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Abstract: The use of elemental metallic powders and in situ alloying in additive manufacturing (AM)
is of industrial relevance as it offers the required flexibility to tailor the batch powder composition.
This solution has been applied to the AM manufacturing of nickel-titanium (NiTi) shape memory
alloy components. In this work, we show that laser powder bed fusion (LPBF) can be used to
create a Ni55.7Ti44.3 alloyed component, but that the chemical composition of the build has a large
heterogeneity. To solve this problem three different annealing heat treatments were designed, and the
resulting porosity, microstructural homogeneity, and phase formation was investigated. The heat
treatments were found to improve the alloy’s chemical and phase homogeneity, but the brittle NiTi2
phase was found to be stabilized by the 0.54 wt.% of oxygen present in all fabricated samples. As a
consequence, a Ni2Ti4O phase was formed and was confirmed by transmission electron microscopy
(TEM) observation. This study showed that pore formation in in situ alloyed NiTi can be controlled
via heat treatment. Moreover, we have shown that the two-step heat treatment is a promising
method to homogenise the chemical and phase composition of in situ alloyed NiTi powder fabricated
by LPBF.

Keywords: elemental powders; heat treatment; in situ alloying; laser powder bed fusion; nickel-
titanium; pre-mixed powders

1. Introduction

Shape memory alloys (SMAs) have generated great interest in a diverse number of
engineering applications. Nickel-titanium (NiTi), also referred to as Nitinol, is the most
frequently used SMA that demonstrates a stable shape memory effect and superelastic
behaviour, which allows for large recoverable strains of up to 8% [1,2]. Furthermore,
it has good biocompatibility, damping characteristics, corrosion resistance, and a low
Young’s Modulus (50–80 GPa) compared with other alloys commonly used in biomedical
applications [3,4]. The specific mechanical properties of NiTi alloys render their machining
a challenging task. One of the challenges of NiTi alloys is their extremely poor machinability
resulting in rapid and uncontrollable tool wear and poor surface quality. This is due to
the high ductility, superelasticity, low elastic modulus, and work hardening of the NiTi
alloy the machined part is made of [5,6]. Demanding machining generates a high cost
of the fabricated parts and limits the applicability and commercial usage of NiTi alloys.
For this reason, an extremely important issue is to reduce material cost by eliminating
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machining, which would result in a lower cost of the fabricated elements. Thanks to
additive manufacturing (AM) techniques that eliminate the need for machining, complex
shapes of NiTi alloys have been produced in recent years [7–9]. Laser powder bed fusion
(LPBF) is one of the powder-based AM methods allowing the fabrication of a wide variety
of functional, complex three-dimensional shaped parts. In this technique the model is
built directly from CAD data by melting successive layers of metal powder on top of
the previous one, using thermal energy supplied by a focused and computer-controlled
laser beam. It offers the opportunity to produce parts with complex geometries without
resorting to cutting, pressing, grinding tools or fixtures. Since AM is a fast-growing
industrial sector there is a strong need for new material development to satisfy the various
engineering and medical application requirements. Despite its promise to overcome these
challenges, the AM of NiTi has rarely been considered or explored for the production of NiTi
devices. Current research into the AM of NiTi parts from pre-alloyed powders has been
associated with difficulties concerning chemical homogeneity and chemical composition
control caused by Ni evaporation during the melting process [10–12]. Since phase transition
temperatures of NiTi alloys, which determine their unique properties, are highly sensitive
to the alloy composition, any changes in the Ni/Ti ratio are undesirable [2,13]. One of the
possible alternatives to solve the difficulties and reduce the costs of the production of a few
different chemical compositions of NiTi powders (Ni/Ti ratio) is exploring the possibility
of alloying Ni and Ti elemental powders in situ during the LPBF processes [14–18]. In
situ alloying offers the flexibility to tailor the batch powder composition, by mixing the
proper amount of pure metal powders [19,20]. The effect of in situ alloying during the
LPBF process is the fabrication of the new object from a predesigned alloy composed of
elemental powders [19,20]. For NiTi in situ fabrication, by knowing the amount of nickel
evaporated during fabrication [2,9], the proper mixing ratio can be estimated in order to
design the chemical composition of the final material [14]. Moreover, the use of nickel and
titanium elemental powders is nearly three times cheaper than pre-alloyed NiTi powders
currently available on the market. Thus, using elementally blended Ni and Ti powders
would reduce the price of final objects.

