data reports

OPEN d ACCESS

Crystal structure of (*E*)-*N*-[(*E*)-3-(4-meth-oxyphenyl)allylidene]naphthalen-1-amine

Jae Kyun Lee,^a* Joo Hwan Cha,^b Yong Seo Cho,^a Sun-Joon Min^a and Joon Kyun Lee^c

^aCenter for Neuro-Medicine, Brain Science Institute, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, ^bAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, and ^cMicro/Nano Scale Manufacturing R&BD Group, Korea Institute of Industrial Technology, 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do 426-910, Republic of Korea. *Correspondence e-mail: j9601@kist.re.kr

Received 10 October 2014; accepted 14 October 2014

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic

In the title compound, $C_{20}H_{17}NO$, the dihedral angle between the mean planes of the 4-methoxyphenyl ring and the naphthalene ring is 69.50 (7)°. The methoxy group is almost coplanar with the benzene ring to which it is connected [Cb-Cb-Om-Cm torsion angle of -7.9 (2)°; b = benzene and m = methoxy] and the imine group displays a C-C-N=C torsion angle is -57.2 (2)°. The imine (C=N) group has an *E* conformation. In the crystal, weak π - π interactions between the benzene rings [centroid-centroid distance = 3.7781 (10) Å] are observed.

Keywords: crystal structure; naphthalene derivative; π – π interactions.

CCDC reference: 1029010

1. Related literature

For the uses of naphthalene derivatives in various scientific fields, see: Ohta *et al.* (2005) and references therein. For background information and related crystal structures studied recently by our group, see: Lee *et al.* (2013); Nam *et al.* (2013).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{20}H_{17}NO\\ M_r = 287.36\\ Triclinic, P\overline{1}\\ a = 7.8278 \ (8) \ \mathring{A}\\ b = 9.8931 \ (10) \ \mathring{A}\\ c = 11.3929 \ (13) \ \mathring{A}\\ a \approx 69.307 \ (3)^{\circ}\\ \beta = 73.561 \ (3)^{\circ} \end{array}$

2.2. Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Rigaku, 1995) $T_{\rm min} = 0.701, T_{\rm max} = 0.985$ $\gamma = 81.375 (3)^{\circ}$ $V = 790.40 (15) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 296 K $0.30 \times 0.20 \times 0.20 \text{ mm}$

7842 measured reflections 3584 independent reflections 1680 reflections with $F^2 > 2\sigma(F^2)$ $R_{\text{int}} = 0.023$

CrossMark

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.119$ S = 0.993584 reflections 212 parameters

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *Il Milione* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

Acknowledgements

Financial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

Supporting information for this paper is available from the IUCr electronic archives (Reference: FF2132).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Lee, J. K., Nam, K. D., Cha, J. H., Cho, Y. S. & Lee, J. K. (2013). Acta Cryst. E69, o1025.
- Nam, K. D., Cha, J. H., Cho, Y. S., Lee, J. K. & Pae, A. N. (2013). Acta Cryst. E69, 0548.

Ohta, K., Goto, T. & Endo, Y. (2005). Inorg. Chem. 44, 8569-8573.

Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o1174 [doi:10.1107/S1600536814022521]

Crystal structure of (E)-N-[(E)-3-(4-methoxyphenyl)allylidene]naphthalen-1amine

Jae Kyun Lee, Joo Hwan Cha, Yong Seo Cho, Sun-Joon Min and Joon Kyun Lee

S1. Experimental

To a solution of 1-naphthylamine (2.0 mmol) in anhydrous ethanol (40 ml) was treated with equimolar quantity of 4methoxycinnamaldehyde. The mixture was refluxed for 2 days, and the progress of reaction was monitored by TLC. After completion of reaction, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to afford the title compound as a yellow solid in yield 92%. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in cosolvent(ethyl acetate 1: hexane 3) at room temperature.

S2. Refinement

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93-0.99 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Figure 1

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.

