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A B S T R A C T   

Coronavirus is a type of RNA-positive single-stranded virus with an envelope, and the spines on its surface 
derived its official name. Seven human coronaviruses 229E, OC43, SARS, NL63, HKU1, MERS, SARS-CoV-2 can 
cause both a mild cold and an epidemic of large-scale deaths and injuries. Although their clinical manifestations 
and many other pathogens that cause human colds are similar, studying the relationship between their evolu-
tionary history and the receptors that infect the host can provide important insights into the natural history of 
human epidemics in the past and future. In this review, we describe the basic virology of these seven corona-
viruses, their partial genome characteristics, and emphasize the function of receptors. We summarize the current 
understanding of these viruses and discuss the potential host of wild animals of these coronaviruses and the 
origin of zoonotic diseases.   

1. Introduction 

In the past sixty years, the coronavirus has caused two large-scale 
public health incidents and several regional influenza incidents. The 
current epidemic of the new coronavirus has also posed an unprece-
dented challenge to global health. Many experts in public health hold 
the unanimous view that the coronavirus lurking in bats may cause 
large-scale disease outbreaks in the future. This review summarizes the 
current understanding of coronaviruses such as 229E, OC43, SARS, 
NL63, HKU1, MERS, and SARS-CoV-2. Based on recently published 
studies, this review covers the basic research of the origin, host, isola-
tion, and identification of the coronavirus infected human being, 
including the intermediate host, the epidemiology, and receptor bind-
ing. Furthermore, we will discuss the clinical and other features. 

1.1. The coronavirus: classification and origin 

In 1966 Human respiratory virus 229E was discovered. In 2007, a 
homologous sequence of 229E was founded in a kind of alpaca in Cali-
fornia. It named Alpaca Coronavirus (ACoV). The ACoV was genetically 
most similar to the common human coronavirus (HCoV) 229E with 
92.2% nucleotide identity over the entire genome [1]. 

Follow-up research about the virus carried by Adrian bats demon-
strated that 229E also has a high degree of similarity with the corona-
virus in bats [2]. It means alpaca is likely to be the intermediate host of 
the original strain of the 229E virus from bats to humans [3]. 

Human coronavirus OC43 is a kind of β-coronavirus [4,5]. Also, an 
analysis of the molecular clock suggested that the recent common 
ancestor of OC43 and bovine coronavirus (BCOV) was isolated from 
1890. It means that around 1890, BCoV has jumped the species barrier 
and infected humans. It could be the origin of the birth of OC43 [6]. 

SARS-CoV causes severe acute respiratory syndrome. This kind of 
disease was named SARS by World Health Organization in 2003. The 
research found that the pandemic was caused by a coronavirus which 
was the first coronavirus to result in severe public health events, and its 
natural origin could be the civet because the sequence of virus isolated 
from them is a similarity to the human SARS virus as high as 99.8%. 
Therefore, human SARS-CoV seems to be an animal virus that crosses the 
barrier of the intermediate host to infect human beings [7]. Seroepide-
miologic data also proved this argument [8–10]. 

In January 2003, a 7-month-old kid was sent to the hospital in 
Amsterdam for fever, conjunctivitis, and coryza [11]. After the first 
description of HCoV-NL63, a second research group described the same 
virus named HCoV-NL in Vero-E6 cell culture supernatant [12,13]. 
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Human coronavirus HKU1 (Hong Kong University) was discovered in 
2004 in a patient infected by the virus. There is no specific sequence 
from any other member of the same species [14]. 

On June 13, 2012, a local private hospital in Jeddah received a man. 
After 11 days of admission, the infected patient died from renal failure 
and progressive respiratory [15]. In an outbreak of a hospital in 2013 in 
Al-Hasa, Saudi Arabia, 23 patients were infected by a novel virus. In 
1983, MERS-CoV infection was detected in camel serum samples, which 
means MERS-CoV could present in camels 30 years ago. [16] The 
genomic sequence analysis revealed that the MERS-CoV, Pipistrellus bat 
coronavirus HKU5 and Tylonycteris bat coronavirus HKU4 are phylo-
genetically related (denoted as betacoronavirus lineage C). The struc-
ture of the virus isolated from bats has a high correlation with 
MERS-CoV. It supports the hypothesis that MERS-CoV originated from 
bats. 