It has been reported that for NiTi AM-built objects using both elementally blended
and pre-alloyed powders, a heat treatment is essential to improve the homogeneity, me-
chanical properties, and thermomechanical response [8,21]. As reported by Li et al. [21]
and Lee et al. [22], the formation of the NiTi2 phase was observed in a NiTi alloy fabri-
cated from pre-alloyed powder. In research work, where NiTi parts were AM-built from
elementally blended powders, it was observed that the NiTi martensitic or austenitic, as
well as NiTi2 phases, were present [8,14–18,23–26]. Moreover, the presence of secondary
phases such as Ni3Ti and Ni4Ti3 were found in as-built specimens by Wang et al. [14]
and Halani et al. [16], respectively. Hence, they investigated the influence of the heat
treatment on the microstructure and phase composition of fabricated specimens. Based on
the Ni-Ti phase diagram (Figure 1), the melting point of NiTi2 is 984◦, thus, Wang et al. and
Halani et al. subjected the as-built samples made from elementally blended NiTi powders
to a solution heat treatment at 1000 ◦C for 6 h and 1050◦ for 10 h, respectively. Nevertheless,
they found that unwanted secondary Ni3Ti and NiTi2 phases were formed instead of being
eliminated in the material after heat treatment.

In this study, a NiTi alloy was fabricated from elementally blended Ni and Ti powders
using LPBF technique and was heat-treated to improve microstructure homogeneity. The
influence of the different heat treatments on the microstructure and phase composition
of the LPBF fabricated specimens was investigated. Moreover, the aim of this study was
to design a heat treatment that homogenizes the microstructure and prevents porosity
increase. Three heat treatments were proposed to achieve our research goals: (1) A one-step
heat treatment at a temperature of 1100 ◦C; (2) a one-step heat treatment at a temperature
of 900 ◦C; and (3) a two-step heat treatment, with the first step at a temperature of 900 ◦C
and a second one at 1150 ◦C. Moreover, for the first time, the oxygen stabilization of the
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Ni2Ti phase that resulted in the formation of a thermodynamically stable Ni2Ti4O phase
was revealed in the in situ alloyed NiTi.
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Figure 1. Phase diagram of the Ni-Ti system (based on [27]). The horizontal dashed lines represent the
temperatures of the HT1–HT3 heat treatments; The vertical dashed line represents the composition of
the initial Ni-Ti powder blend studied in this work; the red circle indicates the local concentrations
for which there is a liquid phase at 1100 ◦C.

2. Materials and Methods

Powder of nickel (purity 99.9%, Eckart TLS, Bitterfeld-Wolfen, Germany) and titanium
(grade 1 purity 99.7%, Eckart TLS, Bitterfeld-Wolfen, Germany) were mixed in a tumbling
mixer for 2 h, without any additives, to achieve a homogenous mixture of the NiTi alloy
having a composition of Ni55.7Ti44.3 which corresponds to pre-alloyed NiTi, used in our
previous study [28]. For both powders, a particles size of <45 µm was used. A Realizer
SLM 50 (Realizer GmbH, Borchen, Germany) was employed for the laser powder bed
fusion (LPBF) fabrication of cylindrical samples with a diameter of 6 mm and a height
of 10 mm. Argon gas was used as a protective gas and the oxygen level was kept below
0.3 vol.%. Samples were fabricated on a NiTi substrate which was maintained at 200 ◦C. An
alternating scanning strategy including additional remelting after the first laser scanning
was employed, thus each solidified layer was exposed to the laser beam two times. A laser
power of 30 W and a scanning speed of 500 mm/s were used for first melting, while a
slightly decreased laser power of 25 W and a scanning speed of 1000 mm/s were used for
remelting. The layer thickness was set to 25 µm. The manufacturing procedure has been
previously described in detail [10].
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Annealing heat treatment (HT) was performed using an Elmor-1100 furnace (Falodlew,
Gdańsk, Poland). This was carried out in a vacuum, using sealed quartz tubes using the
parameters described in Table 1. The heating rate for each HT was fixed at 10 ◦C/min.
After annealing, all samples were water quenched.