(E)-N-[(E)-3-(4-Methoxyphenyl)allylidene]naphthalen-1-amine

Crystal data	
$C_{20}H_{17}NO$	a = 7.8278 (8) Å
$M_r = 287.36$	b = 9.8931 (10) Å
Triclinic, $P\overline{1}$	<i>c</i> = 11.3929 (13) Å
Hall symbol: -P 1	$\alpha = 69.307 \ (3)^{\circ}$

Cell parameters from 4416 reflections

 $\theta = 3.2 - 27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$

Block, yellow

 $0.30 \times 0.20 \times 0.20$ mm

T = 296 K

 $\beta = 73.561 (3)^{\circ}$ $\gamma = 81.375 (3)^{\circ}$ $V = 790.40 (15) \text{ Å}^3$ Z = 2 F(000) = 304.00 $D_x = 1.207 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71075 \text{ Å}$

Data collection

Data collection	
Rigaku R-AXIS RAPID	3584 independent reflections
diffractometer	1680 reflections with $F^2 > 2\sigma(F^2)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.023$
ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(ABSCOR; Rigaku, 1995)	$k = -12 \rightarrow 12$
$T_{\min} = 0.701, \ T_{\max} = 0.985$	$l = -14 \rightarrow 14$
7842 measured reflections	
Refinement	

Refinement on F^2 Secondary atom site location: difference Fourier $R[F^2 > 2\sigma(F^2)] = 0.038$ map $wR(F^2) = 0.119$ Hydrogen site location: inferred from S = 0.99neighbouring sites 3584 reflections H atoms treated by a mixture of independent 212 parameters and constrained refinement 0 restraints $w = 1/[\sigma^2(F_0^2) + (0.059P)^2]$ Primary atom site location: structure-invariant where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ direct methods $\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates an	d isotropic or e	equivalent isotropic	displacement	parameters ($(Å^2)$)
----------------------------------	------------------	----------------------	--------------	--------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.89882 (16)	-0.21021 (11)	0.81880 (12)	0.0803 (4)	
N1	0.41441 (15)	0.54539 (14)	0.29989 (12)	0.0598 (4)	
C1	0.4683 (2)	0.68327 (18)	0.06861 (16)	0.0680 (5)	
C2	0.4038 (3)	0.77286 (19)	-0.03750 (16)	0.0747 (5)	
C3	0.2272 (3)	0.80938 (18)	-0.02523 (16)	0.0705 (5)	
C4	0.10408 (19)	0.75954 (15)	0.09645 (14)	0.0564 (4)	
C5	-0.0813 (3)	0.79622 (18)	0.11416 (17)	0.0725 (5)	
C6	-0.1958 (2)	0.7484 (2)	0.23285 (19)	0.0782 (5)	
C7	-0.1328 (2)	0.66267 (18)	0.34010 (17)	0.0721 (5)	
C8	0.04414 (19)	0.62462 (16)	0.32731 (15)	0.0599 (4)	

