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ABSTRACT: The hydrosilylation reaction driven by a homoge-
neous catalyst has been widely used in the industrial synthesis of
functionalized silicone compounds. However, the homogeneous
catalyst for hydrosilylation has the shortcomings of nonrecycl-
ability, undesirable side reactions, and high cost. In this work, a
highly efficient heterogeneous catalyst was prepared by loading Pt
ions on MIL-88 modified with trimethoxy[3-(phenylamino)-
propyl]silane. In comparison with previous research studies, the
resulting catalyst can exhibit high catalytic activity and excellent
stability during the hydrosilylation reaction, which was attributed
to the presence of a pyrrolic nitrogen structure between TPA-MIL-
88 and the Pt ion. Besides them, 1.2%Pt/TPA-MIL-88 showed the highest catalytic activity and can be reused five times without
significant deactivation. Importantly, 1.2%Pt/TPA-MIL-88 also achieved satisfactory results when it was used to catalyze the
hydrosilylation reaction for other olefins, implying great potential for application in the silicone industry.

1. INTRODUCTION
The hydrosilylation reaction is one of the most commonly
used reactions for the industrial preparation of functionalized
silicone polymers,1−5 especially for the synthesis of silicon
monomers containing various functional groups, which has
been widely used in the fields of coatings,6 medical devices,7

flame retardants,8 and three-dimensional (3D) printing.9 For
decades, the catalysts for hydrosilylation have been homoge-
neous, which mainly consist of organic ligands and noble
metals, such as Pt, Ru, Pd, and Rh.10,11 Among them, Pt-based
Speier (isopropanol solution of chloroplatinic acid hydrate)
and Karstedt (zero-valent platinum complex) catalysts are the
most widely used in industry.12,13 However, those homoge-
neous catalysts are difficult to be recovered, which inevitably
results in the high production cost and price.
To address the issue, introducing homogeneous Pt

compounds onto the surface of different supports with a
large specific surface has received extensive attention. For
example, Cui et al. prepared a Pt single-atom Al2O3 nanorod-
loaded catalyst Pt/NR-Al2O3-IP by an impregnation method,
which showed a high catalytic selectivity and a wide catalytic
range by catalytic reactions with different olefins, tertiary
silanes, and polysiloxanes. The catalytic yield still reached more
than 92% after it was reused six times.14 Xie et al. prepared a
Pt/CS−SiO2 catalyst by modifying SiO2 with chitosan and
loading it with platinum. The catalyst catalyzed the reaction of
propylene glycol polyether with heptamethyltrisiloxane and
obtained a β-addition product in 94% yield.15 Li et al. prepared
a new SiO2-loaded platinum catalyst SiO2−ethylenediaminete-
traacetic acid (EDTA)−Pt by grafting ethylenediaminetetra-

acetic acid (EDTA) onto a silica carrier containing amino-
propyltriethoxysilane in the addition reaction of 1-hexene and
methyldichlorosilane. The resulting catalyst exhibited excellent
selectivity; the catalytic yields were still over 80% after it was
reused for five times.16 Despite the good catalytic efficiency of
the above heterogeneous catalysts, most of them still suffer
from the disadvantages such as high platinum load and easy
leaching of active species. Thus, it is still a challenge to develop
a recyclable catalyst with good catalytic performance by
combining the advantages of homogeneous and heterogeneous
catalysts.17,18

Metal−organic frameworks (MOFs) have been widely
applied in optics,19 sensors,20 gas adsorption and separation,21

gas storage,22 catalysis, and drug delivery due to their
adjustable regular network structures and pore channels.23−25

MOFs are novel inorganic−organic porous coordination
compounds formed by coordination bonds between metal
cluster ions and aromatic ligands or ammonia heterocyclic
compounds.26,27 Among them, MIL-88(Fe) with good thermal
stability is a fusiform crystalline metal−organic backbone
formed by iron ions linked to terephthalic acid with multiple
unsaturated metal sites.28 Rahmani et al. synthesized MIL-
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101(Fe) and MIL-88(Fe) by a solvothermal method and used
the synthesized materials to catalyze the alkylation of benzene
with ethanol. The results showed that the new catalysts can be
used at low temperature and low pressure.29 Jintu et al.
prepared a microporous MIL-88-NH2 metal−organic back-
bone using a simple template-guided method and a structure-
guiding agent (cetyltrimethylammonium bromide) to synthe-
size HP-MIL-88-NH2 catalysts.

