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a b s t r a c t

The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous
channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely
distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of
depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we
used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double im-
munofluorescence and mass spectrometric sequencing in order to investigate protein–protein interac-
tions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble
into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack
channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic
protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of
both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the
synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack
channel complexes in the mouse brain. This study presents new insights into protein–protein interac-
tions of native Slick and Slack channels in the mouse brain.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The sodium-activated potassium channels Slick (sequence like
an intermediate potassium channel, Slo2.1, KCNT2) and Slack (se-
quence like a calcium-activated potassium channel, Slo2.2, KCNT1)
are structurally highly related and belong to the high-conductance
potassium channels of the Slo family. Slick and Slack channels are
widely distributed in the rat brain with partial overlap in their
expression patterns [1,2]. In neurons, sodium-activated potassium
channels are involved in adapting the firing pattern of neurons, in
the generation of the slow afterhyperpolarization (sAHP) and de-
polarizing afterpotentials (DAP) and in stabilization and setting of
the resting membrane potential [3–8]. The pore-forming alpha
subunits of Slick and Slack channels are assembling into tetrameric
B.V. This is an open access article u
channels [9,10]. Alpha subunits of Slick and Slack channels are
composed of an intracellular N-terminus, six membrane spanning
domains, and a long intracellular C-terminus harboring various
functional domains [9,10].

Native sodium-activated potassium channels are high-con-
ductance outward rectifying potassium channels that are activated
upon sodium-influx [11]. Heterologously expressed Slick and Slack
channels resemble most of the biophysical properties of native
sodium-activated potassium currents. Nonetheless, there are some
discrepancies regarding their unitary conductance, sensitivity to
internal sodium ions, subconductance states and open prob-
abilities of the channels as well as rundown in excised patches.
Such discrepancies were not only observed when comparing
heterologously expressed Slick and Slack channels with native
currents. In addition, biophysical properties of native sodium-ac-
tivated potassium currents varied depending on the brain region
and/or the cell type examined [11,12]. Such discrepancies might
possibly reflect different isoforms of the underlying channels or
channels associating with different endogenous factors and/or
with several (regulatory) proteins.

While for the Slick channel no isoforms have been described,
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five different Slack channel isoforms were identified so far. The
Slack channel isoforms only differ in their N-terminal region. The
physiological relevance of these Slack channel isoforms has not
been investigated yet [13], and most studies exploring various
aspects of the Slack channels were analyzing the so-called Slack-B
isoform.

Slick and Slack channel diversity may be further increased by
the formation of heteromeric Slick and Slack channels. A previous
study provided first evidence that Slick alpha-subunits are forming
heteromeric channels with Slack-B alpha-subunits in the rat brain.
Heterologously expressed Slick/Slack heteromeric channels were
shown to have biophysical properties distinct from those of
homomeric Slick and Slack channels [14]. The BK channel (big
conductance calcium-activated potassium channel) is another
potassium channel that is structurally highly related to Slick and
Slack channels and thus dedicated to the same family of potassium
channels (Slo family). In vitro studies revealed that BK channel
alpha subunits do associate with Slack subunits, thereby forming
heteromeric potassium channels. However, the existence of such
channel complexes has never been proven in vivo [15].

There is growing evidence that Slick and Slack channel activity
may be regulated by several cellular signaling pathways, including
activation of G-protein coupled receptors linked to activation of
protein kinase C (PKC) or protein kinase A (PKA) and by direct
phosphorylation by these signaling proteins [14,16–18]. Channel
activity and gating may also be regulated by binding of en-
dogenous signaling factors to the C-terminal tail of the channel,
like NADþ [19], PIP2 [20] and fragile X mental retardation protein
(FMRP) [21,22] as well as by small changes in cell volume [23].

Moreover, recent studies were suggesting that the Slack chan-
nel might interact with the postsynaptic density protein 95 (PSD
95) [24], FMRP [21] and with Glu2/3 subunits of the AMPA re-
ceptor [25].