С9	0.16784 (17)	0.67163 (14)	0.20559 (13)	0.0491 (4)
C10	0.35441 (18)	0.63154 (15)	0.18883 (14)	0.0537 (4)
C11	0.50541 (19)	0.42769 (17)	0.29784 (16)	0.0599 (4)
C12	0.57334 (18)	0.33343 (17)	0.40571 (17)	0.0596 (4)
C13	0.64317 (19)	0.19989 (18)	0.41200 (17)	0.0614 (4)
C14	0.70825 (16)	0.09209 (15)	0.51729 (14)	0.0536 (4)
C15	0.76728 (18)	-0.04619 (16)	0.51217 (16)	0.0608 (4)
C16	0.83062 (18)	-0.15070 (16)	0.61020 (16)	0.0613 (4)
C17	0.83684 (18)	-0.11806 (15)	0.71615 (16)	0.0577 (4)
C18	0.7792 (2)	0.01956 (16)	0.72397 (16)	0.0651 (5)
C19	0.71601 (18)	0.12164 (16)	0.62642 (15)	0.0609 (5)
C20	0.9415 (3)	-0.35674 (17)	0.82635 (19)	0.0885 (6)
H1	0.5898	0.6584	0.0576	0.0816*
H2	0.4835	0.8080	-0.1179	0.0897*
Н3	0.1868	0.8676	-0.0974	0.0847*
Н5	-0.1252	0.8539	0.0435	0.0870*
H6	-0.3172	0.7732	0.2426	0.0938*
H7	-0.2123	0.6312	0.4211	0.0865*
H8	0.0843	0.5669	0.3997	0.0718*
H15	0.7639	-0.0689	0.4403	0.0730*
H16	0.8687	-0.2423	0.6044	0.0735*
H18	0.7837	0.0419	0.7957	0.0781*
H19	0.6774	0.2129	0.6331	0.0730*
H20A	0.8377	-0.3992	0.8283	0.1062*
H20B	1.0349	-0.3619	0.7521	0.1062*
H20C	0.9808	-0.4086	0.9037	0.1062*
H13	0.649 (2)	0.1693 (17)	0.3375 (17)	0.079 (5)*
H12	0.5628 (18)	0.3682 (16)	0.4790 (16)	0.068 (5)*
H11	0.5287 (18)	0.3968 (15)	0.2201 (15)	0.066 (5)*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.1091 (9)	0.0578 (7)	0.0842 (9)	0.0041 (6)	-0.0426 (7)	-0.0244 (7)
0.0581 (7)	0.0672 (8)	0.0580 (8)	0.0028 (6)	-0.0176 (6)	-0.0249 (7)
0.0576 (9)	0.0868 (12)	0.0616 (11)	-0.0092 (8)	-0.0069 (8)	-0.0310 (9)
0.0780 (12)	0.0922 (13)	0.0484 (10)	-0.0202 (9)	-0.0031 (9)	-0.0199 (10)
0.0879 (12)	0.0742 (11)	0.0495 (10)	-0.0087 (9)	-0.0203 (9)	-0.0161 (8)
0.0674 (10)	0.0550 (9)	0.0543 (9)	-0.0044 (7)	-0.0197 (8)	-0.0227 (8)
0.0743 (11)	0.0790 (12)	0.0742 (12)	0.0069 (9)	-0.0337 (10)	-0.0295 (10)
0.0582 (10)	0.1012 (14)	0.0835 (14)	0.0039 (9)	-0.0213 (10)	-0.0409 (12)
0.0567 (10)	0.0882 (12)	0.0686 (12)	-0.0073 (8)	-0.0049 (9)	-0.0293 (10)
0.0614 (9)	0.0612 (10)	0.0548 (10)	-0.0055 (7)	-0.0115 (8)	-0.0180 (8)
0.0563 (8)	0.0464 (8)	0.0489 (9)	-0.0057 (6)	-0.0129 (7)	-0.0197 (7)
0.0570 (9)	0.0594 (9)	0.0524 (9)	-0.0044 (7)	-0.0138 (7)	-0.0268 (8)
0.0543 (9)	0.0688 (10)	0.0611 (10)	-0.0011 (7)	-0.0127 (8)	-0.0289 (9)
0.0508 (8)	0.0699 (11)	0.0643 (11)	0.0021 (7)	-0.0156 (8)	-0.0305 (9)
0.0560 (9)	0.0712 (11)	0.0645 (11)	-0.0021 (7)	-0.0151 (8)	-0.0319 (9)
