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Abstract

Background: Over the past decade, flow cytometric CFSE-labeling experiments have gained considerable
popularity among experimentalists, especially immunologists and hematologists, for studying the processes of cell
proliferation and cell death. Several mathematical models have been presented in the literature to describe cell
kinetics during these experiments.

Results: We propose a multi-type age-dependent branching process to model the temporal development of
populations of cells subject to division and death during CFSE-labeling experiments. We discuss practical
implementation of the proposed model; we investigate a competing risk version of the process; and we identify
the classes of cellular dependencies that may influence the expectation of the process and those that do not. An
application is presented where we study the proliferation of human CD8+ T lymphocytes using our model and a
competing risk branching process.

Conclusions: The proposed model offers a widely applicable approach to the analysis of CFSE-labeling
experiments. The model fitted very well our experimental data. It provided reasonable estimates of cell kinetics
parameters as well as meaningful insights into the processes of cell division and cell death. In contrast, the
competing risk branching process could not describe the kinetics of CD8+ T cells. This suggested that the decision
of cell division or cell death may be made early in the cell cycle if not in preceding generations. Also, we show
that analyses based on the proposed model are robust with respect to cross-sectional dependencies and to
dependencies between fates of linearly filiated cells.

Reviewers: This article was reviewed by Marek Kimmel, Wai-Yuan Tan and Peter Olofsson.

Background
Carboxyfluorescein succinimidyl ester (CFSE)-labeling
experiments have become a standard assay in the analy-
sis of cell proliferation kinetics since Lyons and Parish
[1] developed the technique. The assay has become
widely used to investigate the processes of division and
death of activated lymphocytes [2-13]. The popularity of
this flow cytometry-based assay rests on the ability of
the dye CFSE to track how many times any individual
cell has divided since the beginning of the experiment.
Using additional fluorescent markers attached to the cell
membrane, to intra-cellular proteins, or to the nucleus,
other cellular properties may be identified. For instance
live and dead cells can be distinguished from each other
using TOPRO-3, a fluorescent dye that binds to the

DNA and RNA inside the plasma membrane of dead
cells. The information obtained by combining multiple
markers offers a means with unprecedented power to
further advance our understanding of the most basic
cellular functions (proliferation, death, and differentia-
tion) and how these functions may be optimized or
modulated by an external signal such as a treatment.
The events of interest (division, differentiation, or death
of individual cells) cannot be observed during CFSE-
labeling experiments, and mathematical modeling offers
an attractive approach to the quantitative analysis of cell
kinetics in this setting. A number of mathematical mod-
els have been proposed to describe the proliferation and
death of cells in successive generations, as observed dur-
ing CFSE-labeling experiments. The utility of stochastic
models has been investigated in several publications. For
instance, Hawkins et al [9] proposed a model which
they referred to as a cyton; Yates et al [11] considered a
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discrete time branching process; Hyrien and Zand [12]
considered the utility of age-dependent branching pro-
cesses; Lee and Perelson [13] investigated a Smith-Mar-
tin model. These models present various limitations. For
example, the cyton model is formulated through a com-
peting risk approach under which the probability of divi-
sion is completely specified by the distributions of the
time to division and of the time to death. The process
proposed by Hyrien and Zand [12] did not include cell
death because additional issues had to be addressed.
One goal of the present paper is to propose a general
stochastic model - built on the branching process pro-
posed by Hyrien et al [14] - that mitigates these limita-
tions. The proposed model contains many of the
existing models as particular cases. For an overview on
branching processes, we refer to [15-17].

A motivating example: proliferation of CD8+
T lymphocytes
CD8+ T lymphocytes are responsible for killing cells
infected with viruses. Such killing requires recognition
of a foreign marker, typically a viral protein fragment
presented on the cell surface by the Major Histocompat-
ibility Complex (MHC) Class I proteins, which is then
recognized by the cognate T cell receptor expressed on
the surface of the CD8 T cell. CD8 T cells normally per-
sist in a resting, non-dividing state in the lymph nodes,
spleen, peripheral blood and tissues, until they become
activated. Activation occurs with the binding of the cog-
nate T cell receptor to the MHC Class I protein con-
taining the foreign peptide fragment, along with several
other accessory signals. Once activated, CD8 T cells
multiply rapidly, usually within a lymph node, spleen, or
mucosal associated lymphoid tissue. After a moderate
but limited number of divisions, the activated CD8 T
cells cease dividing. Some of these activated cells stay in
the lymph node to become resting memory CD8 T cells,
which can be activated again upon re-exposure to the
viral antigen, for instance with re-infection. The majority
of CD8 T cells, however, stop dividing, exit the lymph
node, travel to the site of infection or inflammation in
order to kill infected cells, and most cells ultimately die
within several days. The effectiveness of CD8+ T cells in
controlling the spread of an infection depends on their
proliferation rate in relation to the rate at which the
virus can reproduce. In particular, critical parameters
for the success or failure of an immune response in con-
trolling infection for a particular viral pathogen include:
the time to activation, the time to division and the prob-
ability of division of activated CD8+ T cells. Multiple
biological factors may modulate these parameters,
including the type and strength of activating signals, or
the local presence of cytokines which improve the effi-
ciency of the division of CD8+ T lymphocytes, to name

a few. The methods proposed in this paper may be used
to quantify the effects of stimuli on these parameters
using CFSE-labeling experiments.

The principle of CFSE-labeling experiments
CFSE is a fluorescent dye that was first used by Lyons
and Parish [1] as a means to track the division history
of individual cells. In a typical CFSE-labeling experi-
ment, a pool of cells is isolated, either by extraction
from blood, a tissue or from a cell line, and then pulse-
labeled through brief incubation in a CFSE-containing
solution. A fraction of the dye binds non-specifically to
intra-cellular proteins, and the remaining unbound dye
solution is washed out. The cells are aliquoted into
small wells in standard 96-well tissue culture plates at
concentrations ranging typically between 104 - 106 cells
per 200 μliter well. In addition, in experiments involving
lymphocytes, a stimulus is added to the culture medium
in each well so cells may engage in division. The cells
are then sampled at various times after the start of the
experiment.
The amount of CFSE contained in individual cells can

then be quantified by flow cytometry, a technique by
which fluorescently tagged single cells are suspended in
a fluid stream, passed through an optical cell where a
laser excites the CFSE dye, and a photomultiplier mea-
sures the total fluorescence emission from the dye in
the (biological) cell. This technique allows measurement
of fluorescence in up to 107 individual cells in a single
sample, with multiple samples run for a single
experiment.
When a cell divides, the CFSE molecules that it con-

