein Kinase C (PKC) Is Not Required for PMA-
Stimulated Endocytosis

PKC is a Ser/Thr kinase that mediates many physiological

effects of DAG in vertebrates [21]. Therefore, we tested whether

DAG-activated endocytosis in Leishmania or T. brucei required a

PKC. Ro32-0432, a cell-permeable active site-directed PKC

inhibitor [22,23] was used for our study. We first tested whether

general uptake of Tf in T. brucei was inhibited by Ro32-0432.

Towards this goal, cells were pre-incubated with the compound

and endocytosis of Tf was measured afterwards. Ro32-0432

inhibited Tf endocytosis in T. brucei with an IC50 (concentration of

the inhibitor needed to reduce Tf endocytosis by 50%) of 200 nM

(Fig. 5A). This result indicates that a Ser/Thr kinase is involved in

some aspect of the uptake Tf in the trypanosome.

We next investigated whether PMA-stimulated endocytosis of

Tf in T. brucei depended on a Ser/Thr kinase. A C1-domain of

PKC binds PMA (reviewed in [24,25]). Therefore, involvement of

PKC in cellular events is obtained by sequential administration of

an active-site directed inhibitor of PKC (e.g. Ro32-0432) and a

phorbol ester [26,27]. (Ro32-0432 will inhibit a Ser/Thr kinase

whose active site architecture is similar to that of PKC even if the

Figure 2. Endosome or glycosome-directed GPI-PLC stimulate
endocytosis. Leishmania harboring pUTK-GPIPLCp, pUTK-GPIPLC-
C269S/C273S, pUTK-GPIPLC-C269S/C270S/C273S, or pUTK-GPIPLC-
Q81L were cultured in medium containing 50 mg/ml G418 and
transferrin endocytosis was measured as described in Fig. 1. Represen-
tative data from three experiments is shown. (Intracellular location of
GPI-PLCp and its Cys mutants has been described [6,43].)
doi:10.1371/journal.pone.0008538.g002

Figure 3. Enzyme activity is important for GPI-PLCp stimula-
tion of Tf Endocytosis in L. major. L. major pUTK/GPIPLC-Q81L and
pUTK-GPIPLC were cultured in 50 mg/ml G418 and allowed to
endocytose transferrin-Alexa Fluor 594 at 27uC for indicated time
intervals. Cell-associated transferrin is plotted as relative fluorescence
units.
doi:10.1371/journal.pone.0008538.g003

Figure 4. Phorbol ester and diacylglycerols activate endocyto-
sis of Tf in L. major. (A) L major harboring pUTK or pUTK-GPIPLC
(16106/ml) were incubated at 27uC with PMA or 4a-PMA (500 nM; final
concentration) for 15 min, or (B) oleoyl-acetyl-sn-glycerol (OAG) or
dimyristoyl glycerol (DMG) (250 nM; final concentration) for 30 min.
Endocytosis of Tf was measured as described in the legend for Figure 1.
Data presented are means (with standard deviations) of triplicate
determinations.
doi:10.1371/journal.pone.0008538.g004

Trypanosome Tf Endocytosis
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enzyme lacks a C1-domain). For our purposes, T. brucei was

incubated with Ro32-0432 in a first stage. Afterwards, PMA was

added to the cells in the second stage, and then endocytosis of Tf

was measured at the final stage (Fig. 5B).

Added alone to T. brucei, Ro32-0432 inhibited whereas PMA

activated endocytosis of Tf (Fig. 5B). When T. brucei was pre-treated

with Ro32-0432, PMA activated Tf endocytosis 500%, as compared

to cells that were not treated with PMA after addition of the kinase

inhibitor (Fig. 5B). We conclude that Ro32-0432 cannot block PMA

activation of Tf endocytosis. Therefore, the pathway for PMA-

regulated endocytosis of Tf does not involve a PKC in T. brucei.

However, a Ser/Thr kinase is important in a general pathway for

endocytosis of Tf that is not dependent on DAG (Fig. 5A).