	U^{11} 0.1091 (9) 0.0581 (7) 0.0576 (9) 0.0780 (12) 0.0879 (12) 0.0674 (10) 0.0743 (11) 0.0582 (10) 0.0567 (10) 0.0614 (9) 0.0563 (8) 0.0570 (9) 0.0543 (9) 0.0508 (8) 0.0560 (9)	U^{11} U^{22} 0.1091 (9) 0.0578 (7) 0.0581 (7) 0.0672 (8) 0.0576 (9) 0.0868 (12) 0.0780 (12) 0.0922 (13) 0.0879 (12) 0.0742 (11) 0.0674 (10) 0.0550 (9) 0.0743 (11) 0.0790 (12) 0.0582 (10) 0.1012 (14) 0.0567 (10) 0.0882 (12) 0.0614 (9) 0.0612 (10) 0.0563 (8) 0.0464 (8) 0.0570 (9) 0.0594 (9) 0.0543 (9) 0.0619 (11) 0.0560 (9) 0.0712 (11)	U^{11} U^{22} U^{33} 0.1091 (9) 0.0578 (7) 0.0842 (9) 0.0581 (7) 0.0672 (8) 0.0580 (8) 0.0576 (9) 0.0868 (12) 0.0616 (11) 0.0780 (12) 0.0922 (13) 0.0484 (10) 0.0879 (12) 0.0742 (11) 0.0495 (10) 0.0674 (10) 0.0550 (9) 0.0543 (9) 0.0743 (11) 0.0790 (12) 0.0742 (12) 0.0582 (10) 0.1012 (14) 0.0835 (14) 0.0567 (10) 0.0882 (12) 0.0686 (12) 0.0614 (9) 0.0612 (10) 0.0548 (10) 0.0553 (8) 0.0464 (8) 0.0489 (9) 0.0570 (9) 0.0594 (9) 0.0524 (9) 0.0543 (9) 0.0688 (10) 0.0611 (10) 0.0508 (8) 0.0699 (11) 0.0645 (11)	U^{11} U^{22} U^{33} U^{12} 0.1091 (9) 0.0578 (7) 0.0842 (9) 0.0041 (6) 0.0581 (7) 0.0672 (8) 0.0580 (8) 0.0028 (6) 0.0576 (9) 0.0868 (12) 0.0616 (11) -0.0092 (8) 0.0780 (12) 0.0922 (13) 0.0484 (10) -0.0202 (9) 0.0879 (12) 0.0742 (11) 0.0495 (10) -0.0087 (9) 0.0674 (10) 0.0550 (9) 0.0543 (9) -0.0044 (7) 0.0743 (11) 0.0790 (12) 0.0742 (12) 0.0069 (9) 0.0582 (10) 0.1012 (14) 0.0835 (14) 0.0039 (9) 0.0567 (10) 0.0882 (12) 0.0686 (12) -0.0073 (8) 0.0614 (9) 0.0612 (10) 0.0548 (10) -0.0055 (7) 0.0563 (8) 0.0464 (8) 0.0489 (9) -0.0044 (7) 0.0543 (9) 0.0688 (10) 0.0611 (10) -0.0011 (7) 0.0508 (8) 0.0699 (11) 0.0645 (11) -0.0021 (7)	U^{11} U^{22} U^{33} U^{12} U^{13} $0.1091 (9)$ $0.0578 (7)$ $0.0842 (9)$ $0.0041 (6)$ $-0.0426 (7)$ $0.0581 (7)$ $0.0672 (8)$ $0.0580 (8)$ $0.0028 (6)$ $-0.0176 (6)$ $0.0576 (9)$ $0.0868 (12)$ $0.0616 (11)$ $-0.0092 (8)$ $-0.0069 (8)$ $0.0780 (12)$ $0.0922 (13)$ $0.0484 (10)$ $-0.0202 (9)$ $-0.0031 (9)$ $0.0879 (12)$ $0.0742 (11)$ $0.0495 (10)$ $-0.0087 (9)$ $-0.0203 (9)$ $0.0674 (10)$ $0.0550 (9)$ $0.0543 (9)$ $-0.0044 (7)$ $-0.0197 (8)$ $0.0743 (11)$ $0.0790 (12)$ $0.0742 (12)$ $0.0069 (9)$ $-0.0337 (10)$ $0.0582 (10)$ $0.1012 (14)$ $0.0835 (14)$ $0.0039 (9)$ $-0.0213 (10)$ $0.0567 (10)$ $0.0882 (12)$ $0.0686 (12)$ $-0.0073 (8)$ $-0.0049 (9)$ $0.0614 (9)$ $0.0612 (10)$ $0.0548 (10)$ $-0.0055 (7)$ $-0.0115 (8)$ $0.0563 (8)$ $0.0464 (8)$ $0.0489 (9)$ $-0.0044 (7)$ $-0.0138 (7)$ $0.0570 (9)$ $0.0594 (9)$ $0.0611 (10)$ $-0.0011 (7)$ $-0.0127 (8)$ $0.0508 (8)$ $0.0699 (11)$ $0.0643 (11)$ $0.0021 (7)$ $-0.0156 (8)$