In the present study we aimed to provide new insights into
protein–protein interactions of the Slick and Slack channels in
mouse brain. In order to address this issue, we performed double
immunofluorescence and (co-)immunoprecipitation studies fol-
lowed by Western blot analysis and mass spectrometric sequen-
cing. Here we report Slick and Slack channels co-assemble into
protein complexes in native mouse fore- and midbrain purified
synaptic vesicle plasma membranes. Moreover, we provide first
evidence for potential novel interaction partners of native Slick
and Slack channels.
2. Material and methods

2.1. Animals

C57BL/6J mice were housed and handled in accordance with
the guidelines with Austrian law which is in line with the directive
of the European Union (2010/63/EU) for the use of laboratory
animals. All procedures involving animals were approved by the
Austrian Animal Experimentation Ethics Board in compliance with
the European Convention for the Protection of Vertebrate Animals
Used for Experimental and Other Scientific Purposes. Every effort
was taken to minimize the number and suffering of animals used.

2.2. Preparation of purified synaptic plasma membrane vesicles from
mouse fore- and midbrain

Preparation of purified synaptic plasma membrane vesicles was
performed according to [26]. In brief, 30 male and female C57BL/6J
mice were killed by cervical dislocation and fore- and midbrain was
excised. Tissue was homogenized in ice-cold homogenization buffer
(320 mM sucrose, 10 mM Tris–HCl pH 7.4, 1 mM EDTA, 0.5 mM
phenylmethylsulfonylfluoride, PMSF) supplemented with protease
inhibitors (complete tablets, Roche). Subsequently, homogenized
fore- and midbrain tissue was separated on 7.5%/10% Ficoll gradient.
Intact synaptosomes were lysed in 5 mM Tris–HCl supplemented
with protease inhibitors. Lysed synaptosomes were spun at
125,000� g for 1 h at 4 °C. Purified synaptic plasma membranes
were resuspended in 20 mM Tris–HCl, snap frozen in liquid nitrogen
and stored at �80 °C.

2.3. Solubilization of membrane protein

Purified synaptic plasma membrane vesicles from mouse fore-
and midbrain were incubated for 30 min at 4 °C in solubilization
buffer (150 mM NaCl, 20 mM Tris–HCl pH 7.4, 1 mM EDTA, 1 mM
PMSF, 2 μM leupeptin (Sigma-Aldrich), 1.5 μM aprotinin (Sigma-
Aldrich), 0.15 μM pepstatin (Sigma-Aldrich), 0.9% n-dodecyl-β-D-
maltoside (Calbiochem)) in a protein:detergent ratio of 1:9).
Thereafter, soluble protein fraction was separated from unsoluble
protein fraction by high-speed centrifugation at 105,000� g for
30 min. Solubilization efficiency was controlled in Western blot
analysis. Solubilized protein fraction was used for subsequent
immunoprecipitation experiments.

2.4. Immunoprecipitation

Slick and Slack channel specific antibodies were immobilized
and cross-linked onto dynabeads protein G (Life Technologies)
following manufacture's guidelines and incubated with n-dodecyl-
β-D-maltoside (Calbiochem) solubilized synaptic plasma mem-
branes derived from mouse fore- and midbrain overnight at 4 °C.
For each experiment, 40 mg of either anti-Slick (clone N11/33,
Neuromab) or anti-Slack (clone N3/26, Neuromab) channel anti-
body was used and 2 mg of synaptic plasma membranes served as
starting material for solubilization. Immunoprecipitation experi-
ments using a non-immune antibody of the same IgG subtype
raised in chicken (MABC002, Chemicon, Millipore) served as ne-
gative control and were run in parallel. Unbound material was
removed and collected (flow through). Affinity-purified protein
complexes were eluted with Laemmli buffer (reducing agent ad-
ded after elution). Resulting eluates were analyzed by Western
blot and/or by mass spectrometric sequencing.

2.5. Western blot analysis

Western blot analysis was performed as described earlier [26].
In brief, 20 mg of protein samples (starting material, solubilized
and unsolubilized protein fractions, and flow through) or 2.5% or
20% of eluates were separated by 4–15% (precasted TGX gel,
Biorad) and transferred onto PVDF-membranes. Membranes were
blocked in phosphate buffered saline (PBS) containing 0.05%
Tween-20 (Roth) and 3% bovine serum albumin (Roth) for 1 h.
Subsequently, membranes were incubated in PBS containing 0.05%
Tween-20, 3% bovine serum albumin and either mouse mono-
clonal anti-Slick (1:1000, IgG1, clone N11/33, NeuroMab), mouse
monoclonal anti-Slack (1:3000, IgG1, clone N3/26, NeuroMab),
mouse polyclonal anti-beta-synuclein (1:100, abcam), rabbit
polyclonal anti-DPP 10 (1:500, abcam) or mouse monoclonal anti-
SAP 102 (1:2000, IgG1, clone N19/2, Biolegend) antibody for 2.5 h
at room temperature. HRP-labeld goat anti-mouse IgG1
(1:100,000, Life Technologies), goat anti-mouse IgG (1:75,000,
Dako) or goat anti-rabbit (1:75,000, Dako) were used as secondary
antibodies. Western blots were developed using chemilumines-
cent HRP substrate (Millipore) and subsequently PVDF-mem-
branes were incubated with Amersham hyper film.
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2.6. Double immunofluorescence