In L. major, similar results were obtained when the effect of Ro32-

0432 on PMA-activated endocytosis of Tf were studied. Ro32-0432

inhibited Tf endocytosis (IC50 = 100 nM) (Fig. 5C). Strikingly, PMA

still activated Tf endocytosis even when added after L. major had been

preincubated Ro32-0432 (Fig. 5D). Thus, PMA stimulation of Tf

endocytosis in L. major does not depend a PKC-like Ser/Thr kinase.

Identification of a Novel C1-Like Domain in
Trypanosomatids

Having demonstrated that DAG regulates endocytosis of Tf in

T. brucei, we expected to find C1-domains that are used in

vertebrates for recognition of the lipid encoded in the genome of

the parasite. Surprisingly, no C1-domains are annotated in T.

brucei [28]. Thus, the bioinformatics predictions appear to be at

odds with our experimental data. To resolve this conundrum, we

hypothesized that C1-domains in trypanosomes may not have

been discovered because they have diverged significantly from the

vertebrate C1-domain to which they were compared during

genome annotation. That is, the protein family (Pfam) ‘‘scores’’ of

trypanosome C1-domains failed to meet the ‘‘gathering cut-off’’

required for their annotation [29]. To test this theory we, in

collaboration with Gaelle Blandin (The Institute of Genomic

Research), implemented a genome-wide search for C1-like

domains at low stringency. That effort produced 21 hits (not

presented) of which those with E-values,0.02 [30] were analyzed

further with Pfam [29]. Top scoring trypanosome proteins from

that analysis are presented in Table 1.

We hypothesized that C1-like domains in T. brucei (Table 1)

might contain a unique peptide motif. To examine this theory, we

tested whether the four highest scoring C1-like domains from T.

brucei (Table 1) contained a recognizable pattern of amino acid

residues, by extracting amino acid patterns in the T. brucei C1-like

domain with the algorithm PRATT [31]. The T. brucei C1-like

domains have six conserved cysteines (in bold) as part of the

pattern L-x(9,12)-C-x(2,4)-C-x(3,9)-E-x(2,9)-F-x-C-x(2)-C-x(4)-C-

Figure 5. A Ser/Thr kinase Inhibitor does not block DAG-activated endocytosis of Tf in T. brucei or L. major. Bloodstream T. brucei (56106

cells) (A) or L. major promastigotes (16106 cells) (C) were incubated with DMSO (vehicle) or different amounts of Ro32-0432 for 10 min at 37uC (for T.
brucei) or 27uC (for L. major). Subsequently, endocytosis of Tf was measured as described earlier. T. brucei (B) or L. major (D) was incubated in medium
containing Ro32-0432 (500 nM) for 10 min (i.e., Stage I). Cells were then exposed to PMA (500 nM) (Stage II) for another 10 min, and endocytosis of Tf
was measured. A representative experiment is presented. Data plotted are means (with standard deviations) of triplicate determinations.
doi:10.1371/journal.pone.0008538.g005

Trypanosome Tf Endocytosis
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x(2)-C (PROSITE nomenclature [32,33]). An alignment of the T.

brucei C1-like domains is presented in Fig. 6A. Compared to a

human C1-domain, H-x-[LIVMFYW]-x(8,11)-C-x(2)-C-x(3)-

[LIVMFC]-x(5,10)-C-x(2)-C-x(4)-[HD]-x(2)-C-x(5,9)-C, the T.

brucei motif lacks a His residue at the N-terminus. In addition,

the spacing between the six Cys residues is different in the two

domains. For these reasons, we surmise that the T. brucei C1-like

domain that we term C1_5 (Fig. 6A) has diverged significantly

from the (classic) vertebrate C1-domain.

We extended our studies by checking whether C1_5 domains were

present in other trypanosomatids. Motif searches of the genomes of L.

major and T. cruzi revealed that each organism contained a protein

tyrosine (Tyr) kinase (PTK) with a C1_5 domain, namely

LmjF36.5350 in L. major, and Tc00.1047053510285.70 in T. cruzi.