supporting information

C14	0.0466 (8)	0.0581 (9)	0.0621 (10)	-0.0033 (6)	-0.0117 (7)	-0.0283 (8)
C15	0.0606 (9)	0.0666 (10)	0.0675 (11)	-0.0029 (7)	-0.0163 (8)	-0.0365 (9)
C16	0.0629 (9)	0.0546 (9)	0.0753 (11)	-0.0013 (7)	-0.0174 (8)	-0.0328 (9)
C17	0.0581 (9)	0.0538 (9)	0.0645 (10)	-0.0058 (7)	-0.0176 (8)	-0.0206 (8)
C18	0.0795 (11)	0.0617 (10)	0.0659 (11)	0.0001 (8)	-0.0235 (9)	-0.0325 (9)
C19	0.0635 (9)	0.0582 (9)	0.0705 (11)	0.0037 (7)	-0.0189 (8)	-0.0336 (9)
C20	0.1086 (14)	0.0560 (11)	0.0975 (15)	0.0034 (9)	-0.0321 (12)	-0.0192 (10)

Geometric parameters (Å, °)

O1—C17	1.367 (2)	C16—C17	1.370 (3)
O1—C20	1.415 (2)	C17—C18	1.394 (3)
N1-C10	1.415 (2)	C18—C19	1.367 (3)
N1—C11	1.275 (2)	C1—H1	0.930
C1—C2	1.399 (3)	C2—H2	0.930
C1—C10	1.3723 (19)	С3—Н3	0.930
C2—C3	1.356 (3)	С5—Н5	0.930
C3—C4	1.413 (2)	С6—Н6	0.930
C4—C5	1.416 (3)	С7—Н7	0.930
C4—C9	1.417 (2)	C8—H8	0.930
C5—C6	1.358 (3)	C11—H11	0.996 (19)
C6—C7	1.393 (3)	C12—H12	0.99 (2)
C7—C8	1.360 (2)	С13—Н13	0.98 (2)
С8—С9	1.4129 (18)	C15—H15	0.930
C9—C10	1.4313 (19)	C16—H16	0.930
C11—C12	1.440 (3)	C18—H18	0.930
C12—C13	1.337 (3)	С19—Н19	0.930
C13—C14	1.454 (3)	C20—H20A	0.960
C14—C15	1.393 (3)	С20—Н20В	0.960
C14—C19	1.393 (3)	C20—H20C	0.960
C15—C16	1.380 (3)		
O1…C19	3.5931 (18)	C16····H2 ^{vi}	3.4384
N1…C8	2.8446 (19)	C17····H2 ^{vi}	2.9036
N1…C13	3.591 (2)	C17…H15 ^v	3.5517
C1…C4	2.795 (2)	C18····H2 ^{vi}	3.0680
C1…C11	2.973 (2)	C18…H15 ^v	3.5526
C2…C9	2.7901 (19)	C19····H6 ^{viii}	3.2467
C3…C10	2.802 (3)	C19…H8 ⁱⁱⁱ	3.5445
C4…C7	2.793 (2)	C20····H1 ^{vi}	3.2542
C5…C8	2.771 (3)	C20····H3 ⁱ	3.5996
C6…C9	2.792 (2)	C20····H20C ^{xiv}	3.2874
C9…C11	3.432 (2)	H1…O1 ^{ix}	3.1078
C12…C19	3.021 (3)	H1····C5 ^{vii}	3.3934
C14…C17	2.793 (2)	H1…C6 ^{vii}	3.3460
C15…C18	2.740 (3)	H1…C20 ^{ix}	3.2542
C16…C19	2.762 (3)	H1…H5 ^{vii}	3.1004
C16…C20	2.847 (3)	H1…H6 ^{vii}	3.0108

01…C3 ⁱ	3 575 (3)	H1H20A ^{ix}	2 9604
$01 \cdots C5^{i}$	3 436 (3)	H1···H20C ^{ix}	3 1705
$C3\cdots O1^{ii}$	3 575 (3)	H2····O1 ^{ix}	3 1163
$C5\cdots O1^{ii}$	3 436 (3)	H2···C11 ^x	3 5870
C9C18 ⁱⁱⁱ	3 529 (3)	$H2\cdots C16^{ix}$	3 4384
$C9\cdots C20^{iv}$	3.527(3)	$H2\cdots C17^{ix}$	2 9036
$C13\cdots C15^{iv}$	3.514(3)	$H2\cdots C18^{ix}$	3.0680
$C14\cdots C16^{v}$	3 5413 (19)	H2H18 ^{ix}	3 2497
$C15\cdots C13^{iv}$	3 514 (3)	$H2 \cdots H20\Delta^{ix}$	3.2427
$C16\cdots C14^{v}$	3.5413(19)	H2H13 ^x	2 8988
$C18\cdots C9^{iii}$	3 529 (3)	H2H11 ^x	2.6953
C_{20}	3.527(3)	H301 ⁱⁱ	2.0755
01H16	2 6407	H_{3} $C_{5^{xi}}$	2.2745
01H18	2.0497		3.5624
N1H1	2.4078	H3C20 ⁱⁱ	3 5006
N1 U8	2.0251	115 C20	2 0716
N1	2.5217 2.605 (16)		2.9710
C1H3	2.005 (10)		3.3192
C1H11	2,2302	H3 H20C	2 8004
C2H1	2.799 (13)	115 1115 112111×	2.0004
C3H5	2 6503	H501ii	2.2022
C4H2	2.0393		2.7902
C4H6	3.2413		3.2350
C4H8	3.2332		2 1004
C5H2	2.6625	115112xi	2 0716
C5H7	2.0025	115 115 115115	2.9710
C6H8	3.2219	115119ü	2 0040
C7	3.2209		2.9949
C?H6	3.2233		2.0957
C0H1	3.2234		2 2226
	2 2802		2 2044
C9H5	3.2803		3.3944 2.2467
C9H3	2.2749		2 0109
C10_112	3.2308		2.5102
C10H2	3.2399		3.5192
С10Н8	2.0039		5.5958 2.7911
	2.474(14)		2.7811
	2.8333		5.1520 2.1177
	3.4223		3.11//
С12. Ц10	2.575 (10)		2.2841
C12H19	2.7411		3.2841
C12 H10	2.6229		3.0068
C12 H11	2.0555		2.5990
	2.637 (15)		3.0266
C14H10	5.2028 2.2421		3.02/3 2.1215
C14H18	5.2451 2.721 (15)		3.1313
C14···H12	2./31 (15)		2.6565
C15H19	3.2194		3.1161
C15···H13	2.608 (16)	H8····C8 ^{vm}	2.9850