Table 1. Parameters of the heat treatments of in situ alloyed NiTi fabricated by LPBF.

Name Number of Steps Temperature [◦C] Time [h]

HT1 1 1100 10

HT2 1 900 24

HT3 2 900 + 1150 24 + 24

The samples were exposed to three different heat treatments denoted as HT1–HT3.
The parameters of the HT1 heat treatment were chosen based on the literature [14,16,21]
while HT2 and HT3 were chosen directly based on the NiTi phase diagram (Figure 1) to
avoid liquid phase formation. The liquid metal has a bigger volume than its solid state,
thus, the melt pool shrinking during solidification results in the formation of voids (pores).
This phenomenon was observed for HT1 heat treatment and is discussed extensively in
this article in the discussion section. Therefore, the aim behind the HT2 and HT3 heat
treatments was to minimize liquid phase formation during annealing to prevent further
void formation. The proposed HT1 and HT2 are single step annealing heat treatments
at 1100 and 900 ◦C respectively, followed by immediate water quenching. The HT3 is
a two-step heat treatment: firstly, samples were heated up to 900 ◦C and held for 24 h,
then the temperature was increased to 1150 ◦C (based on the DTA results) and held for
another 24 h. Annealing time for HT2 and HT3 was increased to 24 h based on the literature
to extend the diffusion time of alloying elements according to Fick’s second law [29–31].
Samples were water quenched immediately after the second step of annealing. Water
quenching was performed to retain the NiTi phase and prevent the formation of brittle
intermetallic phases i.e., NiTi2, Ni3Ti, Ni4Ti3 [32–34].

After the heat treatment samples were mounted in epoxy and mechanically polished on
a Saphire 550 grinding and polishing machine (ATM Qness GmbH, Mammelzen, Germany)
using SiC grinding papers (from #600 to #2000), and subsequently polished using 0.1 µm
alumina oxide suspensions. Light microscopy (LM) was performed on Axio Scope Micro-
scope (Carl Zeiss Microscopy GmbH, Kelsterbach, Germany). Porosity was determined
by the Archimedes’ principle. Each sample was weighed three times, non-consecutively,
in air and water using an electronic balance with ±1 mg of accuracy. Scanning electron
microscopy (SEM) observations using a backscattered electron (BSE) detector (SU-8000,
Hitachi, Ibaraki, Japan) at 5 kV and energy dispersion spectroscopy (EDS) analysis at
10 kV were used to reveal the chemical composition. To determine the phases present,
in the as-built NiTi alloy and after different heat treatments, X-ray diffraction (XRD) was
performed at room temperature using a Bruker D8 Advance diffractometer (Bruker, Karl-
sruhe, Germany) with filtered Cu Kα (λ = 0.154056 nm) radiation. The XRD machine
parameters were as follows: voltage 40 kV, current 40 mA, angular range 2Θ from 20◦ to
55◦, step ∆2Θ 0.05◦ and dwell time 3 s. The XRD patterns were analysed using Bruker
EVA software and a PDF-2 database (from the International Centre for Diffraction Data). A
Labsys DTA/DSC (Setaram, Caluire-et-Cuire, France) differential thermal analysis (DTA)
machine, with heating/cooling varying between room temperature to 1500 ◦C at a rate of
40◦/min, was used to determine the NiTi2 transformation temperature. In order to identify
phases present in the HT3 sample, a cross-sectional membrane (thin foil) of the selected
region was prepared by a focused ion beam (FIB) system (NB5000, Hitachi, Ibaraki, Japan).
Subsequently, their microstructure was studied using a transmission electron microscope
(TEM) JEOL JEM 1200 (JEOL, Tokyo, Japan) operated at 120 kV.