C57BL/6J mice were sacrificed by cervical dislocation and brains
were removed immediately. Brains were snap-frozen in prechilled
�50 °C 2-methylbutane (Roth) and cut into coronal 8 mm sections
using a cryostat. Sections were thaw mounted onto poly-lysine
coated slides (Thermo Scientific). Brain sections were fixed in 1%
para-formaldehyde (PFA, Merck) for 5 min at 4 °C. After washing
slices in 50 mM Tris–HCl, 150 mM NaCl, 0.2% Triton X-100 (Roth)
3 times for 5 min, slices were blocked in the same solution ad-
ditionally containing 2% BSA for 1 h at room temperature. For
double immunofluorescence, mouse monoclonal anti-Slick (clone
N11/33, Neuromab) and anti-Slack channel antibodies (clone N3/
26, Neuromab) were directly labeled with Alexa Fluor-488 or Alexa
Fluor-594 using the antibody labeling kit from Molecular Probes
(A20181 and A20185; Life Technologies). Sections (n¼6) were in-
cubated with directly labeled primary antibodies diluted (both
1:200) in 50 mM Tris–HCl, 150 mM NaCl, 0.2% Triton X-100 (Roth)
overnight at room temperature. On the next day, brain slices were
washed 3 times for 10 min and counterstained with 0.03 mg/ml
4′,6-diamidino-2-phenylindole, dilactate (DAPI, Sigma-Aldrich) for
5 min at room temperature. Thereafter, slices were washed in
50 mM Tris–HCl, 150 mM NaCl, 0.2% Triton X-100 3 times for
10 min and mounted in hard set mounting medium (Vectashield).
Confocal imaging was performed using LSM 700 (Zeiss) micro-
scope and ZEN software.

Fluorescence intensity linescan profile was performed using
image J software (rel. 1.45) by plotting fluorescence intensity (gray
values) versus distance (pixels). Images were split into corre-
sponding color channels (green: Slick channel–Alexa 488, red:
Slack channel–Alexa 594). Intensity plots were extracted using
identical coordinates and calculated in Excel.

2.7. Mass spectrometric sequencing

For mass spectrometric sequencing, eluates obtained from
immunoprecipitation experiments were run on SDS-PAGE mini-
gels and stained with Coomassie blue R250 (Biorad). Protein bands
Fig. 1. Immunoprecipitation and co-immunoprecipitation studies of Slick and Slack cha
membranes with anti-Slick or anti-Slack antibodies. Different materials were used in W
solubilized protein fraction, solubilized protein faction, unbound material (flow-through
Slick-antibody and vice versa.
were excised from gel and digested with trypsin from porcine
pancreas (Sigma-Aldrich, Vienna, Austria) as previously described
[27]. Tryptic digests were analyzed using an UltiMate 3000 nano-
HPLC system (Thermo Scientific, Germering, Germany) coupled to
a Q Exactive Plus mass spectrometer (Thermo Scientific, Bremen,
Germany) equipped with a Nanospray Flex ionization source. The
peptides were separated on a homemade fritless fused-silica mi-
crocapillary column (75 mm i.d.�280 mm o.d.�10 cm length)
packed with 3 mm reversed-phase C18 material (Reprosil). Solvent
for HPLC were 0.1% formic acid (solvent A) and 0.1% formic acid in
85% acetonitrile (solvent B). The gradient profile was as follows: 0–
2 min, 4% B; 2–55 min, 4–50% B; 55–60 min, 50–100% B, and 60–
65 min, 100% B. The flow rate was 250 nL/min.

The Q Exacitve Plus mass spectrometer was operating in the
data dependent mode selecting the top 12 most abundant isotope
patterns with charge 41 from the survey scan with an isolation
window of 1.6 mass-to-charge ratio (m/z). Survey full scan MS
spectra were acquired from 300 to 1750m/z at a resolution of
70,000 with a maximum injection time (IT) of 120 ms, and auto-
matic gain control (AGC) target 1e6. The selected isotope patterns
were fragmented by higher-energy collisional dissociation (HCD)
with normalized collision energy of 25 at a resolution of 17,000
with a maximum IT of 120 ms, and AGC target 5e5.