C16…H18	3.2298	H8…C19 ⁱⁱⁱ	3.5445
C16…H20A	2.8179	H8…H7 ^{viii}	2.5990
C16…H20B	2.7583	H8…H8 ^{viii}	2.3227
C17…H15	3.2076	H8…H16 ^{xiii}	3.4321
C17…H19	3.2288	H8…H16 ^{iv}	3.1918
C17…H20A	2.6182	H8…H19 ⁱⁱⁱ	2.9362
C17…H20B	2.6321	H8…H20A ^{iv}	3.4229
C17H20C	3.1856	H8····H20B ^{iv}	3.4544
C18…H16	3.2356	H15····C6 ^{xv}	3.3733
C19…H15	3.2172	H15····C7 ^{xv}	3.1604
C19…H13	3.34 (2)	H15C13 ^{iv}	3.3659
C19…H12	2.753 (14)	H15C17 ^v	3.5517
C20H16	2 5691	$H15\cdots C18^{v}$	3 5526
H1H2	2 3150	H15H6 ^{xv}	3 3938
H1···H11	2.6153	H15H7 ^{xv}	3 0266
H2H3	2.0133	H15H13 ^{iv}	3 5238
H3H5	2.5070	$H16\cdots C7^{xv}$	3 4602
H5H6	2.3070	$H16 \cdots C8^{iv}$	3 5808
H6H7	2.2764		3 3010
H0 H7	2.3102		2 5285
H15H16	2.2802	H16U7xv	3.0273
H15H10 H15H12	2.2998	H16H9xy	3.0275
	2.3948		5.4521 2.1019
	2.4372		3.1918
H16H20B	2.3010		3.4288
H16H20C	3.5218		3.4003
H18H19	2.2854		2.9952
H19…H12	2.1952		3.5603
H13…H12	2.86 (3)		3.4145
H13···H11	2.39 (2)		2.9091
H12···H11	2.95 (3)	H18C10 ^m	3.2988
01…H1 ^{v1}	3.1078	$H18\cdots H2^{v_1}$	3.2497
O1···H2 ^{vi}	3.1163	H18…H5 ¹	2.9949
O1···H3 ⁱ	2.9743	H19…N1 ⁱⁱⁱ	2.6991
O1…H5 ⁱ	2.7982	H19…C8 ⁱⁱⁱ	3.1087
O1…H13 ^v	3.492 (14)	H19…C9 ⁱⁱⁱ	3.0520
N1…H6 ^{vii}	3.0857	H19…C10 ⁱⁱⁱ	2.8908
N1…H7 ^{viii}	3.1177	H19····H6 ^{viii}	2.7811
N1…H19 ⁱⁱⁱ	2.6991	H19····H8 ⁱⁱⁱ	2.9362
N1…H20A ^{iv}	3.4788	H20A…N1 ^{iv}	3.4788
N1…H12 ⁱⁱⁱ	2.99 (2)	H20A····C1 ^{vi}	3.5932
C1…H6 ^{vii}	3.3336	H20A…C4 ^{iv}	3.3507
C1…H20A ^{ix}	3.5932	H20A····C8 ^{iv}	3.1971
C2…H13 ^x	3.40 (2)	H20A····C9 ^{iv}	2.8631
C2…H11 ^x	3.002 (19)	H20A····C10 ^{iv}	3.0175
C3···H5 ^{xi}	3.2536	H20A····C11 ^{iv}	3.4725
C3…H18 ⁱⁱⁱ	3.4003	H20A…H1 ^{vi}	2.9604
C3···H20C ⁱⁱ	3.5201	H20A····H2 ^{vi}	3.2383
C3…H13 ^x	3.350 (19)	H20A····H8 ^{iv}	3.4229