tains are partitioned in approximately equal amount
between each daughter cell, causing the CFSE-fluores-
cence intensity to decrease by a factor of two in each
generation. When the histogram (or any other estimate
of the probability density function (p.d.f.)) of the log-
transformed CFSE-fluorescence intensity is plotted, the
identifiable peaks are indicative of the generation num-
bers, with the peak with highest fluorescence intensity
corresponding to cells of first generation (that is, undi-
vided cells), the second highest peak corresponding to
cells of second generation (cells having divided once),
etc. The p.d.f. of the CFSE-fluorescence intensity evolves
over time in accordance with the kinetics of the cells.
Examples of CFSE-labeling data are displayed in panels
A-B of Figure 1. The data are dependent because the
fluorescence intensities of cells that arise from the same
ancestor cell are all related to the amount of CFSE con-
tained in the common parent cell (see [12]).
Under typical experimental conditions, cells also

undergo apoptosis or programmed cell death. When a
cell dies, its plasma membrane becomes permeable to
certain classes of fluorescent dyes. TOPRO-3 is one
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such dye that binds to the RNA and DNA, which nor-
mally remain shielded in living cells by the intact plasma
membrane. Similarly to CFSE, TOPRO-3 emits light
upon excitation by a laser. The intensity of the resulting
fluorescence can be measured by flow cytometry, and
used to distinguish between live and dead cells. Thus,
by using simultaneous CFSE and TOPRO-3 labeling on
the same cells, one can separate live and dead cells in
multiple generations of divided cells, as shown in panel

C of Figure 1. This is accomplished by using a thresh-
old: cells are declared dead if they fall below this thresh-
old, and live otherwise. This approach is reasonable here
since the fluorescence intensities of live and dead cells
appear to have little overlap.
Dead cells in vitro eventually disintegrate or fragment.

The scattering properties of the fragments allow distin-
guishing them from intact, non-fragmented cells. The
important implication of disintegration is that the

Figure 1 Data collected during CFSE-labeling experiments. Kernel density estimates of the log-transformed CFSE fluorescence intensity in
live (Panel A) and in dead (Panel B) CD8+ T lymphocytes 64 hours after the start of the experiment. Each identifiable peak corresponds to one
generation. The peaks are less distinguishable in dead cells than in live cells. Panel C shows a scatterplot of the log-transformed TOPRO-3
fluorescence intensity vs. the log-transformed CFSE fluorescence intensity in thousands of individual CD8+ T cells; the pool of cells expressing
high TOPRO-3 are the dead ones, and the remaining cells are considered as alive. Panel D: scatterplots of side and forward scatters; examination
of the plot enables to distinguish between cells, debris, and beads as shown.
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absolute number of cells that have died by any given
time is not experimentally measurable, and models
should include this feature.
For sampling and analysis, it is often the case that mul-

tiple wells are pooled together so each experimental
group contains cells in sufficient number for the mea-
surements to be taken. The cells are then washed, incu-
bated with TOPRO-3, and washed again. An
approximately known number of fluorescent beads is
also added to the cell suspension. These beads are used
to back-calculate the total number of cells in an entire
cell group. Each experimental group thus contains a pool
of cells and beads run on the low cytometer. A number
of “events” are collected for each experimental group,
generally 105 - 106 events, with an event being defined as
a set of flow cytometric measurements collected on a sin-
gle object (that is, a cell, a bead or debris). Each set of
measurements includes two parameters of light scattering
properties (forward scatter - FSC, and side scatter - SSC)
and the fluorescence intensity of CFSE and TOPRO-3
(and possibly of additional protein markers labeled by
fluorescent dyes as well). Bivariate plots of the light scat-
tering properties of the objects can then be used to dis-
tinguish between beads, cells and debris, and to count
the number of each (panel D of Figure 1).
Let ZC

# denote the total number of cells contained in
any given group of wells at time of sampling, and let
N denote the number of beads added to these cells.
Only a fraction of the pool of cells and beads in any
experimental group is sampled by the flow cytometer.
Various sampling strategies exist. One of them consists
in letting the flow cytometer sample objects until a pre-
specified number of beads, say n , has been recaptured.
This sampling scheme is known as a capture-recapture
experiment with single-mark release [18]. Let nC

denote the number of cells sampled along with
the n recaptured beads. The total number of cells
in the experimental group can be estimated as

Z n N n
∧

=   

#

/ , which is the Petersen estimator [18].

Results
A multi-type age-dependent branching process
This section presents a model of the temporal develop-
ment of a cell population through successive generations
(as observed during CFSE-labeling experiments). Our
model accounts also for the processes of division, death
and disintegration possibly encountered by every cell. It
is built using an extension of the multi-type Bellman-
Harris branching process formulated by Hyrien et al
[14] (see also [19-21]) and which allows the distributions
of the time to cell transformation (e.g., division or
death) to depend on the transformation ultimately
undergone by the cell. It is formulated as a multi-type
age-dependent branching process where the type of
each cell is defined by two characteristics: firstly, a gen-
eration, defined as the number of times the cell has
divided since the start of the experiment +1; and sec-
ondly, a status that corresponds to whether the cell is
alive or dead. Any cell of given generation g and status s
shall be referred to as a type-(g, s) cell. Every cell ulti-
mately transforms (that is, divides, dies, or disintegrates,
depending on the type of the cell), and we shall refer to
the time that is necessary for any cell to complete its
transformation as its lifespan, irrespective of the nature
of the transformation (division, death or disintegration).
Likewise, offspring shall refer to the pool of new cells
resulting from the transformation of the cell, whether
these new cells are alive or dead.
The structure of the proposed branching process is

schematized in Figure 2. It begins with a random

Figure 2 Structure of the general model. Diagram showing the structure of the general branching process model.
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number N0 of initiator cells, all alive and of generation 1
(that is, type-(1,1) cells). Upon completion of its lifespan,
every live cell (s = 1) of generation g (g = 1,2...) will
either divide into two new live cells of generation g + 1
with probability pg (equivalently said, it will produce two
type-(g + 1, 1) cells), or it will die and turn into a single
type-(g, 0) cell with probability 1 - pg. Upon completion
of its lifespan, every dead cell (s = 0) of generation g (g =
1,2...) will ultimately disintegrate and disappear from the
population.
Let the random variable (r.v.) ξg,1 denote the transfor-

mation undergone by any live cell of generation g, with
ξg ,1 = 1 with probability pg = P(ξg ,1 = 1) if the cell
divides, and ξg,1 = 0 with probability 1 - pg if the cell
dies. Past experimental studies [14,19,21] and the analy-
sis of our experimental data (see below) suggested that
the distribution of the cell lifespans could differ substan-
tially depending upon the type of transformation under-
gone by the cells. In some instances, the time required
for the cells to reach division, calculated from their
birth, could be (stochastically) shorter or longer than
their time to death or than their time to differentiation
when such a possibility exists. Taking this finding as a
generally applicable principle, we define two cumulative
distribution functions (c.d.f.) for each generation of live
cells: the first one, denoted as F t P tg g( ) ( ),= ≤ 1