An alignment of the C1_5 domains from PTKs of the trypanoso-

matids is presented in Fig. 6B.

Inhibition of Protein Tyrosine Kinase Blocks PMA-
Stimulated Tf Endocytosis

We speculated that effector proteins in T. brucei might use C1_5

domains that binds DAG to activate proteins in the endocytic system

for uptake of Tf. First, we postulated that C1_5 proteins could

interact directly with major polypeptides that are required for

endocytosis, and influence activity of those proteins. Second, we

envisioned that a C1_5 protein might have a second domain with

enzyme activity that might be activated by DAG to post-

translationally modify proteins involved in endocytosis thereby

enhancing Tf uptake. Our second hypothesis is based on a discovery

that three C1_5 proteins have domains with enzyme activity, namely,

a PTK Tb11.01.2290, and the ubiquitin ligases Tb09.211.4210 and

Tb08.2909.320 (Table 1). In vertebrates, Tyr phosphorylation of

some receptors modulates their endocytosis. And, ubiquitination of

membrane proteins in yeasts and vertebrates accelerates their

recruitment into endosomes. Therefore, we hypothesized that DAG

might modulate endocytosis in T. brucei by influencing activity of

PTKs. We used a pharmacological tools to evaluate (i) whether a T.

brucei PTK (TbPTK) affects Tf endocytosis, and (ii) whether PMA-

activated endocytosis of Tf requires TbPTK activity. Tyrphostin A47

(TphA47) an inhibitor of PTKs in vertebrate cells [34] and in T. brucei

[35,36] was used for these studies.

Table 1. C1_5 (C1-like) Domains in T. brucei.

Systematic ID Residues, C1-like Other Pfam Domains (residues)

Tb11.01.2290 595–628 Pkinase_Tyr (86–235)

Tb03.30P12.1230 795–825 Helicase_C (557–636)

Tb09.211.4210 989–1016 HECT (1442–1912)

Tb08.4A8.390 49–77 None

Tb.10.6k15.2660 23–55 None

Tb10.6k15.0350 185–218 PHD (186–236)

Tb08.2909.320 3550–3590 HECT (3999–4304)

Tb05.26K5.230 193–222 SWIM

Tb08.10K10.560 966–1006 Clathrin_repeat

Protein Domains:
CLATHRIN REPEAT (PF00673): Occur in the arm region of the Clathrin heavy
chain and VPS (vacuolar protein sorting) proteins.
HECT (PF00632): HECT-domain. Found in ubiquitin-protein E3 ligase that
transfers ubiquitin to substrates.
HELICASE_C (PF00271): The signature pattern for this family is [LIVMF]-x-(2)-D-E-
A-D-[RKEN]-x-[LIVMFYGSTN]). It is found in a wide variety of helicase related
proteins.
SWIM: SWIM is Zn-chelating domain found in a variety of prokaryotic and
eukaryotic proteins.
PKINASE_TYR (PF07714): Protein Tyrosine Kinase.
doi:10.1371/journal.pone.0008538.t001

Figure 6. Alignment of C1__5 domains in T. brucei. (A) C1-like domains of T. brucei proteins (Table 1) are aligned (Clustal W) with LaserGene
(DNAStar). A consensus sequence is presented above the alignment. (B) Alignment of C1_5 domains in protein Tyr kinases from T. brucei, T. cruzi and
L. major (see text for details).
doi:10.1371/journal.pone.0008538.g006

Trypanosome Tf Endocytosis
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Preincubation of T. brucei with TphA47 diminished Tf uptake

greater than 90% (Fig. 7A). We infer that the pathway for

endocytosis of Tf in T. brucei involves activity of a TbPTK. Next,

we determined whether PMA-activated Tf endocytosis required a

TbPTK. T. brucei were pre-incubated with TphA47 before PMA

was added, and Tf endocytosis quantitated. When TphA47 was

added to cells prior to introduction of PMA, stimulation of Tf

endocytosis by PMA was blocked (Fig. 7B). From these data we

conclude that a TbPTK is required for PMA-activated endocy-

tosis of Tf in T. brucei. In sharp contrast, a Ser/Thr kinase (e.g.