30 It exhibited an excellent
catalytic performance for the cycloaddition reaction of CO2
and epoxide at atmospheric pressure and low reaction
temperature. Xie et al. successfully loaded platinum on 2-
aminoethanethiol (AET)-modified MIL-101 using an impreg-
nation method, and the obtained catalyst was used to catalyze
the hydrosilylation reaction of olefins.31 After reusing five
times, its conversion still reached to 84%. Compared with 2-
aminoethanethiol, silane coupling agents have more amino and
hydrolytic hydroxyl groups, which can bind the noble metal
ions more firmly, delivering good catalytic properties.32,33

Shimazaki et al. prepared a PtRu/C catalyst by a pH-controlled
one-pot process with a silane coupling agent. The results
suggested that the existence of (3-aminopropyl) trimethox-
ysilane (APS) coating not only promoted the dispersive
adsorption of PtRu nanoparticles but also improved the
durability of the catalyst in an acidic environment.34 Zai et al.
synthesized a heterogeneous pseudo-single-atom Pt catalyst
with high activity and recyclability in the hydrosilylation of
allyl-terminated polyether with polymethylhydrosiloxane. The
functionalization of the SiO2 shell with silane coupling agents
containing vinyl groups allows stabilizing Pt on the SiO2
surface through complexation. The Pt/vinyl/SiO2/Fe3O4
catalyst can be reused up to four reaction cycles.35

In this work, recyclable 1.2%Pt/tr imethoxy[3-
(phenylamino)propyl]silane (TPA)-MIL-88 as a highly
efficient catalyst for alkene hydrosilylation was first prepared
through the following processes: (i) MIL-88 was modified with
the modifier TPA to synthesize the TPA-MIL-88; (ii) the
platinum species (chloroplatinic acid−ethanol solution) was
loaded on TPA-MIL-88 by impregnation to form the novel
catalyst XPt/TPA-MIL-88 (X = 0.8, 1.2 and 1.6%). The
hydrosilylation reaction results showed that the 1.2%Pt/TPA-
MIL-88 catalyst possessed excellent catalytic activity and good
stability. The structure−performance relationship of the 1.2%
Pt/TPA-MIL-88 catalyst in the catalytic hydrosilylation
reaction was discussed in detail. Moreover, the hydrosilylation
with various olefins of the 1.2%Pt/TPA-MIL-88 catalyst was
further studied for potential industrial application.

2. EXPERIMENTS
2.1. Reagents. All chemical reagents are purchased without

further purification. Chloroplatinic acid hexahydrate (H2PtCl6·
6H2O), N,N-dimethylformamide (DMF), heptamethyltrisilox-
ane (HET), trimethoxy[3-(phenylamino)propyl]silane (TPA),
and 3-mercaptopropyltriethoxysilane were purchased from
Shanghai Aladdin Biochemical Technology.
Ethanol and toluene were purchased from Nanjing Chemical

Reagent Co., Ltd. Deionized water was obtained from an
electric water distiller produced by Shaoxing Supo Instrument
Co., Ltd. Terephthalic acid (H2BDC), iron chloride hexahy-
drate (FeCl3·6H2O), allyl glycidyl ether (AGE), 1-hexadecene,
styrene, 1-dodecene, and 1-tetradecene were purchased from
Shanghai Maclin Biochemical Technology Co., Ltd.
2.2. Catalyst Preparation. 2.2.1. Synthesis of MIL-88.