1 , is the
c.d.f. of the time to division  g ,1

1 ; the second one,
denoted as G t P tg g( ) ( ),= ≤ 1

0 , is the c.d.f. of the time
to death  g ,1

0 . These distributions are possibly dissimi-
lar. The lifespan of any live cell of generation g, denoted
as τg,1, can be represented as
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and the c.d.f. of τg,1 is therefore the mixture pgFg(t) + (1 -
pg)Gg(t). In assuming this formulation for the distribution
of τg,1, we allow the lifespan and the offspring of any live
cell to be dependent, thereby extending the Bellman-Har-
ris branching process to which our model reduces if the
conditional distributions are all identical; that is, if Fg(t) =
Gg(t) for all g = 1,2.... Lastly, the time to disintegration of
any dead cell of generation g is modeled as a r.v. τg,0 with
c.d.f. Hg(t) = P(τg,0 ≤ t), and every cell evolves indepen-
dently of every other cell. We shall see later on that this
assumption can be somewhat relaxed.

Let Zg,s(t) denote the number of type-(g, s) cells in the

population at any time t. Write Z t Z tg s
sg

#
,( ) ( )=

==

∞ ∑∑ 0

1

1

for the total number of cells, and ∏g,s(t)= Zg,s(t)/Z
#(t) for

the proportion of type-(g, s) cells, both at time t. Define
the associated conditional expectations, mg,s(t) = E{Zg,s

(t)|Z#(0) = 1} and m#(t) = E{Z#(t)|Z#(0) = 1}, and intro-
duce the conditional expectation of the proportion of
type-(g, s) cells at time t, given the population has not
died out by time t: πg,s(t) = E{∏g,s(t)|Z

#(t) > 0}. Define
the convolution of the c.d.f. of the times to division of
the first g generations F t F F tg g

(*)( ) * * ( )= 1  , where

F F t F t x dF xg g g g

t

1 2 1 2
0

* ( ) ( ) ( )= −∫ denotes the convolu-

tion of two c.d.f.s Fg1 and Fg2. By convention, we shall
write F t t0 1 0(*)( ) ,= ∀ ≥ .
Let u = (ug,s; s = 1,2; g = 1,2,...), and introduce the

probability generating function

Ψ g s l r
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where 1{·} denotes the indicator function. It is not dif-
ficult to show that the functions Ψg,s(u, t), s = 1, 2 and
g = 1,2..., satisfy the set of functional equations

Ψ Ψg g g g g g g g gt u p F t p G t p t x dF, , ,( , ) { ( ) ( ) ( )} ( , ) (1 1 1 1
21 1u u= − − − + −+ xx

u p G t H G t

t

g g g g g

)

( ){ ( ) * ( )},,

0

0 1

∫
+ − −

and

Ψ g g gt u H t, ,( , ) { ( )},0 0 1u = −

respectively. By differentiating both sides of the above
equations with respect to u, and using a little algebra,
one can show that the expected number of live cells and
of dead cells of generation g at time t are respectively
given by

m t p p F t p F t p F Gg
g

g g g g g g g,
(*) (*) (*)( ) ( ) ( ) ( ) * (1

1
1 1 1 12 1= − − −−

− − − tt) ,{ } (1)

and

m t p p p F G t F G H tg
g

g g g g g g g,
(*) (*)( ) ( ){ * ( ) * * ( )}.0

1
1 1 1 12 1= − −−

− − − (2)

By the Law of Large Numbers and the independence
assumption, we have (as N0 gets large) that Zg,s(t)/N0 =
mg,s(t) + op(1) and Z#(t)/N0 = m#(t) + op(1), so that ∏g,s

(t) = mg,s(t)/m
#(t) + op(1). We shall therefore approxi-

mate the conditional expectation πg,s(t) by the ratio of
the expectations

 g s g st m t m t,
*

,
#( ) ( ) / ( ).= (3)
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This approximation is appropriate and justified for
practical purpose because the number of cells at time
0 in CFSE-labeling experiments is typically very large
(N0 ≫ 105 or 106).
One of the primary endpoints measured during

CFSE-labeling experiments is the CFSE-fluorescence
intensity of individual cells. As mentioned earlier, the
distribution of this endpoint changes over time in
accordance with the kinetics of the cell population. We
relate our branching process to the dynamic of this
marker by proceeding as follows. Let Y(t) denote the
log-transformed CFSE-fluorescence intensity measured
in any given cell at time t, and let f(y; t) denote the
marginal p.d.f. of Y(t). Using the Law of Total Prob-
ability this p.d.f. can be expressed as a mixture
f y t t f y tg s g ssg
( ; ) ( ) ( ; ), ,= ==

∞ ∑∑ 
0

1

1
, where fg ,s(y; t)

denotes the p.d.f. of the CFSE-fluorescence intensity of
type-(g, s) cells at time t. We shall therefore approxi-
mate f(y; t) by the mixture distribution

f y t t f y tg s g s

sg

*
,

*
,( ; ) ( ) ( ; ),=

==

∞

∑∑ 
0

1

1

(4)

with  g s t,
* ( ) given as in equation (3). Let μg ,s(t) =

∫Ryfg,s(y; t)dy denote the mean log-CFSE fluorescence
intensity of any cell of generation g and status s. Under
the assumption that the CFSE-fluorescence intensity of
any cell is halved at each division, we have that μg,s(t) =
μg+1,s(t) + log 2.