A TCH 600 Nitrogen/Oxygen/Hydrogen determinator (LECO, Benton Harbor, MI,
USA) was used to determine the content of oxygen in all fabricated samples. The elements



Materials 2022, 15, 3304 5 of 15

were converted to their oxidized form by utilizing the gas fusion method and the infrared
absorption (IR) was used to measure combustion gases within a metallic sample.

3. Results
3.1. Microscopic Observation and Phase Analysis

The as-built and heat-treated samples were subjected to light microscopic observations.
Microstructures of all samples are shown in Figure 2. Pores are evident in each sample
and show a spherical morphology. The porosity of the samples was determined by the
Archimedes principle. For HT1 heat treatment, the phenomenon of the formation of the
liquid phase, described in the discussion section, appeared in the sample. This caused the
material porosity to increase remarkably. The porosity of the HT1 sample is almost seven
times greater than that of the as-built sample. However, the porosity measurement results
of the as-built sample, as well as HT2 and HT3 samples are similar. No significant influence
of heat treatment on the porosity of the sample was noticed and the slight differences
in porosity are within the measurement error (Figure 2). In addition, no increase in the
number of cracks was observed in any of the heat-treated samples.
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HT2 (900 ◦C/24 h), and HT3 (900 ◦C/24 h + 1150 ◦C/24 h) heat-treated samples.

The XRD results of the as-built and heat-treated samples are shown in Figure 3. The
XRD patterns of the as-built sample showed the presence of multiple phases, including
NiTi (B2) [35] and (B19′) [36], NiTi2 [37], Ni2Ti4O [37], Ni3Ti [38], and Ni4Ti3 [39]. A distinct
change in the phases was observed in the heat-treated samples. After each heat treatment
only NiTi (B19′), (B2), NiTi2, and Ni2Ti4O phases were identified. Since NiTi (B19′), NiTi2
and Ni2Ti4O peaks overlap each other, it is not possible to distinguish them on XRD.

The phase composition homogeneity of the samples and the microstructures were
captured by SEM BSE observations, as illustrated in Figure 4. The SEM BSE images of the
as-built sample indicate a large heterogeneity of the chemical composition. EDS analysis
(Figure 5) was performed to determine the Ni and Ti distribution in the as-built material.
Distinct differences in contrast indicate the presence of titanium-rich (dark) and nickel-
rich (bright) areas. In the case of heat-treated samples, only two different phases can be
distinguished in the images, the dark-shaded titanium-rich phase, and the bright-shaded
nickel-rich phase. EDS point analysis showed the presence of oxygen in some regions of a
dark-shaded phase in samples HT1–HT3; however, the presence of oxygen was not detected
in all regions of the phase in HT1 and HT2 samples. Therefore, the dark-shaded areas
consist of NiTi2 and/or Ni2Ti4O phases. A more detailed analysis of the phase composition
of the dark-shaded phase in each sample is discussed in paragraph 4. Based on the SEM
BSE images, the percentage amount of the dark-shaded Ti-rich phases in each of the tested
samples was calculated in the Micrometer software (Micrometer, Poland) using the method
described by Wejrzanowski et al. [15,16] (Table 2). The greatest amount of dark-shaded
phase is found in the HT2 sample (26 ± 4%), while the least amount was found in the
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HT3 sample (12.5 ± 0.5%). The amount of dark-shaded phase in the HT1 sample was
18 ± 2%. It was found that the dark-shaded phase in HT1 and HT2 samples is finer and
has a more irregular shape than the phase in the HT3 sample, which is larger and has a
nearly spherical shape. The presence of C, Si, and W elements detected by EDS (Figure 5) is
a result of surface contamination that remains from materials used for surface polishing
and preparation for TEM observations.
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Figure 5. EDS mapping of the as-built sample indicates that the dark shaded areas are titanium-rich
and bright shaded areas are nickel-rich; EDS point analysis revealed the presence of Ni, Ti, and
O elements.

Table 2. The volume fraction of NiTi2/Ni2Ti4O phases in HT1-HT3 samples.