C3…H11x	3.518 (17)	H20A····H20C ^{xiv}	3.5351
C4····H5 ^{xi}	3.5955	H20A····H11 ^{iv}	3.0661
C4…H18 ⁱⁱⁱ	2.9952	H20B····C7 ^{iv}	3.4084
C4····H20A ^{iv}	3.3507	H20B····C8 ^{iv}	3.2280
C4····H20C ⁱⁱ	3.5750	H20B····C9 ^{iv}	3.4819
C5…H1 ^{xii}	3.3934	H20B…C11 ^v	3.4783
C5····H3 ^{xi}	3.2551	H20B…C12 ^v	3.0819
C5…H18 ⁱⁱⁱ	3.5603	H20B…C13 ^v	2.9736
C5····H20C ⁱⁱ	3.5450	H20B…C14 ^v	3,5936
C6…H1 ^{xii}	3.3460	H20B····H8 ^{iv}	3.4544
C6···H3 ^{xi}	3.5624	H20B…H13 ^v	3.0639
C6···H15 ^{xiii}	3,3733	H20B···H12 ^v	3,4957
C7····H8 ^{viii}	3 1161	$H20B\cdots H11^{v}$	3 4741
C7···H15 ^{xiii}	3 1604	$H20C\cdots C3^{i}$	3 5201
$C7 \cdots H16^{xiii}$	3 4602	$H20C\cdots C4^{i}$	3 5750
C7···H20B ^{iv}	3.4084	$H20C \cdots C5^{i}$	3 5450
$C7 \cdots H12^{viii}$	3,407(13)	$H20C \cdots C20^{xiv}$	3 2874
C8····H7 ^{viii}	3 5163	$H20C \cdots H1^{vi}$	3 1705
	2 9850	$H20C \cdots H3^{i}$	3 3696
	2.9850	H20C H5	3,3090
C8H18iii	3.3808	H20CH20Axiv	3.5362
	3 1087		2.5551
	2 1071		2.3022
	2 2280		3.492(14)
	2 0001	H13····C2	3.40(2)
	2.9091	H13····C5	3.330(19)
	3.0320	H13····C13··	5.408 (15) 2.8088
Co H20Div	2.8031	П13 П2	2.8988
C10 HOV	3.4819	$H13 \cdots H3^{n}$	2.8004
	3.3944		3.5238
	3.2988	H13····H20B [*]	3.0639
	2.8908		2.99 (2)
	3.01/5		3.407 (13)
CII····H2*	3.5870	H12····C12 ^m	3.546 (18)
	3.2841	H12····H6 ^{viii}	3.1520
	3.3910		3.1315
C11····H20A ^w	3.4725	H12····H7vm	2.6565
C11···H20Bv	3.4783	H12····H20B ^v	3.4957
C12····H7 ^{vm}	3.0068	H12····H12 ^m	2.80 (3)
C12···H20B ^v	3.0819	$H11\cdots C2^{x}$	3.002 (19)
C12…H12 ^m	3.546 (18)	H11····C3 ^x	3.518 (17)
C13····H15 ^{IV}	3.3659	$H11\cdots H2^{x}$	2.6953
C13…H20B ^v	2.9736	H11····H3 ^x	3.5828
C14…H16 ^v	3.5385	H11····H16 ^{iv}	3.4288
C14···H20B ^v	3.5936	H11···H20A ^{iv}	3.0661
C15…H13 ^{iv}	3.408 (15)	H11····H20B ^v	3.4741
$C17_{}01_{}C20$	118 68 (17)	С1_С2_Н2	110 427
C10-N1-C11	118 58 (16)	C_{3} C_{2} H_{2}	119.432
	110.00 (10)	05 02 112	117.754