In December 2019, a case of pneumonia was reported. After the 
report, the local hospital used the surveillance mechanism to identify 4 
cases of novel pneumonia. All of them are originated from the Huanan 
(the southern area of China) seafood market and had direct contact with 
the trade in the market. 

In 2018, researchers analyzed nasal swabs from 301 pneumonia 
patients treated in a hospital in East Malaysia. It was found that eight 
patients, except for one child, were infected with the newly discovered 
coronavirus, which the researchers of the study named CCOV-HuPn- 
2018. In a study on May 20, 2021, researchers described the genetic 
characteristics of CCOV-HuPn-2018, indicating that it is a new corona-
virus that has been transferred from infected dogs to infected people 
[17] (Fig.2). 

1.2. Animal host and its spillover 

Follow-up research about the virus carried by Adrian bats 

demonstrated that 229E also has a high degree of similarity with the 
coronavirus in bats.[2]. Furthermore, it means alpaca is likely to be the 
intermediate host of the original strain of 229E virus from bats to 
humans, but the specific role in human infection is unknown [3]. 

An analysis of the molecular clock suggested that the recent common 
ancestor of OC43 and bovine coronavirus (BCOV) was isolated from 
1890. It means that around 1890, BCoV has jumped the species barrier 
and infected humans. The supporting evidence of this kind of hypothesis 
is the finding of the absence of 290-nucleotide compared with BCoV 
because this extra sequence fragment is present in murine hepatitis virus 
(MHV) and rat sialodacryoadenitis virus (SDAV). Therefore, the 
assumption that the spread from bovines to humans sounds like much 
credibility [6]. 

What is the actual host of SARS? A study unveils this secret. From the 
study of Wendong Li, his team reported that ‘species of bats are a natural 
host of coronavirus closely related to those responsible for the SARS 
outbreak. In 2017, a team found all the genomic components of the 
SARS virus in two caves (Swallow Cave and Stone Cave) in Xiyang Yi 
Township, Jinning County, Yunnan Province, China, and pinpointed the 
source. They also Visited 218 villagers in Xiyang Yi Township, 81.2% 
raised or owned livestock or pets, and 9.1% witnessed bats flying near 
houses [14,18-20]. 

Up to date, some researchers found three different sequences of CoVs 
(family Hipposideridae) from Kenya that related closely with HCoV- 
NL63. The report also includes one strain (BtKYNL63–9a, GenBank 
ACC no. KY073744) with more than 90% similar amino acid sequence 
identity threshold about species typing in three of seven conserved do-
mains [21]. Significantly, HCoV-229E and HCoV-NL63 could be from 
sister species. The recombination procedure involved the spike gene 
through two breakpoints. One is located near the gene’s 5′-end and 
another near 200 nucleotides upstream of the 3′-end [21]. Among SARS- 
and SARS-like CoV and HCoV-OC43 have shown similar breakpoints 

Fig.. 1. According to the modification of genus of the virus of classification report of 10th ICTV, the coronavirus suborder divides into four-part: α coronavirus,β 
coronavirus,γ coronavirus,δ coronavirus. The first two only infect mammals, and the latter two mainly infect birds or a few mammals. 
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[22–24]. The existence of recombination could implicate incomplete 
speciation; therefore, the existence of BtKYNL63–9a could be regarded 
as evidence of the primordial host of HCoV-NL63. Its ancestor could 
exist in hipposiderid or rhinolophid bats. 

The exact source of MERS transmission to human beings remains 
unknown. Initial investigation revealed that MERS-CoV could originate 
from bats: some MERS-CoV-related sequences were founded from 
several bat species [25,26]. However, MERS-CoV has never been iso-
lated directly from bats. Therefore if MERS-CoV was transmitted to 
people directly or indirectly is unknown. From an early study, all of the 
dromedary camels in Oman and 14% in the Canary Islands (in Spain) 
suggested positive anti-MERS-CoV antibodies [27]. 