HT1 HT2 HT3

NiTi2/Ni2Ti4O 18 26 12.5
volume fraction (%) ±2 ±4 ±0.5

3.2. Differential Thermal Analysis

The Differential Thermal Analysis (DTA) test was performed on the HT2 sample to
determine the NiTi2 phase transformation behaviour and indicate its melting temperature
(Figure 6). The results indicate that the NiTi2 melts at about 1128 ◦C.

3.3. Transmission Electron Microscopy

For a more detailed examination of the dark-shaded phase in the HT3 sample (Figure 4),
(that was not removed after HT3, as expected) Transmission Electron Microscopy (TEM) was
performed. Figure 7 shows a bright-field image of a NiTi matrix and a corresponding SAED
pattern. The matrix consists of B2 cubic austenite and B19′ monoclinic martensite phases
as presented by Dutkiewicz et al. [40]. The crystallographic relationship (001) B2 II (011)
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B19′and [100] B2II [100] B19′ results from the SAED pattern. Figure 8 shows particles
present in the NiTi matrix with a corresponding selected area electron diffraction (SAED)
from a single particle. One can expect to find NiTi2 or Ni2Ti4O (Figure 8) which are in
the same crystal system and possess approximately the same lattice parameter. However,
the differences between intensities of diffraction spots from {311} and {331} planes on the
diffraction pattern enabled the identification of the Ni2Ti4O phase; a phase having XRD
peaks overlapping NiTi2. Moreover, in the case of the NiTi2 phase, the intensity from the
diffraction spot from {311} planes would be negligible contrary to the Ni2Ti4O phase.
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3.4. Oxygen Content

The oxygen content in all samples was analysed to check whether the oxygen, which
caused the formation of the Ni2Ti4O phase, could have dissolved in the sample during the
LPBF fabrication or the heat treatment. The presence of 0.52 to 0.54 wt.% of the oxygen is
observed in all samples (Table 3). There are no significant differences in the oxygen content
between the as-built and heat-treated samples. Thereby, it can be assumed that oxygen was
dissolved in the sample during the LPBF fabrication, and this stabilized the Ni2Ti4O phase.
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Table 3. Oxygen content in as-built and HT1-HT3 samples.

As-Built HT1 HT2 HT3

oxygen content (wt.%) 0.52
±0.1

0.53
±0.1

0.54
±0.2

0.52
±0.1

4. Discussion

The Ni55.7Ti44.3 alloy was fabricated by laser powder bed fusion (LPBF) from elemen-
tally blended nickel and titanium powders and the high chemical and phase composition
heterogeneity suggested that heat treatment is necessary to improve homogeneity. There-
fore, three heat treatments were applied to solve this technical problem.

4.1. As-Built Sample

Microscopic observation of the as-built samples is presented in Figure 2. It shows that
the sample is free of cracks or delamination and has a porosity of 1.30%. SEM observations
in BSE mode showed the heterogeneity of the chemical composition of the sample (Figure 4).
The Ti-rich and Ni-rich areas were revealed by EDS (Figure 5), meaning that components
were not fully alloyed during laser melting. XRD phase analysis (Figure 3) indicated the
presence of NiTi (B2) and NiTi (B19′), NiTi2, Ni2Ti4O, Ni3Ti, and Ni4Ti3 phases. Therefore,
heat treatment of the manufactured alloy is necessary to homogenise its chemical and
phase composition.

