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Site-specific Umpolung amidation of carboxylic
acids via triplet synergistic catalysis
Yunyun Ning1, Shuaishuai Wang1, Muzi Li1, Jie Han1, Chengjian Zhu1,2 & Jin Xie 1,3✉

Development of catalytic amide bond-forming methods is important because they could

potentially address the existing limitations of classical methods using superstoichiometric

activating reagents. In this paper, we disclose an Umpolung amidation reaction of carboxylic

acids with nitroarenes and nitroalkanes enabled by the triplet synergistic catalysis of FeI2, P

(V)/P(III) and photoredox catalysis, which avoids the production of byproducts from stoi-

chiometric coupling reagents. A wide range of carboxylic acids, including aliphatic, aromatic

and alkenyl acids participate smoothly in such reactions, generating structurally diverse

amides in good yields (86 examples, up to 97% yield). This Umpolung amidation strategy

opens a method to address challenging regioselectivity issues between nucleophilic func-

tional groups, and complements the functional group compatibility of the classical amidation

protocols. The synthetic robustness of the reaction is demonstrated by late-stage mod-

ification of complex molecules and gram-scale applications.
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The amide functional group is an important moiety present
in a broad spectrum of biologically active compounds,
synthetic materials and building blocks1,2. About 25% of

natural and synthetic drugs on the market contain at least one
amide3 and consequently, the development of new synthetic
strategy for the construction of amide bonds is pivotal in both
organic synthesis and pharmaceutical production4–6. In addition
to the biosynthetic routes7, classical synthetic routes from readily
available carboxylic acids generally require either reagents which
can activate carboxylic acids or preparation of reactive inter-
mediates, such as esters, anhydrides or acyl chlorides for sub-
sequent amidation with nucleophilic amines (Fig. 1a)8–19.
Nitroarenes are readily available and cheap feedstock reagents20–27

and have recently been applied with reduction in situ as amination
reagents in amidation28–30. For example, Ma et al. recently achieved
an elegant one-pot stoichiometric amidation protocol of carboxylic
acids with nitroarenes30. Although these typical amide bond for-
mation strategies are powerful, the development of a catalytic ami-
dation protocol of carboxylic acids is still being actively pursued in
the context of sustainable synthetic chemistry1,31 as the carboxylic
acid activating reagents not only result in some harmful byproducts
but also would compromise the functional group tolerance.

Recently, our group developed a photoredox, Ph3P radical
cation-mediated deoxygenation of aromatic acids, generating the
corresponding acyl radical which participates in a series of novel
organic transformations32–34. At the same time, Doyle and others
also disclosed a similar activation mode of carboxylic acids35–37.

However the use of stoichiometric amounts of Ph3P will diminish
the total reaction economy, leading to issues in purification, and
the aliphatic carboxylic acids remain challenging substrates with
Ph3P as deoxygenation reagent under photoredox conditions due
to the possibility of their decarboxylation38–41. Inspired by
Radosevich’s recent seminal work on the P(III)/P(V) catalytic
cycle25,42–46, we questioned if Umpolung amidation of carboxylic
acids is possible with electrophilic amination reagents of nitroar-
enes. Such a reaction could proceed by means of synergistic
photoredox and R3P/R3P=O catalysis, where the generated
nucleophilic acyl radical undergoes radical addition to electro-
philic amination reagents as shown in Fig. 1b. This kind of amide
bond formation strategy would avoid the use of nucleophilic
amine reagents and address the regioselectivity issue between
different amine motifs, thus improving the functional group
compatibility. A significant difficulty for the Umpolung amidation
originates from the fact that the reaction rates between carboxylic
C-O homolysis, R3P=O and nitroarenes reduction should be
matched to support the concerted catalytic cycles. Herein we
report an Umpolung amidation strategy of various carboxylic
acids with commercially abundant nitroarenes and nitroalkanes by
means of iron/R3P/photoredox multi-cooperative catalysis.