Although the bats are significant, some facts revealed that some 

other animals play the role of intermediate host between humans and 
bats. First of all, when the pandemic was reported (in the winter of 
2019), most bats were hibernating. Secondly, non-aquatic animals are 
sold at the Huanan seafood market, not including bats. Finally, bats are 
the natural host between MERS-CoV and SARS-CoV. Masked palm civet 
is the intermediate host of SARS-CoV, and dromedary camels are the 
intermediate host for MERS-CoV; humans are their terminal hosts [7, 
28]. Since the high sequence similarity between SARS-like bats coro-
navirus (Hipposideros bats in China) and SARS-CoV-2, it seems verified 
this hypothesis that the natural host of SARS-CoV-2 could be the Hip-
posideros bat. Another discovery also revealed that the coronavirus 
genomes of Malayan pangolin have 85.5~92.4% sequence similarity to 
SARS-CoV-2. It also represents two sub-lineages of the related viruses of 

Fig. 2. It is the timeline of coronavirus that was first discovered in human history. The 229E was first founded in 1966, and it was the first invented coronavirus of 
which seven ones could infect people. Secondly is OC43, which was isolated from patients with cold. The next one is SARS, the outbreak of SARS was discovered in 
November 2002 and ended in 2003. In the same year, NL63 was detected using the VIDISCA and PCR method. In 2004, HKU1 was reported by HKU and named. 
Seven years later, an outbreak was founded in the Middle East, caused by a novel coronavirus named MERS-CoV. In 2018, researchers surprisingly analyzed nasal 
swabs from 301 pneumonia patients treated in a hospital in East Malaysia. It was found that eight patients, except for one child, were infected with the newly 
discovered coronavirus, which the researchers of the study named CCOV-HuPn-2018. In December 2019, a case of SARS-CoV-2 was reported in Asia. Nevertheless, 
there is also evidence in NEJM that revealed that the 2019-nCoV infection could be diagnosed in Germany and transmitted outside to Asia. The authentic original 
place of SARS-CoV-2 is still unknown. 

Fig. 3. origins of human coronavirus. Severe acute respiratory syndrome coronavirus is a novel coronavirus related to bats with recombination. Before the SARS 
epidemic outbreak, the bats’ virus infected civets and evolved to adapt to infect humans. The MERS-CoV could be originated from bats and spread to camels about 30 
years ago and has been prevalent in dromedary camels. HCoV-NL63 and HCoV-229E, these two viruses do not cause severe respiratory damage and usually only bring 
a mild cold. The ancestor of both of them has been founded in African bats recently, and the camelids could be the intermediate host of HCoV-229E. Discovery 
revealed that the coronavirus genomes of Malayan pangolin have high sequence similarity to SARS-CoV-2. It means that Malayan pangolins could be thought to be 
the possible intermediate host. HCOV-OC43 and HCOV-HKU1 could be originated from rodents. Black arrows showed the direction of propagation. In this figure, 
humans are the ultimate hosts of transmission. 
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SARS-CoV-2 in the phylogenetic tree. It is said that Malayan pangolins 
could be the possible intermediate host [29]. Furthermore, the original 
host could be bats because of the isolation of a highly related corona-
virus (RaTG13) from bats [30]. 

1.3. Host and its receptor 

1.3.1. APN receptor (HCoV-229E) 
Aminopeptidase N (APN) is the primary cell surface receptor for 

group 1 coronaviruses. A region in the feline APN (fAPN) molecule 
(amino acids 135–297) is required to function as a receptor for HCV 
229E. As in the human APN (hAPN, also known as CD13) protein, the 
aminoacid sequences required for the HCV 229E receptor function of 
fAPN are located within the amino-terminal part of the protein. There-
fore, recognizing different determinants of the APN protein may reflect 
both functional and structural differences between the HCV 229E sur-
face glycoprotein and the surface glycoproteins of another group 1 
coronavirus [61]. 

The nature of the interaction between various RBDs and hAPN also 
provides clues for the in-depth understanding of how HCoV-229E and 
related bat, camel, and alpaca 229E viruses are transmitted to the cor-
responding hosts [62]. 

1.3.2. DPP4 receptor (HCoV-MERS) 
The length of 30–31 kb genome could encode many proteins, which 

could endow the ability to adapt to new environments and cross-species 
transmission. It means MERS-CoV could originate from the differential 
exchange of various viral ancestors, including the strains isolated from 
the camels and its assuming natural host: bats. Since the outbreak of 
2012, MERS-related virus (such as HKU4 and HKU5) has been founded 
in different kinds of bats. The ORF1ab of these viruses are highly similar 
to MERS-CoV’s. Some MERS-related viruses could even use the same 
receptor (DPP4) of MERS-CoV [63–65]. 