4.2. First Heat Treatment—HT1

In the first heat treatment, HT1, the temperature and time were determined based
on the literature. Wang et al. [14] employed LPBF to manufacture a NiTi alloy from
elementally blended Ni and Ti powders and subjected the fabricated samples to a solution
heat treatment at 1000 ◦C for 6 h and subsequently quenched in water. Halani and Shin [16]
fabricated NiTi coupons using elementally blended powders by the flow-based direct
energy deposition (DED) method and heat-treated them at 1050 ◦C for 10 h, with subsequent
quenching in water. In the work presented by Li et al. [21] an additively manufactured
NiTi alloy was heat-treated at temperatures that were determined based on DSC tests. It
was concluded that NiTi2 in the alloy studied by Li et al. [21] has a melting temperature
of 1010 ◦C. Thus, they performed heat treatment at a temperature close to the determined
NiTi2 melting point (1010 ◦C). When analysing the NiTi phase diagram (Figure 1), it
can be seen, that the widest range of NiTi phase presence (49–57 at.% of Ni) occurs at
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1118 ◦C. The temperature of HT1 was determined based on the literature review and
the NiTi phase diagram analysis. Therefore, HT1 was performed at 1100 ◦C for 10 h.
Microscopic observation of the HT1 sample was shown in Figure 2 and the presence of
large spherical pores was revealed. The porosity of the sample was 8.97%. EDS analysis
showed the presence of the oxygen in some regions of a dark-shaded phase (Figure 5),
however, the presence of the oxygen was not detected in all regions of the phase. SEM BSE
observations (Figure 4), EDS analysis (Figure 5) and corresponding XRD analysis (Figure 3)
determined the presence of NiTi (B2), NiTi (B19′), NiTi2 and Ni2Ti4O phases. The Ni3Ti and
Ni4Ti3 phases on the other hand were eliminated. The amount of dark-shaded NiTi2 and
Ni2Ti4O phases in HT1 sample was 18± 2%. Although the microstructure was significantly
homogenized, the porosity of the sample increased almost seven times.

Morris and Morris [41] examined different techniques for the sintering of Ni and Ti
elemental powders. They found that when samples are sintered at high temperatures,
where melting of a phase occurs, high porosity is generated in the material. Moreover, they
noticed a large heterogeneity in the microstructure of sintered samples. They concluded
that homogeneity of the material can be increased due to solid-state interfusion, occurring
at temperatures below 900 ◦C, when no liquid phase appears in the material. In our study,
the occurrence of Ti- and Ni-rich regions were presented in the as-built sample (Figure 4).
According to the NiTi phase diagram (Figure 1), the liquid phase occurs at the temperature
of 1100 ◦C in a wide range of compositions; especially 27 to 38 wt.% of Ni. The liquid phase
of a material has a larger volume than its solid counterpart, therefore, during cooling, the
material will shrink, resulting in voids. These voids induced the porosity that is observed
in Figure 2.

4.3. Second Heat Treatment—HT2

The second heat treatment, HT2, was aimed at homogenizing the microstructure and
composition at a temperature that does not allow any phase to liquify since this could
generate high porosity. Various conditions of material fabrication and, inter alia, the
presence of internal stresses can influence the melting temperature (increase or decrease
it) of materials [42]. To this effect, HT2 was performed at 900 ◦C, i.e., well below the
lowest transition temperature of titanium-rich phases to the liquid state (942 ◦C). The
HT2 time was extended to 24 h to increase the diffusion time according to Fick’s second
law [29–31]. Microscopic observations and porosity measurement results (Figure 2) show
that the porosity has not increased and is well below to that found in the HT1 sample. Thus,
the reduction of the heat treatment temperature avoided pores formation caused by the
melting of the Ti-rich phases. SEM BSE images (Figure 4) revealed the presence of two
phases. The presence of oxygen was revealed by EDS in some areas of the dark-shaded
phase in the HT2 sample (Figure 5). XRD analysis (Figure 3) confirmed that the samples
consisted of B2, B19’, NiTi2, and Ni2Ti4O phases. It has been observed that both HT2 and
HT1 reduced the number of phases when compared to the as-built samples. The amount of
dark-shaded phases in the HT2 sample was 26 ± 4% (Table 2). Due to the fact that HT1 was
conducted at a temperature of 1100 ◦C which is close to the solubility of the NiTi2 phase
in the fabricated material (1123 ◦C), more of it diffused into the surrounding phase than
it was for HT2, which was carried out at a lower temperature (900 ◦C). Thus, the highest
amount of dark-shaded NiTi2 and Ni2Ti4O phases remained in the HT2 sample.