A competing risk branching process
A particular case of our model arises naturally from a
competing risk approach. Let lg,0 and lg,1 denote two
independent r.v.s with respective c.d.f.s Lg,0 and Lg,1.
One may think of lg,0 and lg,1 as two latent, competing
failure times. The smaller lg,s determines both the life-
span of the cell and whether the cell divides or dies;
that is, τg,1 = min{lg,0, lg,1}, and ξg,1 = 1 iff lg,1 ≤ lg,0, or
ξg,1 = 0 iff lg,0 ≤ lg,1. Clearly, the probability of division
is given by

p Pg g g= ≤( )., , 1 0 (5)

Notice that the time to division  g ,1
1 is equal to lg,1 con-

ditional on the event {lg,1 ≤ lg,0}, and, similarly,  g ,1
0 = lg,0

conditional on {lg,0 ≤ lg,1} for the time to death. The c.d.f.
s of the time to division and of the time to death are there-
fore given by Fg(t) = P(lg,1 ≤ t|lg,1 ≤ lg, 0) and Gg(t) = P
(lg,0 ≤ t|lg,0 ≤ lg, 1), and are related to Lg,0 and Lg,1 through
the identities

F t L x dL x G t L x dLg g g

t

g gpg pg
( ) { ( )} ( ) ( ) { ( )}, , ,= − = −∫ −

1 1
1

1 10 10 1and gg

t
x, ( ).00∫ (6)

This competing risk process is an age-dependent lin-
ear birth-and-death process that was proposed by
Waugh [22,23]. Hawkins et al’s cyton model [9] was
built in that spirit. This formulation is theoretically
appealing, but the resulting process has some important
limitations when applied to cell biology.
Specifically, the model assumes that the decision made

by any cell to divide or to die and the actual event (divi-
sion or death) occur simultaneously. This assumption
would not be appropriate if any cell needs additional
time to complete its transformation from the time its
decision to divide or to die has become irreversible (e.g.,
the time to complete mitosis or undergo programmed
cell death). Furthermore, the intricate relationship
induced by the latent r.v.s between the probability of divi-
sion, the distributions of the time to division, and that of
the time to death may prevent the resulting process from
capturing salient features of cell proliferation kinetics.
As an illustration, consider the case where the latent

r.v.s lg,0 and lg,1 are exponentially distributed. Denote
the parameters of these distributions by θg,0 and θg,1,
respectively. It follows from equations (5) and (6) that pg
= θg,1/(θg,0 + θg,1) and Fg(t) = Gg(t) = 1 - e-(θg ,0 + θg,1)t.
Thus, in this example, the competing risk formulation
leads to a Bellman-Harris process and it prevents the
time to division and the time to death from having dis-
similar distributions, which may be an undesired model-
ing feature in cell kinetics studies. The more general
process that we consider in this paper would allow the
time to division and the time to death to follow dissimilar
exponential distributions, while permitting the probability
of division to take freely any value within the interval [0, 1].
The limitation of the Markov competing risk process

could be somehow mitigated by using more flexible dis-
tributions for Lg,0 and Lg,1 (such as gamma distribu-
tions). However, the resulting model would still
implicitly assume a specific relationship between pg, Fg,
and Gg. The nature of this relationship will remain, in
general, difficult to determine explicitly because, for
instance, the calculation of Fg and Gg involves truncated
bivariate distributions. One of the simplest biologically
relevant cases is when the latent r.v.s lg,0 and lg,1 are
both log-normally distributed. Denoting their respective
parameters by μl and  l

2 , l = 0, 1, (assuming they do
not depend on g), a simple calculation shows that

pg = − +{ }Φ ( ) / ,   0 1 0
2

1
2

where F denotes the c.d.f. of the standard normal distri-
bution. Thus, the probability of division is constrained by
the parameters of Lg,0 and Lg,1; in particular, it is greater or
smaller than 1/2 depending on the sign of μ0 - μ1. Also, it
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follows from the theory of skew-normal distributions [24]
that the density function of  g ,1

1 , denoted and defined as
fg(t) = dFg(t)/dt, is explicitly given by

f t
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Φ

where F denotes p.d.f. of the standard normal distri-
bution, and where   = +1 1 0

2
1
2/ / . The calcula-

tion of Fg(t) requires numerical integration, however.
The limitations of competing risk branching processes
will also appear in our analysis of experimental data on
CD8 T cells.

Computing the moments of the process
The expectations mg,s(t) can be expressed as linear com-
binations of functions that take the form
C t F F G H tk k k k k

k
k
k

G H
G H

, , ( ) * * * * ( )= 1  , where k = 1,2...
and where kG, kH = 0,1. These moments may be com-
puted explicitly in some special cases, but it otherwise
requires the use of approximation techniques. To sim-
plify notation, we shall write CK(t) in place of
C tk k kG H, , ( ) , where K = (k, kG, kH). One approach is
to use the technique of saddlepoint approximations,
as proposed by Hyrien et al [19], which applies for a
variety of distributions. Assume for instance that Fk, Gk,
and Hk are gamma distributions. Let μF,k = aF,kbF,k and
vF k F k F k, , ,=   2 (resp. μG ,k = aG,kbG ,k and
vG k G k G k, , ,=   2 ; μH,k = aH,kbH,k and vH k H k H k, , ,=   2 )
denote the mean and variance of Fk (resp. Gk; Hk).
Write M k kF l G G k H H kl

k
K = + +=∑   , , ,1

and
V v k v k vF l G G k H H kl

k
K = + +=∑ , , ,1

for the mean and var-
iance of the distribution function CK. The saddlepoint
approximations to the expectations mg,1(t) and mg,0(t)
are given by
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and where u tK( ) is the root to the equation
K u tK

( )( )1 = , which can be solved explicitly in some
cases, or, when not possible, numerically. We refer to
[19] for further details on the construction of the
approximations in the case of gamma distributions and
for other distributions as well.
An alternative approach consists of using Monte Carlo

integration, where the unknown functions CK(t) are
replaced by empirical estimators obtained by simulating
r.v.s from the distributions Fk, Gk, and Hk. The approach
is straightforward and not described further.

Effects of cellular dependencies
The presence of dependencies among cells of a same
family tree has long been reported in the literature
[21,25-27]. One of the main type of dependency iden-
tified in these studies was found between the lengths
of the mitotic cycle of sister cells. This type of depen-
dency is known to have no effect on the expectation
of branching processes. This property was established
by Crump and Mode [28] for a binary splitting pro-
cess, and can be extended to the branching process
under consideration herein (see below). More general
dependency structures may take part in the evolution
of populations, as discussed by Olofsson [29], includ-
ing the possibility that fates of siblings be dependent
(for instance, sister cells would both tend to divide or
die). Some authors have considered cellular dependen-
cies that arise from the regulation of cell size [30]. A
general class of cellular dependencies that has received
much interest in past studies arises when all cells of a
clone inherit specific properties from the founding
cell. Stivers, Kimmel, and Axelrod [31] investigated
branching process models of the inheritance of cell
lifespans, whereas Boucher et al [32] and Hyrien et al
[19] proposed branching process models for the
inheritance of cell fate. In the latter case, the models
assumed that all cells of a same clone must undergo a
pre-determined number of divisions (referred to as
“critical number”) before they become competent for
differentiation (or death). Cells of prior generations
would all divide. The intra-clone dependencies in cell
fate is induced by letting the number of critical cycles
vary randomly across clones. This idea has been used
recently by Wellard et al [33].
In what follows we identify the dependencies that may

influence the expectation of the number of cells, and
obtain a general expression for the expectation of the
process that remains valid in the presence of dependen-
cies. To do this, notice first that any generation may
consist of up to 2g-1 cells (either live or dead). For every
g = 1,2..., s = 0, 1, and a = 1,...,2g-1, let cg,s,a(t) denote an
indicator r.v. equal to one if the ath type-(g, s) cell exists
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in the population at time t. The process Zg,s(t) can be
decomposed as