C2-C1-C10	120.77 (14)	С2—С3—Н3	119.786
C1—C2—C3	121.14 (14)	C4—C3—H3	119.786
C2—C3—C4	120.43 (16)	C4—C5—H5	119.513
C3—C4—C5	122.40 (15)	С6—С5—Н5	119.515
C3—C4—C9	119.11 (14)	С5—С6—Н6	119.772
C5—C4—C9	118.48 (13)	С7—С6—Н6	119.774
C4—C5—C6	120.97 (16)	С6—С7—Н7	119.763
C5—C6—C7	120.45 (15)	С8—С7—Н7	119.761
C6—C7—C8	120.48 (14)	С7—С8—Н8	119.545
C7—C8—C9	120.91 (15)	C9—C8—H8	119.541
C4—C9—C8	118.70 (13)	N1-C11-H11	119.7 (8)
C4-C9-C10	119.14 (12)	C12—C11—H11	117.7 (8)
C8 - C9 - C10	122.16(13)	C11-C12-H12	118 1 (8)
N1 - C10 - C1	122.72 (13)	C13 - C12 - H12	119.4 (8)
N1 - C10 - C9	117.83 (11)	C12 - C13 - H13	116 7 (9)
C1 - C10 - C9	119.36 (14)	C12 - C13 - H13	115.7(9)
N1-C11-C12	122.63 (18)	$C_{14} = C_{15} = H_{15}$	118 908
C_{11} C_{12} C_{13}	122.03(10) 122.4(2)	C16-C15-H15	118.903
C_{12} C_{13} C_{14}	122.4(2) 127.9(2)	C_{15} C_{15} C_{16} H_{16}	120 344
$C_{12} = C_{13} = C_{14}$	127.9(2) 120.78(17)	C17 - C16 - H16	120.341
C_{13} C_{14} C_{19}	120.78(17) 122.17(15)	C17 - C18 - H18	110 941
C_{15} C_{14} C_{19}	122.17(13) 117.05(14)	C19 - C18 - H18	119.941
$C_{14} = C_{15} = C_{16}$	117.05(14) 122.10(18)	C12 - C13 - H18	119.952
C_{15} C_{16} C_{17}	110 31 (16)	C14 - C19 - H19	119.279
C15 - C10 - C17	119.31(10) 125.37(14)	01 C20 H20A	119.203
01 - C17 - C18	123.37(14) 114.76(17)	01 - C20 - H20R	109.474
$C_{14} = C_{17} = C_{18}$	114.70(17) 110.97(15)	01 - 020 - 1120B	109.470
C10 - C17 - C18	119.87 (13)	$U_{1} = U_{20} = U_{20}$	109.474
C1/-C18-C19	120.15(19) 121.46(16)	$H_{20A} = C_{20} = H_{20B}$	109.403
C14 $C19$ $C18$	121.40 (10)	$H_{20}A = C_{20} = H_{20}C$	109.473
C2—C1—HI	119.613	H20B-C20-H20C	109.471
CI0—CI—HI	119.613		
$C_{20} = 01 = C_{17} = C_{16}$	-79(2)	C7—C8—C9—C4	-0.0(3)
$C_{20} = 01 = C_{17} = C_{18}$	173.05(12)	C7 - C8 - C9 - C10	-179.05(16)
C10-N1-C11-C12	179 54 (12)	C4-C9-C10-N1	179 14 (14)
$C_{11} - N_{1} - C_{10} - C_{1}$	-57.2(2)	C4-C9-C10-C1	2.4 (3)
$C_{11} = N_1 = C_{10} = C_9$	126 13 (15)	C8-C9-C10-N1	-1.8(3)
C_{2} C_{1} C_{10} N_{1}	-17742(17)	C8-C9-C10-C1	-178.62(15)
$C_2 - C_1 - C_{10} - C_9$	-0.8(3)	N1-C11-C12-C13	168 88 (13)
$C_{10} - C_{1} - C_{2} - C_{3}$	-1.0(3)	$C_{11} - C_{12} - C_{13} - C_{14}$	-176.86(12)
C1 - C2 - C3 - C4	12(3)	C12 - C13 - C14 - C15	175 95 (13)
$C_{2} - C_{3} - C_{4} - C_{5}$	17928(17)	C12 - C13 - C14 - C19	-46(3)
$C_2 - C_3 - C_4 - C_9$	0.4 (3)	C13 - C14 - C15 - C16	179.68 (11)
C3-C4-C5-C6	-178.93(17)	C_{13} C_{14} C_{19} C_{18}	-179.34(11)
C3-C4-C9-C8	178.80 (15)	C_{15} C_{14} C_{19} C_{18}	0.17 (18)
C_{3} C_{4} C_{9} C_{10}	-2.1(3)	C19-C14-C15-C16	0.16(18)
C5-C4-C9-C8	-0.1(3)	C14-C15-C16-C17	-0.3(2)
C5-C4-C9-C10	178.92 (15)	C15—C16—C17—O1	-178.93(12)

C9—C4—C5—C6	-0.0 (3)	C15-C16-C17-C18	0.10 (19)
C4—C5—C6—C7	0.4 (4)	O1-C17-C18-C19	179.35 (11)
C5—C6—C7—C8	-0.5 (4)	C16—C17—C18—C19	0.2 (2)
C6—C7—C8—C9	0.3 (3)	C17—C18—C19—C14	-0.4 (2)

Symmetry codes: (i) x+1, y-1, z+1; (ii) x-1, y+1, z-1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x+2, -y, -z+1; (vi) x, y-1, z+1; (vii) x+1, y, z; (viii) -x, -y+1, -z+1; (ix) x, y+1, z-1; (x) -x+1, -y+1, -z; (xi) x-1, y, z; (xiii) x-1, y+1, z; (xiv) -x+2, -y-1, -z+2; (xv) x+1, y-1, z.