Data Analysis was performed using Proteome Discoverer
1.4.1.14 (Thermo Scientific) with search engine Sequest. The raw
files were searched against the mus musculus database (167,940
entries) extracted from the NCBInr database released on June 2,
2014. Precursor and fragment mass tolerance was set to 10 ppm
and 0.02 Da, respectively, and up to two missed cleavages were
allowed. Carbamidomethylation of cysteine, and oxidation of me-
thionine were set as variable modifications. Peptide identifications
were filtered at 1% false discovery rate.

2.8. Data analysis of proteins identified by mass spectrometric
sequencing

Raw data obtained from mass spectrometric analysis were
evaluated as follows. As specificity control, immunoprecipitation
nnels. Immunoprecipitation (IP) using DDM-solubilized mouse fore- and midbrain
estern blots: mouse fore- and midbrain synaptic plasma membranes (input), un-
) and 2.5% of eluted protein fraction (eluate). Slack protein is co-purified by anti-
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experiments using a non-immune antibody of the same IgG sub-
type were run in parallel. In total 3 individual experiments per
antibody used served for data evaluation. Proteins were only
considered as specific if they were detected in at least two out of
three individual experiments, and if they were not detected in any
of the control experiments. In addition, only proteins of which at
least two unique peptides were detected were considered specific.

2.9. Protein alignments, creation of percent identity matrix and to-
pology prediction of transmembrane protein 263 (TMEM 263)

Protein sequences of different species were obtained from
Pubmed. Alignments and creation of percent identity matrix were
performed using Clustal Omega (rel. 1.2.1) with default settings.
Topology of mouse TMEM 263 was analyzed using the web based
protein structure prediction program TMHMM server (rel. 2.0).

Pubmed accession numbers of protein sequences used:
Rattus norvegicus: gi|157823853; Mus musculus: gi|81881684;

Homo sapiens gi|74730713; Xenopus laevis gi|82186192; Danio rerio
gi|82188197; Bos taurus gi|77736291; Gallus gallus gi|57525414;
Pan pansicus gi|675800328
3. Results

3.1. Interaction of Slick and Slick channels in mouse brain

To determine a possible interaction of Slick and Slack channels in
mouse fore- and midbrain, we conducted co-immunoprecipitation
experiments followed by Western blot analysis. Immunoprecipita-
tion studies were performed using mouse fore- and midbrain pur-
ified synaptic plasma membranes solubilized with dodecyl-malto-
side (DDM). DDM is a nonionic detergent allowing solubilization of
integral membrane proteins and is expected to preserve the native
molecular environment of the ion channels. Solubilization efficiency
was evaluated by Western blot analysis and was between 40% and
60% of total Slick and Slack protein (Fig. 1). The Slick channel-
Fig. 2. Co-localization of Slick and Slack channels in the red and oculomotor nucleus.
nocellular part of red nucleus and C in oculomotor nucleus. Both nuclei are showing cle
performed using directly labeled (Slick-Alexa488, shown in green, Slack-Alexa594, shown
target. DAPI (blue) was used as counterstain. B Representative staining for Slick and
Fluoresence intensity linescan profile (as indicated in B) is demonstrating that fluorescen
is also evident in the cytoplasm. Abbreviations: PM plasma membrane, CP cytoplasm. Sca
reader is referred to the web version of this article.)
specific antibody resulted in quantitative precipitation of Slick
protein, while the Slack channel-specific antibody precipitated
about 40–50% of solubilized Slack protein. After having established
a reliable and reproducible immunoprecipitation protocol, we per-
formed co-immunoprecipitation studies using the same antibodies.
Co-immunoprecipitation studies revealed that the anti-Slick anti-
body co-purified Slack protein, and conversely, using the Slack
channel-specific antibody we co-immunoprecipitated Slick protein.
These results suggest that Slick and Slack channels might interact in
a cellular complex in mouse fore- and midbrain.