Z t tg s g s a
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∑ 
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2 1

Let Tg s,
+ be a r.v. denoting the time of birth of any type-
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To develop further the expression for qg,1(t), notice
that
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Conditional on  g
c
,1 , the r.v.s ξg,1 and cg,s ,a(t) are

mutually independent, so that the conditional distribu-
tion of ξg,1, given  g

c
,1 , can be chosen arbitrarily without

altering the expectation of cg,s,a(t). In particular we can
set  p pg

c
g= . Under this particular choice, ξg,1 and �g,1

are mutually independent, and we have that
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We deduce from the above derivations the following
alternative expressions for the expectation of the pro-
cesses Zg,s(t) and Z#(t), and a property in the presence
of dependencies.
Proposition 1. The expectations of Zg,s(t) and Z#(t)

admit the general form
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Furthermore, these expressions remain valid when the
independence assumptions regarding the evolution of
age-dependent branching processes are relaxed. ◇
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These expressions resemble closely those obtained
under the independence assumption (see equations (1)
and (2)). The only noticeable difference is that the con-
volutions (e.g., F tg

(*)( ) ) are replaced by the c.d.f.s of
sums of possibly dependent r.v.s (e.g., F tg

(*)( ) ).
It follows from Proposition 1 that the mean number

of cells is not affected by cross-sectional dependencies
(that is, by dependencies existing between cells that are
not linearly filiated, such as cousins and aunts). In other
words, in the presence of this type of dependencies
alone, the expressions for mg,1(t) and mg,0(t) will simplify
to those of equations (1) and (2). For instance, any form
of dependency existing between the lifespans of sister
cells (as previously shown by Crump and Mode [28])
will have no effect on the expectation of the process.
Likewise dependencies between the fates of sister cells
will not change the expectation of the process either.
The property extends to the case where the fate/lifespan
of any cell are dependent with those of its cousins (of
any degree), with those of its aunts (or the cousin of its
aunts), etc. Furthermore, the presence of dependencies
between the fates of linearly filiated cells has no effect
on the expression for the expectation. Thus, any
mother-daughter correlation in fate will leave the expec-
tation of the process identical to that obtained under
the independence assumption. The only possible
changes in the expectation of the process are those
induced by dependencies between the lifespans of line-
arly filiated cells. Using the above line of arguments, it
is also easy to see that higher order moments (e.g, the

variance) of the process will generally be affected by the
presence of cross-sectional dependencies and by depen-
dencies between linearly filiated cells. This is a well-
known result also due to [28]. Since the variance of the
process does not play any role in the analysis of CFSE-
labeling experiments, the effects of cell dependencies on
this characteristic of the process are not relevant in the
context of CFSE-labeling data.

An application to human CD8+ T lymphocytes
We analyzed a set of experimental data for the prolif-
eration of human CD8+ T lymphocytes. The structure
of the model used to describe the proliferation and
death of lymphocytes is illustrated in Figure 3. When
the experiment begins, the initiator lymphocytes are
unactivated (or resting) and they do not divide. A frac-
tion of these initiator cells will eventually become acti-
vated upon stimulation (which we accomplished in our
experiment using anti-CD3 plus anti-CD28 antibodies).
The remaining non-activated cells will either stay rest-
ing or die. Once activated a cell may either divide, or
die, or return to a resting state permanently; this
occurs in every generation. Thus, there exists two pos-
sible paths to death for initiator cells, as indicated in
Figure 3. In the model formulated below we distin-
guish activated and unactivated cells. Once it is
defined, we shall explain the correspondence between
this model and the branching process formulated ear-
lier. In line with the above description, we shall
assume that

Figure 3 Structure of the model for the proliferation of CD8 T cells. Diagram showing the structure of the branching process that describes
the proliferation and death of CD8+ T lymphocytes; MCD = mitotic cycle duration; F0 , F , G0 , G and H denotes the c.d.f of the various
times to event; d0 and d denote probabilities of death; p0 denotes the probability of activation of unactivated initiator cells; p denote
probabilities of division of activated cells; and r0 and r denote probabilities of resting.
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(A1) Upon completion of its lifespan, every unactivated
initiator cell either dies with probability d0 , or becomes
activated with probability p0 , or remains unactivated (or
resting) indefinitely with probability   r d p0 0 01= − − . By
convention, activated and unactivated initiator cells are
said to be of generation 1. The time to death of any unac-
tivated initiator cell is described by a non-negative r.v.
with c.d.f. G0 , whereas the time to activation is modeled
as a non-negative r.v. with c.d.f. F0 .
(A2) Upon completion of its lifespan, every live, acti-

vated initiator cell of generation g = 1,2... either dies
with probability d , or divides into 2 new cells of age
zero and generation g + 1 with probability p , or returns
to rest (indefinitely) with probability   r d p= − −1 . The
time to death of any live, activated initiator cell of gen-
eration g is described by a non-negative r.v. with c.d.f.
G , whereas their time to division is modeled as non-
negative r.v. with c.d.f. F . The experimental setup does
not distinguish activated/non-resting from unactivated/
resting cells, making the distribution of the time that is
necessary for a cell to return to its resting state non-
identifiable. Therefore, we do not model it, and we
assume that cells go back to rest instantaneously upon
birth. The probabilities d , p and r , and the c.d.f.s F
and G are independent of the generation.
(A3) Resting cells have an infinite lifespan.
(A4) The time to disintegration of death cells of any

generation g = 1,2... is modeled as a non-negative r.v.
with c.d.f. H that does not depend on the generation.
Remark. Even though the model assumes that the

cells evolve independently of each other, we know from
Proposition 1 that any dependencies between cell fates
and any cross-sectional dependencies between lifespans
will not alter the expression for the expectation of the
process. Therefore the only assumption that we are
making on the dependency structure is that the lifespans
of linearly filiated cells are independent.
The above-formulated branching process is a particu-

lar case of the general model defined earlier. Treating
resting cells as cells that would divide or that would
become activated after an infinitely long lifespan, the
c.d.f. of the time to division of cells of any generation g,
with g = 2,3... (in the general model) is given as an
improper distribution