PKC) is not needed in the pathway for PMA-stimulated

endocytosis of Tf in the trypanosome (Fig. 5B). Similar studies

were performed with L. major, since PMA and DAGs activated

endocytosis of Tf in the parasite (Fig. 4A and Fig. 4B). TphA47

inhibited Tf endocytosis in L. major (IC50 of 2.5 mM) (Fig. 7C).

Preincubation of L. major with TphA47 before addition of PMA

led to a 400% reduction of phorbol ester-activated uptake of Tf,

as compared to cell that were treated with PMA in absence of

TphA47 (Fig. 7D). Thus, PTKs in L. major act downstream of

PMA activation of Tf endocytosis in the parasite, similar to our

observations with T. brucei (Fig. 7B).

Discussion

Transferrin Endocytosis in Trypanosomatids Is Stimulated
by Diacylglycerol

Iron is important for viability of T. brucei and Leishmania species

[13,37,38,39,40]. In both trypanosomatids the metal ion is

acquired by endocytosis, following its binding to Tf which has a

receptor (or binding protein) at the plasma membrane [14,41,42].

Some major components of the endocytic machinery (e.g.,

clathrin, Rabs and SNAREs) affect endocytosis of Tf in

trypanosomatids. However, small molecule and/or lipid regulators

of Tf endocytosis have not been described. Thus, our demonstra-

tion that DAG regulates Tf endocytosis in both T. brucei and L.

major presents an opportunity to study the mechanisms by which

the lipid influences the endocytic system in these deeply-diverged

eukaryotes.

In L. major, stable expression of a GPI-PLC activates endocytosis of

Tf (Fig. 1A and Fig. 3). Interestingly, the intracellular location of the

enzyme either on endosomes (e.g., unmutated GPI-PLC) or

glycosomes (e.g., Cys269,270,273Ser mutant of GPI-PLC) [43] does

not change the effect of the enzyme on Tf endocytosis (Fig. 2). These

Figure 7. A PTK inhibitor blocks phorbol ester-stimulated endocytosis of Tf in T. brucei and L. major. (A) T. brucei (56106) were incubated
with varying concentrations of Tyrphostin A47 for 10 min. Parasites were rinsed, and endocytosis of Tf measured (see legend to Fig. 1 for protocol).
(B) T. brucei (56106 cells) was incubated in medium containing Tyrphostin A47 (TphA47) (7.5 mM) for 10 min (37uC) (i.e. Stage I). Cells were then
exposed to PMA (500 nM) (Stage II) for another 10 min, and endocytosis of Tf was measured. (C) L. major (56106) were incubated with varying
concentrations of Tyrphostin A47 for 10 min. Parasites were rinsed, and endocytosis of Tf measured (see legend to Fig. 1 for protocol). (D) L major
(56106/ml) was treated with Tyrphostin A47 (5 mM) for 15 min in culture medium. Thereafter, cells were incubated with PMA (500 nM; final conc.) for
15 min, and endocytosis of Tf was measured as described the legend to Figure 1.
doi:10.1371/journal.pone.0008538.g007

Trypanosome Tf Endocytosis

PLoS ONE | www.plosone.org 6 January 2010 | Volume 5 | Issue 1 | e8538



data are consistent with a proposal that GPI-PLC releases a diffusible

product (diacylglycerol (DAG)) that mediates the effect of the enzyme

on Tf endocytosis. In support of this claim, exogenous DAG (or

PMA, a DAG mimic) stimulate uptake of Tf as predicted (Fig. 4).

Tyrosine Kinases Are Effectors for DAG-Regulated
Endocytosis in T. brucei and L. major

Our data indicate that a PTK is involved in DAG signaling for

endocytosis of Tf in T. brucei (Fig. 7B) and L. major (Fig. 7C).