MIL-88 was synthesized according to a method described in
the published literature with minor improvements.28 8 mmol
FeCl3·6H2O was dissolved in 50 mL of DMF and stirred with
magnetic force for 1 h, and then 8 mmol H2BDC was added
for another 3 h. Then, ultrasonic treatment was carried out for
30 min, and magnetic stirring was done for 30 min. The
obtained mixture was placed in a 100 mL Teflon-lined stainless
steel autoclave and heated for 20 h at 120 °C. After cooling
down to room temperature, the organic solvent was removed
by centrifugation and the precipitate was washed with
deionized water and anhydrous ethanol three times and finally
dried in vacuum at 80 °C overnight.

2.2.2. Synthesis of TPA-MIL-88. The prepared MIL-88 was
dehydrated at 150 °C in a vacuum oven for 12 h. Then, 0.5 g
of dehydrated MIL-88 was dispersed in 30 mL of anhydrous
toluene. 1.5 mmol TPA was added, and the mixture was stirred
and refluxed for 12 h at 110 °C. The solid product was
recycled by filtration, washed with deionized water and
anhydrous ethanol three times, and then dried under vacuum
at 80 °C overnight.

2.2.3. Synthesis of XPt/TPA-MIL-88 (X = 0.8, 1.2, 1.6%). 0.5
g of vacuum-dried TPA-MIL-88 was dispersed in 30 mL of
anhydrous ethanol, and the required amount of H2PtCl6−
ethanol solution (0.0064 g/g) was added to the mixture and
stirred at 80 °C under a continuous nitrogen flow for 10 h.
After cooling to room temperature, the product was washed
with ethanol several times. Finally, the product was dried at 80
°C for 24 h. For comparison, 1.2%Pt/MIL-88 catalysts were
prepared by the same method described above. The
preparation process is shown in Scheme 1.

Scheme 1. Flow Chart of Catalyst Preparation
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2.3. Characterization. Powder X-ray diffraction (XRD)
analyses were carried out on a Rigaku Ultima IV system. Cu
Kα was used as a radiation at a current of 40 mA and voltage of
40 kV. The 2θ angles were scanned from 3 to 30 at 10°·min−1.
The functional groups, chemical structures, and bonding

characteristics of the prepared materials were analyzed on a
Thermo Nicolet-6700 Fourier transform infrared (FT-IR)
spectrometer. The samples for FT-IR characterization were
prepared by the KBr compression method: 0.1 mg of the
sample to be tested was mixed with 200 mg of chemically pure
KBr, finely ground, and then pressed, with a wave number
range of 500−4000 cm−1. Nitrogen adsorption−desorption
isotherms were performed on a BSD-PM2 instrument at −196
°C. Before nitrogen physisorption measurement, the species
were degassed under vacuum at 100 °C for 12 h. The pore
volume desorption of the resulting catalyst was evaluated using
the Barrett−Joyner−Halenda (BJH) method. The micro-
morphology and particle size of the materials were
characterized using a Regulus 8100 field emission scanning
electron microscope. The energy-dispersive spectrometry
(EDS) mapping test was also performed using the scanning
electron microscope to determine the elemental composition
and spatial distribution in the samples. The samples are fixed
on a sample stage and gold-sprayed.
Transmission electron microscopy (TEM) analysis was

performed on a JEM-1400 (Japan Electronics Co.). Prior to
test, the samples were added to the ethanol solvent with an
ultrasonic dispersion for 30 min and deposited on carbon-
coated copper grids. X-ray photoelectron spectra (XPS) were
recorded on an AXIS UltraDLD (U.K.) with an Al Kα (X-ray)
lamphouse. Binding energies of C 1s at 284.8 eV were used as
a reference. Actual Pt loading of catalytic materials was
determined using inductively coupled plasma (ICP) analysis
equipped with an Agilent model ICP-OES730.
2.4. Catalytic Performance Evaluation. The hydro-

silylation reaction was carried out as follows: the catalyst (XPt/
TPA-MIL-88 or 1.2%Pt/MIL-88) and different amounts of
allyl glycidyl ether were added to a 50 mL three-neck flask and
stirred at 80 °C for 10 min. Then, 0.036 mol of
heptamethyltrisiloxane was added slowly dropwise and the
reaction mixture was heated to a preset temperature and kept
for some time. After reaction, the product and catalyst were
separated by centrifugation (8000 rpm, 8 min, 25 °C). The
hydrosilylation reaction for other olefins were carried out in
the same way.