3.2. CO-localization of Slick and Slack channels in selected moue
brain regions

To further investigate a possible interaction of Slick and Slack
channels in mouse brain, we performed double-immuno-
fluorescence labeling experiments on mouse brain for both ion
channels (n¼6). Since both antibodies used were of the same IgG-
subtype, we directly labeled them in order to be capable to per-
form double immunofluorescence stainings with Alexa-flour 488
(anti-Slick) and Alexa-fluor 594 (anti-Slack). Previous studies were
suggesting that there is a partial overlap in the distribution pattern
of Slick and Slack channels in rat brain, e.g. in the oculomotor and
red nucleus [1,2,14]. Thus, we have chosen these nuclei as an ex-
ample for channel co-localization and performed double im-
munofluorescence stainings in these nuclei of the mouse brain
(shown in Fig. 2). Our experiments revealed strong im-
munostaining for both, Slick and Slack channels in neuronal cell
bodies of both nuclei. Fluorescence signal was strongest at the
plasma membrane, but was also evident in the cytoplasm. Taken
together, these experiments indicated co-localization of Slick and
Slack channels at the plasma membranes of neuronal cell bodies of
both nuclei.

3.3. Identification of potential novel Interaction partners of Slick and
Slack channels by mass spectrometric sequencing and Western blot
Confocal images showing Slick and Slack channel co-localization in A and B mag-
ar somatic staining for both potassium channels. Double immunofluorescence was
in red) mouse monoclonal antibodies directed against the C-terminus of respective
Slack channels in magnocellular part of red nucleus at higher magnification. D
ce intensity for both channels is highest at the plasma membrane, but some staining
le bars 50 mm. (For interpretation of the references to color in this figure legend, the



Table 1
Proteins (co-)purified with the anti-Slick antibody identified by mass spectrometric analysis.

Protein Alternative names Accession # Individual
experiments

# peptides Protein coverage in
%

Slick Potassium channel subfamily T member 2;
KCNT2, Slo2.1, KCa4.2

GI: 224028216 3/3 49 51.5

Slack Potassium channel subfamily T member 1,
KCNT1, Slo2.2, KCa4.1

GI:161168989 3/3 47 45.2

Transmembrane protein 263 TMEM 263 GI:81881684 2/3 2 26
Beta-synuclein SNCB GI:81879780 2/3 7 52.6
Inactive dipeptidyl-peptidase 10 DPP 10, Kv4 potassium channel auxiliary

subunit
GI:238776842 3/3 7 9.5

Synapse associated protein 102 SAP 102, disks large homolog 3, DLG 3 GI:7949129 3/3 13 18

Table 2
Proteins (co-)purified with the anti-Slack antibody identified by mass spectrometric analysis.

Protein Alternative names Accession # Individual experiments # peptides Protein coverage in
%

Slack Potassium channel subfamily T member 1, KCNT1,
Slo2.2, KCa4.1

GI: 224028216 3/3 26 19.4

Slick Potassium channel subfamily T member 2; KCNT2,
Slo2.1, KCa4.2

GI:161168989 2/3 7 8.7

Transmembrane protein 263 TMEM 263 GI:81881684 2/3 3 40
beta-synuclein SNCB GI:81879780 2/3 7 52.6

Fig. 3. Alignment of protein sequences of TMEM 263 deriving from different species. Protein alignment was performed using Clustal Omega (1.2.1) multiple sequence
alignment program. Transmembrane domain 1 and 2 were identified using the Web based protein structure prediction program TMHMM server 2.0 – prediction of
transmembrane helices in proteins.
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analysis

After having established that Slick and Slack channels may co-
localize in the same cellular compartment and that they might
potentially interact in a cellular complex, we next asked whether
additional novel proteins might form complexes with native Slick
and Slack channels. In order to address this issue we performed
immunoprecipitation experiments as described before and com-
bined them with mass spectrometric sequencing of immuno-
purified proteins. Because of current lack of Slick and Slack
channel knock-out animals, co-immunoprecipitation experiments
with a non-immune antibody of an identical IgG subtype run in
parallel served as specificity control. In total, three individual ex-
periments per antibody used served for data evaluation. Proteins
were only considered as specific if they were detected in at least
two out of three individual experiments and if they were not de-
tected in any of the control experiments. In addition, only those
proteins were considered as specific, of which at least two unique
peptides were detected. Tables 1 and 2 are providing detailed in-
formation on the collected data.

This stringent validation criteria applied to our mass-spectro-
metry sequencing data allowed us to identify a number of high-
confident interaction partners of native Slick and Slack channels.
This approach enabled the isolation of Slack protein by an anti-Slick
antibody and vice versa, strongly supporting our Western blot data.
Interestingly, using the anti-Slick antibody we detected unique
peptide sequences specific for the N-terminus of the so-called Slack-
B isoform, one out of five previously described Slack channel iso-
forms, that are all differing in their N-terminal sequence [13].