Participation of Tyr kinase, instead of a Ser/Thr kinase (Fig. 5B),

in DAG signaling is supported by bioinformatic analysis of the

parasite genome. Whereas the protein Tb11.01.2290 (Table 1)

contains both PTK and C1_5 domains, no Ser/Thr kinase in the

genomes of either Leishmania or T. brucei has a C1_5 domain.

Therefore neither T. brucei nor Leishmania has a classic PKC. We

speculate that Tb11.01.2290 in T. brucei and LmjF36.5350 in L.

major could be effector PTKs for DAG regulation of Tf endocytosis

in the parasites. The enzymes may activate endocytosis by

phosphorylating clathrin, actin, adaptins or other core compo-

nents of the endocytosis machinery. In vertebrates, the cytoplasmic

PTKs Src, Abl and Lyn modulate endocytosis by phosphorylating

components of the endocytic machinery (e.g. clathrin, AP2,

dynamin and WASP) (reviewed in [44]). Our working hypothesis

for the role of PTKs and C1_5-domain proteins in DAG-regulated

endocytosis in T. brucei or L. major is summarized in Fig. 8.

Diacylglycerol Signaling Pathways in Trypanosomatids
and Vertebrates

DAG is an intracellular second messenger for signaling in

eukaryotes. In vertebrates, ligands for receptor tyrosine kinases

and seven transmembrane receptors can activate phosphatidyli-

nositol phospholipases C that cleave phosphoinositides. DAG

released by the phospholipases C activates PKC to phosphorylate

several substrates. Due to the multiplicity of its targets, PKC can

regulate several pathways including apoptosis, cell proliferation,

differentiation, and endocytosis (reviewed in [45]). Receptor

endocytosis in vertebrates can be controlled by phorbol esters

without PKC participation. For example, Munc13 which lacks a

kinase domain binds DAG and regulates exocytosis by interacting

with Rab and SNARE [46,47].

Trypanosomatid genomes do not encode the most common

eukaryote signaling systems (e.g. receptor Tyr kinases, heterotrimeric

G proteins, and G-protein coupled receptors). Consequently few

signaling pathways have been characterized completely in trypano-

somatids (reviewed in [48,49]). Signaling with intracellular second

messengers has four general components, namely, (i) ligands, (ii)

receptors, (iii) effectors, and (iv) physiological targets. DAG is a

signaling ligand in trypanosomatids (Fig. 4, Fig. 5 and Fig. 7) and in

vertebrates ([2]. However, apart from the ligand it appears that other

components in the pathway have diverged from those in humans.

First, DAG receptors in vertebrates contain a classic C1-domain

[50]. Surprisingly, the vertebrate C1-domain is absent from the

genomes of L. major and T. brucei. Instead we found a divergent C1_5

domain that might be the receptor for DAG in trypanosomatids

(Fig. 6). Second, in vertebrates a majority of DAG signaling pathways

depend on Ser/Thr kinases (PKCs) [26,51,52]. In contrast, DAG-

stimulated endocytosis of Tf in T. brucei and L. major depends on

protein Tyr kinase (Fig. 7B and Fig. 7D). Thus, effector enzymes for

DAG signaling in L. major and T. brucei are Tyr kinases instead of Ser/

Thr kinases. Finally, enhanced uptake of Tf in response to DAG (or

phorbol ester) treatment is unique to trypanosomatids. In human

cells, PMA treatment does not increase endocytosis of Tf [53,54].

During a trypanosome infection of vertebrates, the parasite competes

with host cells for Tf in host blood. Therefore, DAG stimulation of Tf

uptake may contribute to virulence of the parasite by helping T. brucei

to acquire sufficient amounts of the ligand (and indirectly iron) to

sustain its extracellular existence in host blood.

In brief, L. major, T. brucei and vertebrates use DAG as a second

messenger for intracellular signaling. However, the effector

enzymes are not identical, and by extension the targets of the

activated kinases could be different. Consequently, studies of DAG

signaling pathways in trypanosomes are likely to yield new insights

into the diversity of DAG signaling in eukaryotes.