The liquid products were analyzed via a GC-2010 gas
chromatograph (GC-2010, Shimadzu), equipped with a flame
ionization detector (FID) and a Rtx-5 capillary column (30 m
× 0.25 mm × 0.25 μm). The conversion of heptamethyl-
trisiloxane was calculated using the following equation

= ×M M Mconversion (%) ( )/ 100%1 2 1

where M1 is the initial addition of HTE (g) and M2 is the mass
of HTE after reaction (g).
The hydrogen spectra of the products were determined on a

BRUKER AV600 (Switzerland) NMR instrument using
deuterated chloroform (CDCl3) as a solvent. For the recycling
experiment, the catalyst was washed with anhydrous ethanol
and dried at 80 °C for 12 h under vacuum. Then, the dried
catalyst was reused in the next run.

3. RESULTS AND DISCUSSION
3.1. Catalytic Hydrosilylation of Alkenes. Numerous

studies have shown that platinum is an effective catalyst for
olefin hydrogenation reactions.36,37 Herein, the abovemen-
tioned catalysts are used to catalyze the hydrosilylation
reaction with HTE and AGE as substrates. Effects of different
reaction conditions on the catalytic activity of XPt/TPA-MIL-
88 were investigated. The catalytic results are presented in
Table 1. Under the same catalytic conditions, the 1.2%Pt/
TPA-MIL-88 catalyst outperformed the 0.8%Pt/TPA-MIL-88
and basically reached the same level of 1.6%Pt/TPA-MIL-88
catalysts (Table 1, entries 1−3). The effect of reaction
temperature on the catalytic activity was examined using the
preferred sample 1.2%Pt/TPA-MIL-88. An increase in temper-
ature from 90 to 100 °C promoted the HTE conversion by
5.49%; when the temperature was reacted at 110 °C, there was
a slight enhancement in HTE conversion (growth margin:
1.26%), but the product after the reaction changed from
colorless to yellow. It is believed that the color change caused
by the increase inside reactions was associated with the high
temperature. Therefore, the optimal catalytic temperature for
the hydrosilylation reaction is set at 100 °C. Based on the
above conditions, the effect of different molar ratios of reaction
substrates (AGE/HTE) on the conversion of HTE is
investigated. The conversion is only 86.7% at a molar ratio
of 1:1, and the conversion is significantly higher and closer at
both molar ratios of 1.1:1 and 1.2:1 (Table 1, entries 6, 2, 7).
The optimum molar ratio of 1.1:1 is chosen considering the
practical application.

Table 1. Hydrosilylation Conversion of HTE under Different Reaction Conditions

entry catalyst catalyst amounta (wt %) temperature (°C) AGE (mol) conversion (%)

1 0.8%Pt/TPA-MIL-88 1.0 100 0.0396 76.37
2 1.2%Pt/TPA-MIL-88 1.0 100 0.0396 90.42
3 1.6%Pt/TPA-MIL-88 1.0 100 0.0396 90.63
4 1.2%Pt/TPA-MIL-88 1.0 90 0.0396 84.93
5 1.2%Pt/TPA-MIL-88 1.0 110 0.0396 91.68
6 1.2%Pt/TPA-MIL-88 1.0 100 0.0360 86.77
7 1.2%Pt/TPA-MIL-88 1.0 100 0.0432 91.34
8 1.2%Pt/TPA-MIL-88 0.4 100 0.0396 78.49
9 1.2%Pt/TPA-MIL-88 0.8 100 0.0396 88.47
10 1.2%Pt/TPA-MIL-88 1.2 100 0.0396 91.15
11 MIL-88 1.0 100 0.0396 1.57
12 TPA-MIL-88 1.0 100 0.0396 1.54