F t
p

p r
F tg( ) ( ).=

+

 



Likewise, one can show that G1 is the c.d.f. of a two-
component mixture distribution

G t
d p d

d G t p dF G t1 0 0 0 0
1

0 0
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in which each component corresponds to one of the
two possible paths that lead initiator cells to death,
whereas the c.d.f. of the time to division, F1, is the con-
volution of F0 and F , yielding

F t
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p r
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p r
F F t1 0

0
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which is also improper. We also have Gg = G , g =
2,3,..., and Hg = H , g = 1,2.... Finally the probabilities of
division (of the general model) are given by
p r p d1 0 0 1= + −  ( ) and pg = 1 - d , g = 2,3.... The
expected cell counts and proportions of cells per genera-
tion under the model of the proliferation and death of
CD8+ T cells are obtained using equations (1-3).
The c.d.f.s F0 , G0 , F , and G were taken from the

family of gamma distributions, and H was taken as an
exponential distribution. The log-transformed CFSE-
fluorescence intensity was modeled as a mixture of nor-
mally distributed r.v.s (the resultant fit suggested that
this assumption was reasonable). The model was fitted
simultaneously to the CFSE-labeling data and to the
estimated cell counts using a modification of the
method proposed by Hyrien and Zand [12] and using a
pseudo-likelihood function proposed by Hyrien [34] and
Hyrien et al [14,35].
Figure 4 shows the histograms for the log-CFSE fluor-

escence intensity in live cells and in dead cells separately
for all time points alongside the p.d.f. of the fitted mix-
ture model displayed as solid lines. Also shown are the
total cell counts in the wells estimated using the bead-
based capture-recapture experiment as a function of
time, and the corresponding fitted expected cell counts
calculated from the branching process. The model pro-
vided a very good fit to the experimental data (except at
88 hours). The results of our analysis can be summar-
ized as follows:
(C1) Probability of death, activation, division, and rest-

ing. Any unactivated, initiator cell would either die with
probability (estimated as) ˆ .d0 0 06= , or become acti-
vated with probability ˆ .p0 0 73= , or remain indefinitely
unactivated/resting with probability ˆ .r0 0 21= . Activated
(non-resting) cells of generation 1 or greater would
either die with probability ˆ .d = 0 13 , or divide with
probability ˆ .p = 0 66 , or revert to a resting state with a
probability ˆ .r = 0 21 , suggesting that a non-negligible
fraction of the cells in each generation exited the mitotic
cycle. The conditional probability of division, given that
the cell does not go back to rest, was estimated as
ˆ ˆ / ( ˆ ˆ) .%|p p p dno rest = + = 0 83 , which is in accordance
with the size of the cell population increasing over time.
(C2) Time to activation, division, death, and disinte-

gration. The mean and standard deviation of the time to
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activation were estimated as 47. 2 and 22. 6 hours,
respectively. The mean time to division of activated cells
was estimated as 12.9 hours. The estimated standard
deviation of the time to division was relatively small (1.6
hours). The time to death of initiator cells that do not
get activated was estimated as 0.15 hours. This suggests
that a fraction of the initiator cells was already dead
when placed in the wells, which is a reasonable finding
and such death often occurs during the cell isolation
step. The time to death of activated cells was estimated
as 1.5 hours (estimated standard deviation ≃ 2.2 hours).
Thus, the time to death was much shorter than the time
to division, and indicated that dying cells were suscepti-
ble to labeling with TOPRO-3 shortly after birth. Dead
cells would disintegrate after approximately 45 hours on
average.
(C3) Probability of resting. The proposed branching

process offered a good fit to the data, and we investi-
gated whether a similar fit could be obtained using the
simpler model that does not allow cells from returning
to a resting state once activated; that is, we set r = 0 in
the full model. The corresponding model fit (Figure 5)
clearly suggests that inclusion of this parameter
improves substantially the description of the data.

Data analysis using a competing risk branching process
Another simplified version of the model is defined by
adopting a competing risk approach. In this alternative
model the conditional probability of division of any

activated cell, given the cell does not go back to rest,
p no rest

cr
%| say, was specified as p Pno rest

cr
g g%| , ,( )= ≤ 1 0 ,

with lg,0 and lg,1 being the associated latent r.v.s
assumed gamma distributed. The fitted competing risk
branching process is shown in Figure 6.
Although this alternative model fitted the CFSE data

almost as well as our full (unconstrained) model, it was
clearly in poor agreement with the estimated cell counts,
and it was unable to capture the continued expansion of
the cell population over time (see bottom right panel in
Figure 6).
When fitting our full model, we reached two conclu-

sions: firstly, the times to death of activated CD8 T cells
were much shorter than their times to division (1.5 vs.
12.9 hours; see (C2) in previous section); secondly, the
probability of division of non-resting cells was estimated
as 0.83. As explained below these two conclusions are
difficult to reach simultaneously under the competing
risk branching process. On the one hand, in order for
the time to death to be (stochastically) substantially
shorter than the time to division under the competing
risk model, the latent r.v. lg,0 should be shorter than the
latent r.v. lg,1 with a probability close to 1. Therefore, it
follows from equation (5) that the probability of division
would be close to 0 in such circumstances, thereby pre-
venting the competing risk branching process from cap-
turing the continued expansion of the cell population
over time, as observed in our experiment. On the other
hand, the competing risk branching process could

Figure 4 The full model. Experimental data and a fitted branching process: proportions of observations per bin (+) in live cells (positive values)
and in dead cells (negative values); the lower right panel shows the estimated cell counts as a function of time.
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capture an increase of the population size by letting
the latent r.v.s lg ,0 and lg,1 be such that
p Pno rest

cr
g g%| , ,( ) /= ≤ ≥ 1 0 1 2 . Informally speaking,

this would imply that lg,1 is, in some sense, stochasti-
cally shorter than lg,0, which would make it difficult for
the time to death to be much shorter than the time to
division, as suggested by the analysis based on our full
model.
When fitting the competing risk branching process to

our experimental data, we reached a compromise
between the above two scenarios. Specifically, the mean
and standard deviation of the time to division were
respectively estimated as 14.3 and 19.8 hours, whereas
those of the time to death were estimated as 14.7 and
21.3 hours, so that neither the time to death nor the
time to division would be stochastically much shorter/
longer than the other. Moreover, while the estimates of
the mean mitotic cycle duration did not differ much
under either model (14.3 vs. 12.9 hours), the competing
risk model suggested that the mean time to death was

much longer than that obtained using the full model
(14.7 vs. 1.5 hours). The standard deviations were also
much larger using the competing risk model. The condi-
tional probability of division, given that the cell does not
revert to a resting state, resulting from the competing
risk formulation was estimated as ˆ .%|p no rest

cr = 0 51 . The
difference between the estimated probabilities
ˆ ( . )%|p no rest = 0 83 and ˆ

%|p no rest
cr is dramatic, and leads to

quite different conclusions in terms of population
dynamics. Finally, the mean disintegration time was esti-
mated as 5.4 hours using the competing risk model,
which is much shorter than the 45 hours that we
obtained with the proposed branching process, and
explains why the proportion of dead cells in each gen-
eration is still well represented by the competing risk
process.