In addition, we identified the small cytoplasmic protein beta-
synuclein and the transmembrane protein 263 (TMEM 263) as
novel potential interaction partners of both, Slick and Slack
channels (Tables 1 and 2). As of today, little is known about TMEM
263. Thus, we conducted protein sequence alignments of TMEM
263 and additionally, we created a percent identity matrix to
predict inter-relatedness of the protein deriving from different
species. Sequence alignment using Clustal Omega 2.1 demon-
strated that TMEM 263 is highly conserved among species, in-
dicating a substantial role of this protein in different vertebrates
(Fig. 3). Human TMEM 263 shares over 96% amino acid sequence
identity to mouse and rat TMEM 263, and approximately 74% to
zebrafish, 77% to chicken and almost 90% to Xenopus spp. We were
also interested in the possible membrane topology of TMEM 263.
Web based protein structure prediction programs (TMHMM server



Fig. 4. Co-immunoprecipitation of novel potential interaction partners of Slick
and Slack channels. Immunoprecipitation (IP) using DDM-solubilized mouse fore-
and midbrain membranes using anti-Slick or anti-Slack channel antibodies. 20% of
eluted protein fraction of both, Slick channel and Slack channel IPs were used for
Western blots. Staining with antibodies specific for beta-synuclein (predicted
molecular weight 14 kDa), DPP 10 (predicted molecular weight 91 kDa) and SAP
102 (predicted molecular weight 102 kDa) resulted in bands which corresponded
well to the predicted molecular weight of the individual proteins.
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2.0–prediction of transmembrane helices in proteins) suggest that
this protein consists of two membrane-spanning domains, an in-
tracellular N- and C-terminus and an extracellular loop (indicated
in Fig. 3). The protein has a predicted molecular weight of 9.3 kDa.

Interestingly, we detected the integral membrane protein in-
active dipeptidyl-peptidase 10 (DPP 10) and the membrane-asso-
ciated protein synapse associated protein 102 (SAP 102 or disks
large homolog 3, DLG 3) as potential novel interaction partners of
the Slick channel (Table 1).

In order to validate our findings obtained from mass spectrometric
sequencing, we performed co-immunoprecipitation experiments fol-
lowed by Western blot analysis using antibodies specific for the po-
tential novel interaction partners. Unfortunately, suitableTMEM 263
specific antibodies were not available. However, both, Slick and Slack
channel immunoprecipitation experiments resulted in co-purification
of beta-synculein, DPP 10 as well as SAP 102 (shown in Fig. 4). These
results are strongly supporting our data obtained from mass spectro-
metric sequencing. Moreover, in contrast to our data obtained by mass
spectrometric sequencing, our Western blot data suggest that the
Slack channel is interacting with DPP 10 and SAP 102. Taken together,
our results indicate that Slick and Slack channels co-assemble into
protein complexes together with beta-synuclein, TMEM 263, DPP 10
and SAP 102 in the mouse fore-and midbrain.
4. Discussion

In the present study we used a combined approach of double-
immunofluorescence, immunoprecipitation studies, Western blot
analysis and mass spectrometric sequencing in order to investigate
protein-–protein interactions of the native Slick and Slack chan-
nels. Our data strongly suggest that Slick and Slack channels are
interacting in mouse fore- and midbrain. Moreover, we identified
potential new interaction partners of Slick and Slack channels.

In a previous work it was shown that Slick and Slack channels
are capable of forming heterotetrameres in vitro with unique
biophysical properties. Further, Slick channels have been co-pur-
ified from solubilized rat olfactory bulb and brainstem using a
Slack-B specific antibody [14]. This Slack channel isoform was
found to interact with Slick channels [14]. In this study we have
confirmed Slick channel as an interaction partner of Slack-B iso-
form in mouse brain, indicating that heteromerization of Slick and
Slack channels might occur also in this species.

Moreover, in vitro studies suggest that BK channel alpha-
subunits are capable to form heteromeric channels with Slack
channel alpha-subunits with distinct biophysical and pharmaco-
logical properties. However, the existence of such channel com-
plexes has never been proven in vivo [15]. Performing im-
munoprecipitation studies using a Slack channel specific antibody
followed by mass spectrometric sequencing we did not identify
the BK channel alpha subunit interacting with Slack channel in
mouse fore- and midbrain.