aCatalyst amount: the mass ratio of catalyst to reactants.
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Then, the effect of catalyst amount on the hydrosilylation
reaction was studied. Compared to 0.8 wt % dose (HTE
conversion: 88.47%), HTE conversion of 1.0 and 1.2 wt %
dose increased by 1.95 and 2.68%, respectively (Table 1,
entries 9, 2, 10). This is due to the initial saturation state of the
catalytic center required for the unit substrate reached at a
dose of 0.8 wt %. Based on the above results, a dose of 1.0 wt
% is set as the optimal catalyst dose for the reaction.
3.2. Structural Properties. As shown in Figure 1, the

main peaks observed in XRD patterns are in good agreement

with previous reports,38,39 corresponding to (101), (102),
(202), and (211) crystallographic planes, which indicates the
good crystallinity of the synthesized MIL-88. No peaks
attributed to Pt species are observed for all samples. When
Pt was loaded on unmodified MIL-88, the XRD pattern of
1.2%Pt/MIL-88 showed a significant shift in the peak positions
and a widening of peak half-width. This suggests that the acidic
environment of the Pt source (chloroplatinic acid) may be
detrimental to the metal−organic skeleton.40 After grafting
TPA on the metal−organic backbone of MIL-88 and adding
Pt, none of the peak positions change significantly in 1.2%Pt/
TPA-MIL-88, indicating that the crystal structure of MIL-88
can be well maintained during the grafting and loading of Pt.
Namely, the modifier can be confirmed to have a positive effect
on stabilizing the structure of the support during the loading
process.
The synthesized precursors and catalyst samples were

investigated by FT-IR spectroscopy. The general features of
FT-IR spectra (Figure 2) for these samples are almost identical
to those of reported MIL-88(Fe).41,42 It can be found that the
stretching vibration peak belonging to C�O at 1600 cm−1 of
1.2%Pt/MIL-88, which comes from an organic ligand, is
significantly weakened comparing with MIL-88. As consistent
with the XRD analyses, it can be confirmed that the loading of
Pt on unmodified MIL-88 causes framework collapse of MIL-
88. Comparison of the spectra reveals several new character-
istic peaks for TPA-MIL-88 and 1.2%Pt/TPA-MIL-88 due to
grafting of TPA. A weak peak at 2940 cm−1 belongs to the
asymmetric stretching vibration of −CH2−CH2−, and sharp
peaks at 1120 and 690 cm−1 are assigned to the stretching
vibration of Si−O−C and Si−C bonds, respectively.43 The

appearance of these characteristic peaks indicates that TPA
successfully modified the MIL-88. Furthermore, the FT-IR
spectrum of TPA (Figure S1) shows the original stretching
vibration peak of Si−O−C at 1074 cm−1, while the peak
migrates to a higher wave number after grafting and loading Pt.
It demonstrates that the self-condensation of silicohydroxy is
formed by the methoxyl end of the silane with the hydroxyl
group on the support.44 There is no observable stretching
vibration peak of the −NH− group (3392 cm−1) both in FT-
IR spectra of TPA-MIL-88 and 1.2%Pt/TPA-MIL-88, which
may be attributed to the broad strong intensity of hydroxyl
groups enwrapping on catalyst samples.
The microscopic structures of the prepared materials were

detected by scanning electron microscopy (SEM) and
transmission electron microscopy (TEM). Figure 3a shows a
typical low-magnification SEM image of the bare MIL-88.
MIL-88 is composed of a large number of spindle-like
structures with lengths of 0.5−0.7 μm. After direct loading of
Pt on the support MIL-88, the obtained 1.2%Pt/MIL-88 shows
obvious crystalline disruption and the particle size is no longer
uniform (Figure 3b). After grafting TPA onto MIL-88 (TPA-
MIL-88, Figure 3c) and loading Pt (1.2%Pt/TPA-MIL-88,
Figure 3d), the crystalline morphology does not change
significantly and crystal particle size remains essentially the
same as that of MIL-88. It can be speculated that a protective
layer was formed by condensation of the OH group during
TPA grafting to MIL-88.45,46 According to EDS mapping
(Figure 3e), it is confirmed that the loaded Pt species was
uniformly distributed on the catalyst. A very small amount of
nanoparticles of Pt species can also be observed at the edge of
the crystalline support in the TEM image (Figure 3f).
The surface area and porous structure of the samples were