Discussion
We proposed a general framework for the quantitative
analysis of CFSE-labeling data resting on multi-type age-

Figure 5 A model where activated cells do not return to a resting phase. Experimental data and a fitted branching process model that
does not allow activated cells to return to a resting state. The fit of this simpler model was substantially poorer than that of the full model.
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dependent branching processes. The proposed method
can be extended in a number of ways. For instance, for
the sake of simplicity, we did not consider cell differen-
tiation in this paper. This could be accomplished by
including additional cell types in the model. See
[14,19,21] for some examples of branching processes
that include this feature. The branching processes pro-
posed in these publications allow the distribution of the
time to differentiation to differ from those of the time
to division and of the time to death and they do not
resort to a competing risk approach for specifying the
fate of the cells.

Competing risk branching processes in cell kinetics
studies
We found that the competing risk version of our model
did not offer a satisfactory description of the kinetics of
CD8+ T cells. It is therefore likely that the central
assumption behind the competing risk model does not
reflect properly the actual biology. This assumption
states that two independent biological processes

compete continuously to determine the ultimate fate of
the cell (division or death), and that the decision and
the realization of the fate happen simultaneously. Sev-
eral biological studies indicate that it is unlikely that
these two events happen at the same time. Terrano et al
[36] have found that the molecular pathways linking cell
death and mitosis are dependent by coupling via
cycling-dependent kinase 1-mediated Bcl-xL/Bcl-2 phos-
phorylation, and activation of one pathway suppresses
the other. In addition, the decision for a cell to undergo
apoptosis may be determined in prior generations, con-
tradicting the main assumption of the model. For exam-
ple, Hawkins et al [37] used time lapse microscopy to
individually observe CFSE-labeled activated B cell foun-
ders, and their progeny, recording division and death
times. They found that cells which died underwent suc-
cessive changes in cell volume observable in prior gen-
erations which were predictive of death in daughter cells
of the next generation. These independent studies there-
fore corroborate the conclusion that we have reached
regarding competing risk branching processes.

Figure 6 A competing risk branching process. Experimental data and a fitted competing risk branching process model. The model fails to
capture the expansion of the population size over time (see bottom right panel).
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Effects of cellular dependencies
We have shown that the presence of cellular dependen-
cies will generally leave unaffected the expectation of
the proposed branching process. Only dependencies
existing between the lifespans of linearly filiated cells
(such as mother-daughter correlation) may change the
expression for the expectations. Dependencies between
the fates of linearly filiated cells and/or cross-sectional
dependencies (either between fates or lifespans), how-
ever, will not alter their expressions.
Cellular dependencies have been identified using time-

lapse microscopy experiments where cell trees started
from a single founder cell are followed up over time so
the complete genealogy of the tree can be reconstructed
[21,25-27]. Recent work by Hawkins et al [37] and Well-
ard et al [33] suggests that such dependencies may play
a role in lymphocyte activation, division and death deci-
sions. However, it is unclear whether dependencies that
have been found in these clonal studies and those of
cells in mass culture are directly comparable. In order
to adequately track cells in time-lapse photography, they
must be cultured sparsely, with little cell-cell interaction.
Under in vivo conditions, lymphocytes are activated
within lymphoid structures, where they are surrounded,
at minimum, by a large number of similarly activated
cells. In vitro stimulation conditions that do not allow
close cell-cell contact can lead to very different cell
behavior, and erroneous conclusions, as Huggins et al
[38] have shown for B lymphocyte activation and prolif-
eration. In fact, it is likely that cell-cell interactions
(which perhaps can be viewed as cross-sectional depen-
dencies) may attenuate such filial dependencies and les-
sen their effects on cell kinetics at the population level.
Furthermore, it remains technically difficult to conduct
large scale time-lapse studies in vivo, which cannot cur-
rently be performed in human subjects. For these rea-
sons, although informative for identifying the potential
existence of dependencies, time-lapse cinematography
experiments will not necessarily offer additional useful
information to CFSE-labeling experiments about cell
kinetics in large population of cells, especially in vivo.

Further quantitative insights into the kinetics of CD8 T
cells
One key function of CD8 T cells is to kill infected cells
during the anti-viral immune response. This immune
response is characterized by a large proliferative burst,
followed by the eventual death of most effectors at the
end of the response, and the survival of a cohort of mem-
ory CD8 T cells. These memory T cells exit the cell cycle,
but do not die. In subsequent infections, memory cells
have a shorter time to activation and completion of the
first cell division, allowing immune memory to clear
infections faster than a naive response. Our analysis

suggests that once activated, cells of any generation may
return to what the model conveniently refers to as “a
resting phase”. While we do not know whether cells in
the experiment did return to a resting phase after a per-
iod of activation, the model suggested that some cells
stopped dividing, and those that did so did not appear to
die during the experiment because the proportion of
dead cells did not increase massively. Molecular mechan-
isms for CD8+ T cell survival after post-activation cell
cycle as predicted by our model fitting have been
described. Such mechanisms include expression of the
cycling-dependent kinase inhibitor proteins p16INK4a in
activated, naive CD8 T cells as described by Migliaccio et
al [39], and expression of p21Cip1 and p27 as described by
Grayson et al [40]. We estimated probability that a cell
returns to rest as greater than 0. 20, which is in agree-
ment with these prior experimental descriptions. Our
analytic observation may also suggest a mechanism for
memory CD8 T cell generation, namely that these “rest-
ing” cells may be memory T cells, and that they may arise
in each generation after activation. Zand et al [41] have
previously hypothesized a similar mechanism for genera-
tion of CD4 T cell memory, and Ganusov [42] hypothe-
sized a similar mechanism for generation of memory
CD8+ T cells in vivo during lymphocytic choriomeningi-
tis virus infection.
A second feature of the proliferation of activated CD8

T cells identified by our model is that the time to death
of activated cells calculated from the last cell division
appeared to be very short, suggesting that the decision
to die is made either shortly after division or even in
preceding generations. In the latter case, it would be
reasonable to expect that both sister cells could die. Our
model does not account for such a possibility, but as
discussed previously this class of dependencies does not
alter the conclusions based on our model. Such
mechanisms of cell differentiation dependency have
been described for T lymphocytes, generally involving
epigenetic modifications transmitted to daughter cells,
but have not been described for transmission of apopto-
sis from mother to daughter CD8 lymphocytes. Con-
firming such a novel mechanism of inherited cell death
would require further experimental work.