Since NiTi2 is a brittle phase, it favours cracks formation and decreases the ductility [43]
and it would be therefore beneficial to eliminate the presence of this phase. DTA analysis,
shown in Figure 6, was performed to determine the melting temperature of the NiTi2
phase formed in the HT2 heat-treated sample. The melting temperature of the NiTi2
phase in the studied alloy was at 1128 ◦C. Based on this result, it was expected that the
annealing heat treatment at a temperature slightly above the melting point of the NiTi2
phase will allow the diffusion of the elements and the elimination of the phase from the
alloy. According to the Ni-Ti phase diagram (Figure 1), the liquid phase is present for a
wide range of Ti concentrations (~75 to 60 wt.%) at 1100 ◦C. Direct annealing conducted
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above this temperature leads to pronounced, local melting of the material resulting in
voids formation after the heat treatment routine. Initial annealing at temperatures where
only solid phases exist activates diffusional homogenization and accelerates the formation
of the ordered structures which are thermodynamically favoured over solid solutions
due to low enthalpies of formation [44]. In such a scenario, the temperature of a second
annealing step can be adjusted to eliminate the unwanted phase by heating the material
slightly above the thermal stability of the selected, ordered structure. In this case, the
amount of the liquid phase is minimal, and melted elements will diffuse to neighbouring
phases and/or form other, intermetallic compounds stable under given thermodynamic
conditions. To conclude, the HT2 heat treatment improved the homogenization of the
chemical composition, however, the NiTi2 and Ni2Ti4O phases remained within the alloy.
Therefore, the HT3 heat treatment has been designed and performed to eliminate the NiTi2
and Ni2Ti4O phases.

