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Abstract: In the absence of shorter term disinfectant byproducts (DBPs) data on regulated
Trihalomethanes (THMs) and Haloacetic acids (HAAs), epidemiologists and risk assessors have used
long-term annual compliance (LRAA) or quarterly (QA) data to evaluate the association between
DBP exposure and adverse birth outcomes, which resulted in inconclusive findings. Therefore, we
evaluated the reliability of using long-term LRAA and QA data as an indirect measure for short-term
exposure. Short-term residential tap water samples were collected in peak DBP months (May—-August)
in a community water system with five separate treatment stations and were sourced from surface
or groundwater. Samples were analyzed for THMs and HAAs per the EPA (U.S. Environmental
Protection Agency) standard methods (524.2 and 552.2). The measured levels of total THMs and
HAAs were compared temporally and spatially with LRAA and QA data, which showed significant
differences (p < 0.05). Most samples from surface water stations showed higher levels than LRAA or
QA. Significant numbers of samples in surface water stations exceeded regulatory permissible limits:
27% had excessive THMs and 35% had excessive HA As. Trichloromethane, trichloroacetic acid, and
dichloroacetic acid were the major drivers of variability. This study suggests that LRAA and QA data
are not good proxies of short-term exposure. Further investigation is needed to determine if other
drinking water systems show consistent findings for improved regulation.

Keywords: disinfection byproducts; drinking water; Trihalomethanes; Haloacetic acids; temporal
variability; exposure assessment; locational running annual average; birth outcomes

1. Introduction

Although the use of disinfectants (e.g., chlorine or chloramine) in drinking water to control
microbial pathogens (e.g., E. coli and Cryptosporidium) is widely considered one of the greatest advances
in public health in the 20th century [1], these disinfectants react with natural organic matter and halide
salts in the treatment process and form undesirable disinfectant byproducts (DBPs). At present, nearly
600 DBPs have been identified and nearly 80 DBPs have been measured in drinking water [2—4].
Trihalomethanes (THMSs) were the first group of DBPs detected in finished drinking water and have
been regulated since 1979 due to their association with elevated chronic cancer risk [5]. In 1998,
haloacetic acids (HAAs) were regulated as the second group of DBPs due to their frequent occurrence
in the disinfected water supply [6]. The regulated individual THMs include chloroform (TCM),
bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM); individual
regulated HAAs include monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic
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acid (TCAA), monobromoacetic acid (MBAA), and dibromoacetic acid (DBAA). These regulations
were written based on the association between long-term chronic DBP exposure via drinking water
consumption and bladder, colorectal, and liver cancer risk [7-10]. To meet the compliance standards
for regulated THMs and HA As, community water suppliers are advised to adhere to a recommended
sampling protocol to measure chronic long-term exposure.

As per the Stage 2 DBP Rule set by the EPA (U.S. Environmental Protection Agency) (2002), each
community water supplier needs to calculate the locational running annual average (LRAA) at locations
throughout the distribution system which have been identified as having high concentrations of THMs
and HAAs. These higher concentration locations are identified through an Initial Distribution System
Evaluation, which is required for larger water systems (serving >10,000 people) and uses historic data
or models for identification of the locations. The LRAA compliance data on THMs and HAAs are
derived using the QA of all samples taken from each monitoring location in the distribution system.
QA data for the current quarter is combined with the three preceding quarterly running averages to
obtain the LRAA for the system across four quarters. Although this represents an improvement over the
system-wide averaged data (as per DBP Rule-1), the compliance data remains sparse due to quarterly,
or in some cases, annual sampling requirements (for water suppliers servicing <10,000 people) [11].
It is suspected that the existing LRAA compliance data do not account for the seasonal temperature
(summer vs. winter) and spatial fluctuations, source water characteristics (surface, ground, or mixed),
and disinfection method (chlorination, chloramination, ozonation) [12-14], which influence THMs
and HAAs formation. These temporal and spatial variabilities reveal exposures as short as a few
weeks and as long as a few months and their high exposure levels are suspected to affect a developing
fetus. There are several epidemiologic studies that suggest that prenatal DBP exposure is associated
with adverse birth outcomes (Table 1). Several of these epidemiologic studies reported an association
between exposure to THMs and/or HAAs and an increased risk of birth anomalies, adverse fetal
growth, and small gestational duration [15-22]. Most of these studies have observed these associations
at much lower levels than the EPA permissible limits of regulated THMs and HAAs [17,18,22,23].
However, without good quality short-term acute exposure data on THMs and HAAs, the relationship
cannot be confirmed. The only existing study that used more frequently collected drinking water data
showed a correlation with preterm delivery, a suggestive finding [24]. A few studies have used survey
techniques to capture inter-individual behavioral differences and drinking water intake, but most do
not go beyond reported compliance data on THMs and HAAs levels.