1.3.3. ACE2 receptor (The similarities and differences between NL-63, 
SARS, and SARS-CoV-2) 

The human ACE2 receptor is a crucial target of the NL-63, SARS-CoV, 
and SARS-CoV2 spike (S) protein receptor-binding domain (RBD) that 
facilitates viral entry into host cells. The S protein drives the infection 
between coronaviruses of the target cell. The S protein could promote 
the entry of SARS-CoV-2 into the target cell. Depending on the S1 unit of 
the surface of S protein can facilitate the combination with the ACE2 
receptor. S protein of SARS-CoV-2 shares about 76% amino acid identity 
with SARS-CoV’s. Since SARS-S uses ACE2 as a receptor for cell entry 
and uses the cellular serine protease TMPRSS2 for S protein initiation, it 
is not difficult to deduce that SARS-CoV-2-S also has a similar effect. This 
mechanism makes the degree of fusion of ACE2 and SARS-CoV a decisive 
factor in virus transmission [66]. During the infection of SARS-CoV, S 
protein plays a significant role in mediating the production of 
neutralizing-antibody and T-cell responses, also protective immunity 
[67]. In addition, the RBD in S1 is responsible for the recombination 
between virus and host cells [68, 69]. It means ACE2 is the functional 
receptor of SARS-CoV [69, 70]. 

Compared with SARS-CoV, ACE2 is also the docking point, but SARS- 
CoV-2 binds to ACE2 is more robust 2–4 times than SARS-CoV because 
the changes in RBD stabilize the virus-binding hotspots [69,71,72]. 
From the sequence analysis, although the SARS-CoV-2 genes shared less 
than 80% identity of the sequence of nucleotide to SARS-CoV, the amino 
acid sequences of seven conservation replicase domains in ORF1ab for 
classification shared 94.4% identification between SARS-CoV-2 and 
SARS-CoV. That is to say, both of them belong to one same species, 
SARSr-CoV. From the study, it is said that a short paragraph of the 
RNA-dependent RNA polymerase (RdRP) of a kind of coronavirus 
(BatCoV RaTG13) isolated from bats has the identification of sequence 
to SARS-CoV-2 highly. After the full-length sequencing of the sample, 
the result revealed that the SARS-CoV-2 is highly similar to RaTG13 in 

the whole genome sequence. The identity between them is as high as 
96.2%. In addition, the known virus in bat SARS-CoV-2 lineage has not 
used the ACE2 of humans efficiently compared with the SARSr-CoV-2 
from pangolin or SARSr-CoV-1 lineage viruses [73]. Compared with 
SARS-CoV, the amino acid sequence identity between the S protein of 
them is 76.47% [74]. It is evident that SARS-CoV-2 is a high-speed virus; 
it could prevent our immune system from identifying and fighting for the 
infection with its unique ability. When our immune system realize there 
is virus survives, the immune-response proteins would swarm into the 
bloodstream with high speed than normal condition and could cause 
damage. Some infected patients become deteriorate by the overactive 
immune response to SARS-CoV-2 and the toxic effects of the virus itself 
[72,75]. 

From the study, the genome sequence level of SARS-CoV-2 is closer 
to bat-SL-CoVZXC21 and bat-SL-CoVZC45, but from the receptor- 
binding domain and external subdomain, it is closer to SARS-CoV. Iso-
lated from the patient species of Wuhan, China, the phylogenetic anal-
ysis suggested that SARS-CoV-2 belongs to the Sabecovirus. Although 
specific antibodies in patients with SARS-CoV can be maintained for two 
years after infection, the difference is that despite being vaccinated with 
specific vaccines, SARS-CoV-2 patients still have a greater possibility of 
re-infection after recovery [76]. Interestingly, Marlin et al. described in 
the macaque (humanoid) model that infected and convalescent ma-
caques were still at risk of reinfection at six months. This result also 
means that the levels of neutralizing antibodies in the body tend to 
weaken over time [77]. Studies have shown that soluble ACE2 (sACE2) 
can bind to the viral S protein. The sACE2 released from the human 
airway epithelium will limit the binding of the above virus to the ACE2 
receptor on the cell surface, preventing the virus from further replicating 
in the human body [78,79]. Secondly, studies have shown that CD40L 
expressed on T cells can be activated and interacted with by expressing 
CD40. And then regulating the immune function of B cells and T cells, 
improving the recovery period of patients with secondary infection and 
effectively increasing the level of neutralizing antibodies. These two 
mechanisms may serve as a new direction for vaccine development [77, 
80]. Vaccines at the current stage can only prevent major complications 
after infection but cannot prevent re-infection and secondary trans-
mission. Many virus spreaders are vaccinated, but they remain asymp-
tomatic and can continue exporting the virus. While building herd 
immunity, we also need to prevent asymptomatic infections from 
becoming a source of infection again. 