analyzed using a N2 adsorption−desorption instrument, and
the results are shown in Figure 4 and Table 2. Comparing with
MIL-88, the specific surface of 1.2%Pt/MIL-88 decreased by
39.5 m2·g−1 and the pore size increased conversely, revealing a
partial framework collapse of the unprotected MIL-88 during
the loading of Pt. After modification with TPA, the specific
surface reduced to 92 m2·g−1, and the pore volume and
diameter are decreased to 0.13 m3·g−1 and 6.4 nm, respectively.
This remains essentially the same as 1.2%Pt/TPA-MIL-88 after
further loading with chloroplatinic acid because the modifier

Figure 1. XRD patterns of synthesized precursors and catalyst
samples.

Figure 2. FT-IR spectra of synthesized precursors and catalyst
samples.
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molecules occupy a finite volume, which can partially obstruct
the pores. The above analysis revealed that the crystal structure
of MIL-88 can be protected by the TPA modification
treatment, which was consistent with the analysis results of
previous characterization.
X-ray photoelectron spectroscopy (XPS) measurements

were carried out to elucidate the surface composition and
chemical states of various samples. As shown in Figure S2, the
presence of N and Si elements in the XPS spectra of TPA-

MIL-88 indicates that MIL-88 was modified by TPA
successfully. The XPS spectrum (Figure 5a) of TPA-MIL-88
displays that the binding energy of N 1s is 399.3 eV, which
demonstrates the formation of pyridine nitrogen.47 The N 1s
XPS spectrum of 1.2%Pt/TPA-MIL-88 in Figure 5b shows a
binding energy of 400.2 eV, which identifies the formation of
pyrrolic nitrogen after Pt loading. The results indicate that the
coordination environment of Pt should be ascribed to Pt−N
(pyrrolic) rather than Pt−N (pyridine) coordination.48
As shown in Figure 5c, to determine the different chemical

states of Pt species, the Pt 4f XPS spectrum of 1.2%Pt/TPA-
MIL-88 were fitted for two low-frequency bands (Pt 4f7/2) and
high-frequency bands (Pt 4f5/2) of Pt4+ and Pt2+. The binding
energies of Pt2+ are 72.5 and 75.6 eV, and those of Pt4+ are 75.0
and 78.5 eV, suggesting that the Pt species of 1.2%Pt/TPA-
MIL-88 is ionic. Because of promoting the electron transfer by
pyrrolic-N, the binding energy of Pt in 1.2%Pt/TPA-MIL-88 is
negatively shifted, which demonstrates the presence of the
interaction between the Pt ion and pyrrolic-N.49,50 Compared
with the metallic platinum catalyst, since the positron structure
of Pt is generated prior to the catalytic reaction, it is
contributed to an efficient reaction process with a short
induction period in terms of the reaction mechanism and
kinetics.51

The reusability and stability of a heterogeneous catalyst is
important for industrial applications. The catalyst of the
present work can be collected by a simple centrifugal
separation operation, followed by several washes with ethanol
and then vacuum-drying for cyclic testing. As shown in Figure
6, the HTE conversion of the unmodified 1.2%Pt/MIL-88
decreases by 15.18% in the second cycle and even by 62.10%
in the third cycle. However, the TPA-grafted catalyst (1.2%Pt/
TPA-MIL-88) has a very stable catalytic performance after a
series of consecutive runs that the HTE conversion can be
maintained at about 86% after five cycles. The slight decrease
in HTE conversion of 1.2%Pt/TPA-MIL-88 can be attributed
to the inevitable mass loss of the catalyst during the recycling
process.

Figure 3. SEM images of MIL-88 (a), 1.2%Pt/MIL-88 (b), TPA-
MIL-88 (c), and 1.2%Pt/TPA-MIL-88 (d); EDS mapping spectra
(e); and TEM images (f) of 1.2%Pt/TPA-MIL-88.