Open questions
A number of studies have investigated and discussed the
merit of a number of mathematical models to describe
cell kinetics during CFSE-labeling experiments. Little
efforts have been devoted to the development of statisti-
cal methods for the analysis of CFSE-labeling data.
Their analysis, however, requires specific care as dis-
cussed by Hyrien and Zand [12]. The statistical methods
proposed by these authors were appropriate only when
the prevalence of cell death remains negligible. More
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work appears needed for when cell death cannot be
neglected, which we intend to cover in a separate publi-
cation. The branching process model presented herein
offers a flexible framework for the analysis of CFSE-
labeling experiments. A question that remains open is
whether the parameters of models of such complexity
are all estimable from CFSE-labeling data. Although our
fitting algorithm appeared to converge consistently to
the same parameter value, it will be important to
develop techniques that help formally determine which
parameters can be estimated using CFSE-labeling data.
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Reviewers’ comments
Reviewer’s report 1
Marek Kimmel, Department of Statistics, Rice University,
Houston, Texas, United States
The authors introduce a new variant of the Bellman-

Harris Branching Process to improve the mathematical
description of the decision-making process in cultured
CD8+ T lymphocytes and apply their model to labeling
data, to demonstrate its superiority over the competing
risks model. The new variant of the process allows the
decision to proceed to either to proliferation or to apop-
tosis (or to quiescence) to precede the act of division or
apoptosis initiation. It results in a slightly modified inte-
gral equation for the probability generating function of
the process. Since the CFSE-labeling allows distinguish-
ing between cells which underwent different numbers of
division, as well as quantifying the increase in cell num-
ber, fitting models to the CFSE data appears quite
meaningful. In my opinion, the paper is worthwhile and
publishable. I have several remarks which may improve
the contents and clarity of presentation.

1. The process Zg,s(t) (p. 8) does not seem to be a
point process.

Authors’ response. We have removed the reference to
point processes.

2. Page 13. The sentence starting from “Clearly, the
conditional distribution ...” does not seem to be very
precise. I would suggest stating the property dis-
cussed in the terms of independence of random vari-
ables, so that ambiguity is avoided.

Authors’ response. Done.

3. An application to human CD8+ T lymphocytes. I
understand that in this application, independence

between mother and daughter lifetimes is assumed.
This might be worth stressing, particularly since one
page earlier, in Proposition 1, independence is not
required.

Authors’ response. Done.

4. Data analysis using a competing branching pro-
cess. I find the section written in a somewhat con-
fusing way. Among other, it is first stated that “A
likely explanation for the lack of fit of the competing
risk process is that the times to death were esti-
mated as being much shorter than the times to divi-
sion using the full model.” However, several lines
down, the mean time to division is said to be esti-
mated as 14.3 hours whereas the mean time to
death as 14.7 hours. Please clarify.

Authors’ response. We have re-written the section.

5. Effects of cellular dependencies. There exists a
whole class of models, developed mainly in the
1980s, which look for the source of dependencies in
cell size/growth rate regulation. A relatively com-
plete review is contained in Webb’s paper in Com-
puters & Mathematics with Applications (Volume
18, Issues 10-11, 1989, Pages 973-984).

Authors’ response. The reference has been added.

6. Further quantitative insights into the kinetics of
CD8 T cells. It seems somewhat disappointing that
this discussion does not return to the original moti-
vation, which was the organization of fighting the
infection by the T lymphocytes. Maybe something
might be added?

Authors’ response. We have expanded the corre-
sponding paragraph.

Reviewer’s report 2
Wai-Yuan Tan, Department of Mathematical Sciences,
The University of Memphis, Tennessee, United States
This paper proposed an age-dependent branching pro-

cess model for analyzing data from CFSE-labeling
experiments, extending the multi-type Bellman-Harris
branching process and the author’s previous models.
The paper is well-written and provides a logical
approach to model the temporal evolution of population
of cells under cell division, differentiation and death.
The paper also went into details to illustrate how to
implement the proposed model. It has also identified
some basic cellular dependencies that may influence the
expectations of the process. Because the model involves
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a large number of unknown parameters, it would be
very useful to the readers if the authors would write a
paragraph to indicate how the unknown parameters and
probabilities were estimated. What type of methods they
used to derive standard errors of the estimates (Efron’s
bootstrap method?). Because some of the distributions
are basically mixtures, perhaps the EM-algorithm may
be useful.

Authors’ response
Parameter estimation using CFSE-labeling data is a diffi-
cult problem that will be discussed in a separate paper.
In particular, it can be shown that the proposed estima-
tor is root-n consistent, whereas some existing estima-
tors are not. Also, Efron’s bootstrap does not appear to
apply to CFSE-labeling experiments because the result-
ing data are dependent. Moreover, to the best of our
knowledge, existing bootstrap algorithms do not appear
to have been designed to handle this class of dependen-
cies. Finally, as you suggested, one can used an EM
algorithm to compute parameter estimates.

Reviewer’s report 3
Peter Olofsson, Mathematics Department, Trinity Uni-
versity, San Antonio, Texas, United States
The paper uses a multi-type age-dependent branch-

ing process to model CFSE-labeling experiments. It is
a clear and well-written piece of work and I think it
deserves to be published in Biology Direct. I do not
have the necessary expertise to comment on the biol-
ogy, and will only make a few comments on the
mathematics. On page 7, the authors claim to extend
the Bellman-Harris process by allowing lifespan and
offspring to be dependent. However, such processes
were introduced already in the 1960s by B.A. Sevastya-
nov and are sometimes referred to as “Sevastyanov
processes”. These days, a Sevastyanov process can be
viewed as a special case of the general multi-type
branching process introduced by Peter Jagers in the
late 1980s and early 1990s. I would therefore recom-
mend the authors not to refer to their process as “the
general branching process” as this term is commonly
reserved for the “Crump-Mode-Jagers process” where
reproduction occurs according to a point process, not
necessarily by splitting.

Authors’ response
We agree that branching processes allowing dependen-
cies between cell fate and cell lifespan are not new, as
noticed in some of our past publications [14,19]. The
use of the terminology “general branching process” is
now avoided.
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