Results
Reaction optimization. Initially, we selected n-heptanoic acid
(1a) and nitrobenzene (2a) as model reactants with which to
investigate the Umpolung amidation conditions. As shown in

synergistic catalysis

b

O2NOH

O Fe R3P

PhSiH3, K2HPO4
N
H

O

OR

O

N
H

O

H2N

OH

O

Cl

O

H2N

iii) acid chloride 
amidationii) ester amidation

i) coupling amidation
(activating reagents)

electrophile

H2N

1

O
O N

Umpolung amidation

triple synergistic catalysis

no stoichiometric activating regents

a

late-stage amidation
broad scope & predictable selectivity

complementation to classical methods

H2N R1R

OHO

R

O
activating
reagents

R

O
NH
R1

R

N
H

O
R1

(waste)

PC

Fig. 1 The state-of-the-art of amidation of carboxylic acids. aWell-established amidation protocols of carboxylic acids. b Iron/P(III)/Photoredox catalysis
for Umpolung amidation. PC photocatalyst.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24908-w

2 NATURE COMMUNICATIONS |         (2021) 12:4637 | https://doi.org/10.1038/s41467-021-24908-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Table 1, the standard conditions include synergistic catalysis by
15 mol% FeI2, 30 mol% organophosphine (P-A) and 1 mol% PC-I
in the presence of PhSiH3 as the reductant (entry 1, also see
Supplementary Information for details). Under the standard
conditions, the desired amide (3a) is obtained in 95% isolated
yield. The use of other organophosphine precatalysts ranging
from P-B to P-F significantly decreased the reaction efficiency
(entries 2-6). We presumed that P-A (R3P=O) undergoes rapid
reduction rates in the presence of FeI2 and silanes to generate R3P
at room temperature47–49. Replacement of FeI2 with other iron-
based catalysts also led to sharply decreased yields (entries 7
and 8). It was speculated that iron-based catalysts would not only
accelerate the reduction of R3P=O to R3P but would also favor
the reduction of nitrobenzene to nitrosobenzene under mild
conditions26,50–52. Notably, the use of other silanes in place of
PhSiH3 did not improve the reaction yields (entries 9 and 10, and
also see Supplementary Table 3 for details). Control experiments
suggested that all the factors, FeI2, organophosphine precatalyst,
photocatalyst and light irradiation were important for the suc-
cessful Umpolung amidation (entries 11-14). The triplet catalytic
systems should work in concert to meet the total reaction
rate demand. A single faster or slower catalytic cycle will mis-
match the synergistic effect, thus negatively influencing the
reaction.

Substrate scope. With the optimal conditions in hand, we
explored the substrate scope of carboxylic acids. As can be seen in
Fig. 2, this Umpolung amidation has a satisfactory functional
group compatibility and a broad carboxylic acid substrate scope.
A series of structurally diverse carboxylic acids (1a-1rr) are
competent starting materials, affording the desired amides (3a-
3rr) in moderate to good yields (44 examples, up to 95% yield).
Primary, secondary and tertiary aliphatic acids (1a-1o, 1q-1s, 1u-
1ee) all tolerate the conditions well and the protocol has excellent
functional group tolerance. A great number of versatile functional
groups, such as ketone (1h, 1m, 1s), iodo (1y), bromo (1gg),
cyclopropanyl (1l), alkene (1p, 1r, 1u), alkyne (1w, 1ii), ester
(1z), heterocycle (1o, 1dd-1ff, 1hh, 1jj-1nn) remain intact.
Besides aliphatic carboxylic acids, α,β-unsaturated acids (1p and
1t) and aromatic acids (1gg-1ii, 1oo-1rr) as well as heteroaro-
matic acids (1ff, 1jj-1nn) are also efficient coupling partners and
can be directly employed for the construction of the corre-
sponding amides. Interestingly, when the chiral amino acids (1cc
and 1dd) were subjected to this protocol, the chiral amides were
obtained without racemization as determined by HPLC analysis.
The use of organophosphine precatalyst (P-A) as the deox-
ygenation catalyst appears to complement Ph3P-mediated deox-
ygenative coupling, significantly expanding the carboxylic acid
scope32–34.

Table 1 Optimization of catalytic Umpolung amidation conditionsa.