4.4. Third Heat Treatment—HT3

Based on the observations made and discussed above, the third heat treatment, HT3,
was designed to eliminate from the alloy the NiTi2 phase through a two-step annealing
treatment. Firstly, the samples were heated to 900 ◦C for 24 h to diffuse the elements and
homogenise the chemical composition. Secondly, the samples were immediately heated
to 1150 ◦C (no cooling between steps) and annealed for 24 h. After the second step was
completed, samples were immediately water quenched. Since DTA analysis (Figure 6)
showed that the NiTi2 phase melts at 1128 ◦C, it was expected that annealing just above the
melting point, thus at 1150 ◦C, should allow the elements to diffuse into the NiTi phase and
1150 ◦C temperature was chosen for our study. The motivation behind the selection of the
two annealing temperatures arises from the thermal stability of intermetallic compounds
occurring in NiTi mixtures. It is expected that laser melting of commercially pure Ti and
Ni elemental powders can lead to local Ti- or Ni-rich regions, which favour crystallisation
of NiTi2, Ni4Ti3, or Ni3Ti phases. The main goal behind the adopted annealing treatments
is chemical homogenisation of the fabricated material, however, due to possible local
inhomogeneity, the maximum temperature of heat treatment (1150 ◦C) was chosen slightly
above the stability of NiTi2 (1128 ◦C) to minimize the risk of formation of a large amount of
liquid phase inside the samples. Microscopic observations of the HT3 sample and porosity
measurement results (Figure 2) showed that the porosity did not significantly increase
compared with the as-built sample. SEM BSE observation (Figure 4) and the calculation of
the dark-shaded phase volume fraction content (Table 2) revealed that when compared with
the HT1 (18 ± 2%) and HT2 (26 ± 4%) samples there was a reduction of dark-shaded phase
and its amount in the HT3 sample was 12.5 ± 0.5%. It should be noted that the phase was
not completely eliminated. Moreover, EDS analysis revealed the presence of oxygen in all
regions of the dark-shaded phase (Figure 5). Recent studies on NiTi alloys have suggested
that the NiTi2 phase can be stabilized by oxygen. The presence of the Ni2Ti4O phase in
NiTi alloy was reported by Kai et al. [45] and Frenzel et al. [13]. NiTi2 can absorb oxygen
up to 14 at.% without changing its FCC crystal structure [46]. Oxygen can dissolve in the
NiTi2 structure, and cause it to transform into a thermodynamically stable oxygen-rich
Ni2Ti4Ox oxide phase [45]. Both NiTi2 and Ni2Ti4O are crystallographically very similar
to each other, both possess FCC structure, thus, it is impossible to distinguish them apart
using the XRD technique [47]. Hiroyuki et al. [46] have stated that the Ni2Ti4O phase in
NiTi alloys cannot be eliminated even after two annealing heat treatments at 900 ◦C. In
the HT3 sample NiTi (B2), NiTi (B19′), and NiTi2/Ni2Ti4O phases were identified by XRD
(Figure 3). The XRD phase analysis did not indicate the presence of TiO2. However, it has
been shown in our previous study that the thin layer of TiO2 was found on the material’s
surface by X-ray photoelectron spectroscopy (XPS) [48]. Since the peaks corresponding
to NiTi (B19′), NiTi2 and Ni2Ti4O overlap each other the XRD technique cannot be used
alone to determine which phase is present in the studied alloy. To this effect, TEM was
performed to confirm whether the analysed dark phase, shown in Figure 4, was NiTi2 or
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Ni2Ti4O. TEM analysis of the matrix revealed the presence of both B2 and B19′ phases
(Figure 7). Furthermore, the differences between intensities of diffraction spots on the
diffraction pattern enabled the identification of the dark phase as Ni2Ti4O (Figure 8).
Based on this, the oxygen content in the chemical composition of the studied samples was
determined and was found in all samples to be 0.52 to 0.54% (Table 3). Since the amount
of oxygen in the as-built sample is comparable to all the heat-treated samples, it can be
concluded that oxygen was introduced into the samples during the LPBF fabrication and
not during heat treatment. The Realizer SLM50 machine used for samples fabrication does
not provide a 100% pure oxygen-free atmosphere since the oxygen level in the building
chamber during the fabrication process was about 0.3 vol.%. The oxygen residuals in the
machine chamber caused oxygen pickup by the NiTi during the LPBF process, in a similar
way to oxygen pickup by other materials reported in recent studies [28,49]. As was shown
in this study, it is subsequently difficult to remove unwanted secondary phases from the
material by applying heat treatments. The negative effect of oxygen residuals and other
side effects of powder processing in an inert atmosphere can be eliminated during additive
manufacturing processes by using a vacuum [50,51]. Vacuum LPBF processing, which is a
relatively new technique for AM processes, could avoid the stabilization of the unwanted
secondary phases, such as the NiTi2 phase. Therefore, further research should focus on
the elimination of oxygen from the building chamber. Moreover, the issue of the as-built
material heterogeneity can be eliminated during AM processes using machines that give
the possibility to fabricate materials at elevated temperatures. For this reason, fabrication
at elevated temperatures (above 500 ◦C) would be implemented to perform in situ heat
treatment during the LPBF process. Consequently, the transformation temperatures of the
fabricated materials would be further investigated using differential scanning calorimetry,
as described by Martins et al. [52].

5. Conclusions

Laser powder bed fusion (LBPF), using a remelting scanning strategy and elementally
blended Ni and Ti powders, was used to additively manufacture NiTi alloys. Since the
as-built components possessed a heterogeneous chemical and phase composition, three
different annealing heat treatments were designed and applied. The study led to the
following main conclusions:

• The selected two-step HT3 heat treatment condition (900 ◦C/24 h + 1150 ◦C/24 h)
allows for the significant homogenization of the chemical and phase composition of
the LPBF in situ alloyed NiTi components;

• The Ti-rich phases in the as-built material melt during the chosen HT1 temperature
(1100 ◦C) and upon solidification shrinkage occurs resulting in pore formation;

• Oxygen pickup during the LBPF manufacturing process promoted the formation of a
thermodynamically stable, oxygen-rich Ni2Ti4O phase that is observed even after an
annealing heat treatment;

• LPBF combined with post annealing is a promising way of fabricating NiTi alloys using
elemental powder blends. Elimination of the oxygen pickup during the process and
decrease of the possibility for formation of the oxides like Ni2Ti4O could be reached
by undergoing the process in vacuum conditions, however further studies proving
this hypothesis should be performed.
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D.; Wysocki, B.; Święszkowski, W. Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder
Bed Fusion (LPBF). Int. J. Mol. Sci. 2021, 22, 13209. [CrossRef] [PubMed]
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