Figure 4. N2 adsorption/desorption isotherms (a) and DFT pore size distributions (b) of MIL-88, 1.2%Pt/MIL-88, TPA-MIL-88, and 1.2%Pt/
TPA-MIL-88.

Table 2. Surface and Pore Structure of the Catalysts

samples
SBET
(m2·g−1)

pore volume
(cm3·g−1)

average pore
diameter (nm)

MIL-88 157.7 0.262 7.1
1.2%Pt/MIL-88 118.2 0.251 10.1
TPA-MIL-88 92.7 0.129 6.4
1.2%Pt/TPA-MIL-88 79.2 0.119 6.3
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In addition, the recycled catalysts were characterized by
XRD, ICP, and XPS. The XRD analysis (Figure 1) shows that
the crystallinity of the recyclable catalyst is essentially the same
as that of the initial one. As shown in Table 3, the ICP test
results display that the Pt loading amount of recycled 1.2%Pt/
TPA-MIL-88 is 1.03 wt %, which is slightly lower than that of
pristine 1.2%Pt/TPA-MIL-88 (1.23 wt %). By comparison, the
Pt loading amount in unmodified 1.2%Pt/MIL-88 appears to
decrease significantly (from 1.25 to 0.59 wt %). These results
indicate that the Pt species in 1.2%Pt/TPA-MIL-88 with the
modification of TPA can be more stable, which is attributed to
the chelating effect of the pyrrolic nitrogen structure formed
during the Pt loading process.48 XPS (Figure 5d) analysis of

the recycled catalyst shows that Pt species can remain
positively charged after several cycles.
3.3. Catalytic Hydrosilylation of Different Olefins.

Furthermore, the hydrosilylation reactions of different olefins
are performed to investigate the versatility of 1.2%Pt/TPA-
MIL-88. As shown in Table 4, the conversion of the silane
reaches 91.98% in the hydrosilylation reactions of styrene. In
the hydrosilylation reactions of 1-dodecene, 1-tetradecene, and
1-hexadecene, the conversions of silane exceed more than 86%.
Obviously, the catalytic results are satisfactory, although the
conversion varied with the growth of the olefin molecular
chain.

4. CONCLUSIONS
In summary, a homogeneous catalyst 1.2%Pt/TPA-MIL-88
was facilely prepared. After modification of MIL-88 with TPA,
the endpoint of the silane modifier was connected with the
support by self-condensation of the OH group to enhance the
stability of TPA-MIL-88. During the loading process, owing to
the imino group of TPA, Pt species was immobilized by stable
Pt−N (pyrrolic) coordination and well dispersed on TPA-
MIL-88. Additionally, the 1.2%Pt/TPA-MIL-88 catalyst is
liable to be recycled by a simple centrifugal separation.
Therefore, 1.2%Pt/TPA-MIL-88 has excellent catalytic proper-
ties, and the conversion of silane reached 90.42% and remained

Figure 5. High-resolution N1s XPS spectra of TPA-MIL-88 (a) and 1.2%Pt/TPA-MIL-88 (b); high-resolution Pt 4f XPS spectra of 1.2%Pt/TPA-
MIL-88 (c) and recycled 1.2%Pt/TPA-MIL-88 (d).

Figure 6. Reusability of 1.2%Pt/TPA-MIL-88 and 1.2%Pt/MIL-88 in
the catalytic hydrosilylation.

Table 3. Theoretical and Actual Loading Amounts of Pt in
Various Catalysts

catalysts
theoretical loading

(wt %)
actual loading
(wt %)

1.2%Pt/TPA-MIL-88 1.2 1.23
recycled 1.2%Pt/TPA-MIL-88 1.2 1.03
1.2%Pt/MIL-88 1.2 1.25
recycled 1.2%Pt/MIL-88 1.2 0.59
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above 86% after five cycles of the catalyst. These results
demonstrate that 1.2%Pt/TPA-MIL-88 has great potential in
the industrial production of organosilicon compounds.
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