Entry Variation of standard conditions Yield(%)b

1 None 95
2 P-B instead of P-A 40
3 P-C instead of P-A 30
4 P-D instead of P-A Trace
5 P-E instead of P-A 8
6 P-F instead of P-A Trace
7 FeCl2 instead of FeI2 38
8 Fe(acac)3 instead of FeI2 Trace
9 Ph2SiH2 instead of PhSiH3 18
10 Et3SiH instead of PhSiH3 Trace
11 Without photocatalyst PC-I ND
12 Without organocatalyst P-A ND
13 Without FeI2 Trace
14 Without light irradiation ND

ND not detected.
aStandard conditions: 1a (0.1 mmol), 2a (0.12 mmol), PC-I (1 mol%), P-A (30mol%), FeI2 (15 mol%), K2HPO4 (0.5 equiv), PhSiH3 (0.5 mmol), MeCN (2ml), blue LEDs, ambient temperature, 24 h.
bIsolated yield.
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Subsequently, we studied the scope of the organonitro
compounds (Fig. 3). A number of different nitroarenes can be
successfully employed for selective formation of desired amides
(3ss-3ax). Both electron-donating and withdrawing groups on the

phenyl rings barely influence the reaction efficiency, delivering
the desired products in yields of up to 97%. Importantly, when
the nitroarenes bearing nucleophilic functional groups, such free
amino (3uu), hydroxy (3al), NH-free indole (3ao), the amide
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bond formation between carboxylic acid and nitro groups is still
predictable. These are cases which are challenging for classical
amidation strategies with coupling reagents or transition metal-
catalyzed aminocarbonylation53–55. There is also good functional
group tolerance for nitroarenes. The aldehyde (3af), ketone (3ae),
halogen (3tt, 3ac, 3ad, 3ah, 3ap), heteroarene (3an, 3ao) and
Bpin (3ab) are quite compatible. The use of nitroalkanes, such as
nitromethane, nitroethane, nitropropane and nitrocyclopentane
can successfully result in isolation of the desired amides (3aq-
3ax) in acceptable yields of 47–72%.

Synthetic application. To further demonstrate the synthetic
robustness of Umpolung amidation, we used this amide bond
formation strategy with complex molecules (Fig. 4a). The excel-
lent functional group tolerance and high selectivity of the reaction
supports a predictable amide bond formation method. Complex
carboxylic acids derived from AD-Acid (3ay), ambrisentan (3az),
acolen (3ba), actiprofen (3bc), acemetacin (3bd), etodolac (3be),

gluconorm (3bf) and aminocyclo-propanecarboxylic acid (3bg)
are produced smoothly. Complex nitroarenes can also be suc-
cessfully subjected to this Umpolung amidation reaction,
affording for example, the desired product (3bh) in 61% yield.
Importantly, it was found that this protocol can be compatible for
the late-stage modification of some peptides. Under the standard
conditions, the carboxylic acid group in dipeptides of aspartame
and L-alanylglycine can be employed for construction of amide
bond in moderate isolated yields (3bi and 3bj). The success of
these complex molecules suggests the potential application of the
Umpolung amidation method in the late-stage modification of
complex molecules. Furthermore, with modified standard con-
ditions using only 0.1 mol% photocatalyst, a scaled-up experi-
ment of 10 mmol can be conducted smoothly to afford the
desired product in 72% yield (Fig. 4b).

Mechanistic studies. The following control experiments were
performed to gain insight the mechanism of the reaction (Fig. 5).
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Under the standard conditions, upon addition of 2 equiv of
TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) into the
reaction mixture, the reaction was completely inhibited and the
corresponding acyl radical was trapped by TEMPO (Fig. 5a),
giving a product which was identified by high resolution mass
spectroscopy (HRMS). In general, with the use of nitroarenes as
electrophilic reagents, there are several kinds of potential N-based