Previous studies focusing on possible protein-protein interac-
tions of the Slack channel in brain have shown that this channel is
interacting with the postsynaptic density protein 95 (PSD 95) [24],
fragile X mental retardation protein (FMRP) [21] and with Glu2/3
subunits of the AMPA receptor [25]. Following our experimental
approach we did not identify these proteins as potential interac-
tion partners of the Slack channel. Different solubilization proto-
cols applied, use of different species (mouse vs. rat) as well as the
use of different membrane fractions and antibodies (e.g. PSD 95-
and Glu2/3-specific antibodies) in these studies might serve as an
explanation.

Using a combination of immunoprecipitation experiments,
mass spectrometry and Western blot analysis we identified, for the
first time, inactive dipeptidyl-peptidase 10 (DPP 10), synapse as-
sociated protein 102 (SAP 102) and beta-synuclein as potential
novel interaction partners both, Slick and Slack channels. While
Western blotting was capable to detect all three proteins being
interacting with Slick and Slack channels, mass spectrometric se-
quencing failed to directly identify two of these partners (DPP 10
and SAP 102) to be associated with Slack channels. However, they
were clearly identified together with Slick channel subunits. This
discrepancy might solely reflect different sensitivities of both
methods applied. The transmembrane protein 263 (TMEM 263)
was identified through mass spectrometric sequencing as novel
potential interaction partner of both, Slick and Slack channels. Due
to current lack of suitable TMEM 263 specific antibodies, we could
not validate this interaction in Western blots.

What functional implications could such an association on the
molecular properties of Slick and Slack channels have? We found
both potassium channels interacting with TMEM 263. Alignment
of protein sequences deriving from different species demonstrated
that TMEM 263 is highly conserved, indicating a substantial role of
this protein in different vertebrates. Protein structure prediction
software suggests that this protein consists of two membrane-
spanning domains, an intracellular N- and C-terminus and an ex-
tracellular loop. Interestingly, this topological arrangement shares
homologies to auxiliary beta-subunits of the aforementioned BK-
channel. As to whether TMEM 263 confers properties similar to
the BK channel beta-subunit to Slick and Slack channels remains to
be determined.

We also identified beta-synuclein interacting with both, Slick
and Slack channels. Beta-synuclein has been implicated to play a
role in the pathogenesis of neurodegenerative diseases and
moreover, in synaptic vesicle endocytosis [28]. This small cyto-
plasmic protein is detected only in vertebrates and expressed
predominately in presynaptic nerve terminals [29].

In addition, we co-purified DPP 10 with both, Slick and Slack
channels. DPP 10 was previously shown to associate with alpha
subunits of the voltage-gated potassium channels of the Kv4 fa-
mily (Kv4.1-4.3). This assembly leads to an altered surface ex-
pression and changes of biophysical properties of the channel
complexes in vitro [30,31]. Kv4 channels interact with DPP 10 via
their S1-S2 segments, a structure also being present in Slick and
Slack potassium channels [32].

Moreover, we identified SAP 102 as a high-confident interac-
tion partner of the Slick and Slack channels. SAP 102 is a scaf-
folding protein typically present at postsynaptic densities. It is
involved in trafficking and anchoring of distinct types of glutamate
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receptors [33] and is associated with inwardly rectifying po-
tassium channels of the Kir2.x family in rat brain [34]. Interactions
of SAP 102 and Kir2.x channels are mediated through a PDZ do-
main of SAP 102 and the C-terminal PDZ class I binding motif of
Kir2.x channels [34]. This well preserved PDZ binding motif is also
present at the C-terminus of Slick and Slack channels [9,15,24].

In the present study we offer new insights in the nano-en-
vironment of Slick and Slack channels. Our data presented here
could provide the basis for future studies systematically exploring
possible functions of newly identified Slick and Slack channel in-
teraction partners. In the future, potential influences of the inter-
action partners on biophysical or pharmacological properties as
well as on channel trafficking or surface expression could be sys-
tematically explored by the use of heterologous expression sys-
tems. Interaction of some of the newly identified interacting pro-
teins might possibly partly explain the observed discrepancies in
the biophysical properties between Slick and Slack channels ex-
pressed in heterologous expression systems and native sodium-
activated potassium channels as well as previously described
heterogeneity of native sodium-activated potassium currents
in vivo.
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