Materials and Methods

Cell Culture
Transfected Leishmania major CC1 expressing GPI-PLC (pUTK-

GPIPLC) and vector alone (pUTK) [17] were grown at 27uC to a

maximum density of 56106/ml in M199 (supplemented with 5%

FBS, 40 mM HEPES, 0.0005% hemin, 0.0001% biotin, 0.1 mM

adenine, and 1% antibiotic-antimycotic) [55] in presence of

50 mg/ml G418. T. brucei RUMP 528 (from Dr. George Cross

(Rockefeller University) was cultured as described [7]. All

Leishmania studies were performed with promastigote (insect stage)

in logarithmic phase of growth.

Materials
Restriction enzymes were from New England Biolabs (Beverly,

MA); Nonidet P40 (NP40) was from Calbiochem (San Diego, CA).

Fetal bovine serum and newborn calf serum were from Hyclone

(Logan, UT). G418 was from Fisher Scientific (Norcross, GA).

Transferrin- Alexa Fluor-594 was purchased from Molecular

Probes (Eugene, OR). Phorbol-12-myristate-13-acetate and 4a-

phorbol-12-myristate-13-acetate were from Sigma (St. Louis,

MO). Hygromycin, phleomycin, Tyrphostin A47, and Ro.32-

0432 were obtained from Calbiochem (USA). All other reagents

were from Sigma (St. Louis, MO).

DNA Transfection of Leishmania major
Leishmania major was cultured at 27uC to a density of 107/ml in

M199 [56], and transfected as described [43]. Twelve hours post-

Figure 8. A Working Model for DAG Activation of Tf
Endocytosis in Trypanosomatids. Based on our biochemical
(Figs. 1 through Fig. 6), bioinformatic (Fig. 6, Table 1), and
pharmacological data (Fig. 7), we propose that DAG binds to a C1_5
domain of a PTK in T. brucei (or L. major). The trypanosomatid PTK is
activated by DAG, and the enzyme phosphorylates components of the
endosomal pathway to activate uptake of Tf.
doi:10.1371/journal.pone.0008538.g008
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transfection, G418 (dissolved in PBS and filter sterilized) was

added to a final concentration of 30 mg/ml. Stable transfectants

were maintained in M199 medium containing 50 mg/ml G418.

Transferrin Endocytosis Assays
Leishmania was cultured to a density of 56106 ml21. Cells

(16108) were pelleted, rinsed with buffer containing 50 mM

bicine, 50 mM NaCl, 5 mM KCl, 1% glucose, pH 7.4 (BBS/G),

and harvested (1,4006g for 5 min at room temperature). The cell

pellet was resuspended in cold serum-free IMDM (Iscove’s

modified Dulbecco’s medium), and stored on ice for 10 min.

Transferrin–Alexa FluorH 594 ((Molecular Probes, OR) was added

at 25 mg/ml (final concentration) and cell suspension were

incubated at 27uC. At indicated time intervals, aliquots of cells

(16106) were withdrawn and pelleted at 5000 g for 5 min at 4uC.

The cell pellet was washed five times with ice-cold BBS/G

containing 2% (w/v) sodium azide (50006g for 3 min at 4uC),

resuspended in 100 ml of the same buffer (ice-cold) and deposited

into 96-well plates that were kept on ice at all times. For T. brucei,

endocytosis of transferrin-Alexa Fluor 594 was performed as

described earlier ([7]). Values obtained for a ‘‘blank’’ (i.e. without

Tf) was subtracted from experimental readings, and relative

fluorescence units were plotted. Each time point is a mean (6std

deviation) of triplicate measurements.

Phorbol ester and diacylglycerols were pre-incubated with L.

major at 27uC (or T. brucei at 37uC) for 15 min at concentrations

stated in the respective figures. Cells were washed with ice-cold

serum-free IMDM medium before transferrin uptake was

documented as described above.
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