intermediates27,50,52,56,57. Among the potential intermediates that
were screened, we found that the use of nitrosobenzene under
experimental conditions could afford the desired product (3a) in
45% yield, whereas the other electrophilic N-based intermediates
such as 1,2-diphenyldiazene-1-oxide gave only a little product
(Fig. 5b). This suggests that nitrosobenzene potentially is the
intermediate which reacts with the nucleophilic acyl radical. The
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use of aniline failed to generate the product (3a) but N-phe-
nylhydroxylamine gave 4% of the desired product (Fig. 5c). We
envisioned that the photoredox conditions with [*Ir(dF(CF3)
ppy)2(dtbbpy)]PF6 [1/2Ered (*IrIII/IrII) = + 1.21 V]58 would
slowly oxidize N-phenylhydroxylamine to the corresponding
nitrosobenzene. In addition, under FeI2 catalysis together with
PhSiH3, the prepared intermediate (9), which can also be detected
by HRMS in the reaction mixture, can directly be reduced to the
final amide (3a). In the light of previous work32–37, a plausible
mechanism was proposed and is shown in Fig. 5d. After irra-
diation with blue LEDs, the excited photocatalyst [*Ir(dF(CF3)
ppy)2(dtbbpy)]PF6 [1/2Ered (*IrIII/IrII) = + 1.21 V]58 causes a
single electron oxidation of electron-rich R3P (4), which can be
formed by reduction in situ from the precatalyst R3P=O (P-A)
in the presence of PhSiH3 and FeI2, generating the corresponding
phosphine radical cation species (5). The Stern-Volmer quench-
ing experiments demonstrated that the photoexcited [*Ir(dF(CF3)
ppy)2(dtbbpy)]PF6 could be quenched by R3P rather than R3P=
O (P-A), n-heptanoic acid (1a) or nitrobenzene (2a). Subse-
quently, this species (5) can recombine with the carboxylate anion
to furnish the radical intermediate (6). Owing to the high affinity
of P- and O-atoms, intermediate (6) prefers to undergo β-scission
to generate nucleophilic acyl radical (7) and complete the orga-
nophosphine catalytic cycle. Under the reductive reaction con-
ditions with FeI2, the nitrobenzene (2a) tends to form
nitrosobenzene. Once the concentration of nitrosobenzene is
relatively high, rapid nucleophilic acyl radical addition to nitro-
sobenzene occurs readily to give rise to N-centered radical
intermediate (8). Donation of one electron to the Ir(II)-species
would generate intermediate (9), completing the photoredox
cycle. Finally, our control experiment showed that reduction of
intermediate (9) with FeI2/PhSiH3 to amide (3a) at ambient
temperature was almost quantitative. Less than 10% of amide (3a)
was obtained under the identical conditions without the addition
of catalytic amount of FeI2.

Discussion
We have developed an unprecedented synergistic catalysis system
of iron/P(V-III)/photoredox catalysis for Umpolung amidation of
carboxylic acids and nitroarenes or nitroalkanes. A wide range of
commercially abundant and inexpensive carboxylic acids and
nitroarenes are competent coupling partners in this direct ami-
dation, affording a rich library of structurally diverse amides in
yields of up to 97%. This amidation strategy surpasses the clas-
sical amide bond-forming method via carboxylic acid activation
and subsequent amidation with nucleophilic amines, thus creat-
ing promising synthetic robustness especially when the substrates
already have several sensitive functional groups or competing
nucleophilic substituents. This protocol is readily scaled-up with
0.1 mol% photocatalyst for preparative systems. The excellent
functional group compatibility and reaction selectivity render it
useful in future peptide modification and drug discovery.

Methods
General procedure for amidation. To an 8 mL transparent vial equipped with a
stirring bar, P-A (10.4 mg, 30 mol%), PC-I (2.2 mg, 1 mol%), FeI2 (9.3 mg, 15 mol
%), K2HPO4 (17.4 mg, 0.1 mmol) were added successively. Then the vial was
carried into glovebox which was equipped with nitrogen. Then MeCN (4.0 ml),
PhSiH3 (1 mmol), carboxylic acids 1 (0.2 mmol) and nitroarenes 2 (0.24 mmol)
were added in sequence under N2 atmosphere. The reaction mixture was stirred
under the irradiation of 45W blue LEDs (distance app. 10.0 cm from the bulb) at
ambient temperature for 24–60 h. When the reaction finished, the mixture was
quenched with water and extracted with ethyl acetate (3 × 10 mL). The organic
layers were combined and concentrated under vacuo. The product was purified by
flash column chromatography on silica gel (eluent: n-hexane: ethyl acetate).

Data availability
We declare that all other data supporting the findings of this study are available within
the article and Supplementary Information files, and also are available from the
corresponding author upon reasonable request. The X-ray crystallographic data of
product 3tt in this study has been deposited in the Cambridge Crystallographic Data
Centre under accession code CCDC 2055473.
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