2. Conclusions 

To sum up, it is not difficult to conclude that the SARS-CoV-2 could 
be more infectious than SARS-CoV and MERS-CoV. Is this related to 
other unknown receptor interactions? Will 2019-nCoV produce adaptive 
mutations in human-to-human transmission? These issues are still 
worthy of our in-depth study. Both SARS-CoV-2 and SARS-CoV can 
activate the body’s antiviral immune response and cause uncontrolled 
inflammatory responses in critical patients. It is characterized by the 
release of proinflammatory cytokines, leading to lymphopenia, 
lymphocyte dysfunction, and granulocyte and monocyte abnormalities. 
The clinical characteristics of the two are different, but the difference 
lies in the longitudinal factors such as the severity of the onset, the fa-
tality rate, and the infection rate. For their pathological manifestations 
in the respiratory tract, there seems to be a specific correlation with the 
utilization rate of ACE2 receptors. In terms of virus grouping, MERS- 
CoV, which belongs to Beta-CoV, is quite different from the above two 
viruses in lung manifestations; this is also related to the utilization of the 
receptor DPP4 of MERS-CoV. The origin of coronaviruses is relatively 
simple compared to other viruses, but its hosts are primarily distributed 
in mammals. This result should arouse our attention more than other 
phenomena because humans are mammals and advanced mammals. The 
relationship is self-evident. Whether one-day humans will be infected 
with a new type of virus through excessive contact with mammals, no 
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Table 1 
Summary of discussed coronaviruses.  

Virus Virus 
species 

Natural 
host 

Intermediate 
host 

Receptor Clinical manifestation Tropism Available vaccine reference 

TGEV Alpha- 
CoV 

unknown Pig APN / enteric LAV, PRCV as natural vaccine [31] 

BCoV Beta- 
CoV 

unknown Bovine SIALIC 
ACIDS 

/ Enteric, respiratory Inactivated virus, live attenuated vaccine [32] 

MHV Beta- 
CoV 

unknown Mice CEACAM1 / Strain dependent 
(enteric, hepatic, 
respiratory, CNS) 

/ [33] 

HCoV- 
229E 

Alpha- 
CoV 

bats Alpaca APN General malaise, headache, nasal discharge, sneezing, sore throat, 
fever and cough 

respiratory / [34, 35] 

HCoV- 
NL63 

Alpha- 
CoV 

bats Unknown ACE2 cough, fever, sore throat, rhinitis, expectoration, and upper and lower 
respiratory tract infection, such as bronchitis, bronchiolitis or 
pneumonia 

respiratory / [36–39] 

HCoV- 
OC43 

Beta- 
CoV 

mice Bovine SIALIC 
ACIDS 

Upper respiratory tract infection, headache, rhinorrhea and sore 
throat, coughing and fever 

respiratory / [35, 
40-42] 

HCoV- 
HKU1 

Beta- 
CoV 

mice Unknown SIALIC 
ACIDS 

rhinorrhea, fever, coughing, and wheezing, and can result in 
bronchiolitis and pneumonia if left untreated 

respiratory / [43–45] 

SARS-CoV Beta- 
CoV 

bats Civet cats ACE2 ARDS, DAD, pulmonary fibrosis, Fever, Myalgia,Headache, Malaise, 
Chills, Nonproductive cough, Dyspnea, Respiratory distress 

respiratory multiple phase 1 trials [46–50] 

MERS- 
CoV 

Beta- 
CoV 

bats Camels DPP4 ARDS, multi-lobar airspace disease, pulmonary fibrosis respiratory three recently concluded phase 1 trials [47, 51, 
52] 

SARS- 
CoV-2 

Beta- 
CoV 

bats pangolins ACE2 ARDS, DAD, pulmonary fibrosis, fever, myalgia,headache, malaise, 
Chills, nonproductive cough, dyspnea, respiratory distress fatigue, 
chest pain, cognitive disturbances, arthralgia 

respiratory several ongoing clinical trials, RNA-based 
vaccine, Adenovirus vector (nonreplicating), 
protein subunit 

[53–60] 

CCoV- 
HuPn- 
2018 

Alpha- 
CoV 

unknown canine APN respiratory illness that does not include the gastrointestinal issues respiratory / [17] 

HCoV, human coronavirus; SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; MERS-CoV, Middle East respiratory syndrome coronavirus; CCoV- 
HuPn-2018, Canine coronavirus HuPn-2018; DAD, diffuse alveolar damage. 
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one will know. We can draw some conclusions from the coronavirus we 
mentioned above. First of all, from the lessons of MERS-CoV and SARS- 
CoV-2, promoting early intervention and identification plays a signifi-
cant role in protecting from deteriorating and preventing aberrant 
proinflammatory response even if the vaccination strategy is not main-
stream. However, form using the strategies of immune evasion could 
prevent the identification by pattern recognition receptors. Secondly, 
neutralizing antibody responses exhibit its protection during the infec-
tion of coronavirus. It could be considered as the critical point for vac-
cine strategies. Also, the studies of animals and humans show that 
vaccines should strongly induce humoral responses and cellular adap-
tive immune responses because they are the utmost essential mediators 
of protection. Last but not least, we should also pay more attention to the 
potential variants of the virus. 

3. Future Outlooks 

Although the death of SARS-CoV-2 is less than MERE-CoV and SARS, 
the rapid pandemic outbreak has posed the severest threat to the public 
health of our world. The pandemic has lasted over two years. when will 
it end? Nobody knows. The vaccine for the current epidemic has been 
developed, but the real question is, how should we face the next 
pandemic of the zoonotic coronavirus? Will the next global pandemic be 
in 5 years? Ten years? Or did it appear earlier? After we control the 
pandemic, the next step should focus on virus screening, identification, 
isolation, and further detecting coronaviruses’ presence in wild animals, 
especially bats. At the same time, researchers should find suitable ani-
mal models to conduct in vitro and in vivo studies to assess the risk of 
future epidemics. Therefore, we may build up appropriate animal 
models of COVID-19, which could be used to understand the immune 
operational mechanism. Non-human primates could be best. Due to non- 
human primates being humans’ closest relatives in evolution, they may 
provide the most relevant data for pathological alteration, the safety and 
effectiveness of the vaccine, therapy, and preclinical experiment. 
However, the availability and expense of the non-human animal model 
should also be taken into account. Finally, the persistent analysis of the 
full-length genome is necessary because of the high mutability of coro-
navirus. At present, the novel coronavirus epidemic is undergoing mu-
tations at a high rate; before the arrival of a new round of the epidemic, 
we must take measures to prevent the occurrence of a new pandemic. It 
seems to be an excellent decision to choose cd40 or sACE2 as the new 
direction for vaccines. Under the epidemic prevalent in the world, 
addressing the problematic issue requires the efforts of every people, 
government, and nation. Only through cooperation can we overcome 
common difficulties. 
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[36] E Moës, L Vijgen, E Keyaerts, K Zlateva, S Li, P Maes, et al., A novel pancoronavirus 
RT-PCR assay: frequent detection of human coronavirus NL63 in children 
hospitalized with respiratory tract infections in Belgium, BMC Infect. Dis. 5 (2005) 
1–10. 

[37] N Bastien, K Anderson, L Hart, PV Caeseele, K Brandt, D Milley, et al., Human 
coronavirus NL63 infection in Canada, The J. Infect. Dis. 191 (2005) 503–506. 

[38] L Van Der Hoek, K Sure, G Ihorst, A Stang, K Pyrc, MF Jebbink, et al., Croup is 
associated with the novel coronavirus NL63, PLoS Med. 2 (2005) e240. 

[39] SS Chiu, K Hung Chan, K Wing Chu, SW Kwan, Y Guan, LL Man Poon, et al., Human 
coronavirus NL63 infection and other coronavirus infections in children 
hospitalized with acute respiratory disease in Hong Kong, China, Clin. Infect. Dis. 
40 (2005) 1721–1729. 

[40] AS. Monto, Medical reviews. Coronaviruses, The Yale J. Biol. Med. 47 (1974) 234. 
[41] TK Cabeça, C Granato, N. Bellei, Epidemiological and clinical features of human 

coronavirus infections among different subsets of patients, Influenza Other Respir 
Viruses 7 (2013) 1040–1047. 

[42] R Dijkman, MF Jebbink, SM Koekkoek, M Deijs, HR Jónsdóttir, R Molenkamp, et 
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