Table 1. Summary of key birth cohort studies on THMs and HA As with inconclusive findings.

Study DBPs Type Birth Outcomes Examined Findings Study Location
Neural tube defects, No statistically significant
Dodd d King, 2001 [25] THMs, cardiovascular defects, cleft ati Yf & d with Nova Scotia,
0dds and Bing, TCM, BDCM defects, chromosomal association was found with Canada
c any of the congenital anomalies
abnormalities
Cedergren, 2002 [15] THMs Cardiac defects Statistically significant association Sweden
Only high BDCM exposure
Waller et al., 1998 [23] THMs Spontaneous abortion (>18 ug/L) was associated USA
with spontaneous abortion
Miscarriage, preterm . .
Savitz et al., 1995, 2006 [26,27] THMs birth (PTB), low e Satistically North Carolina,
birth weight (LBW) gn
. . Elevated mutagenic activity was
Me;z::t};stv;eti(gjigl(ha/[i‘/v)l assoclated with SGA (odd Massachusetts,
Wright et al., 2004 [16] THMs and HAAs g v age, ratio = 1.25; 95% confidence interval ’
small for gestational USA
age (SOA), PTB (CI), 1.04 to 1.51) and MBW
& ’ (—27 g; 95% CI)
Hoffman et al., 2008 [21] THMs and HAAs SGA Analysis did not show USA
a consistent association
Patelarou et al., 2011 [28] THMs LBW, SGA, PTB No significant Crete
association was found
Grazuleviciene et al., 2011 [29] THMs Congenital anomalies No significant Lithuania

association was found
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Table 1. Cont.

30f16

Study DBPs Type Birth Outcomes Examined Findings Study Location
THMs, HAAs, Mean birth Statistical association was Massachusetts
Rivera-Nunez and Wright, 2013 [17] ~ brominated THMs ioht SCA. PTB found between BrTHMs USA ’
(BrTHMs) weight, ’ and mean birth weight
Fetal growth Higher uptake BrTHMs was
Costet etal,, 2012 [18] THMs and TCAA restriction (FGR), PTB associated with FGR France
Intrauterine growth No statistically
Porter et al., 2005 [30] THMs and HAAs retardation (IUGR) significant association Maryland, USA
Levallois et al., 2012 [19] THMSs and HAAs SGA Increased risk was observed Quebec, Canada
Horton et al., 2011 [24] THMs and HAAs SGA and PTB No association was observed North

Carolina, USA
Arkansas, USA

Luben et al., 2008 [31] THMs and HAA Hypospadias No association was found

Dibromoacetic acid and

Hinckley et al., 2005 [22] THMs and HAAs LBW and IUGR dichloroacetic acid show Colorado, USA
association with LBW
Hoffman et al., 2007, 2008 [20,21] THMSs and HAAs SGA Only THMs were associated SGA USA

There are two challenges with compliance data. First, the frequency of collection: annual or
quarterly, may not capture short-term but high levels of THMs and HAAs present in participants’
drinking water. Second, most community water suppliers report the total (aggregated) concentration
levels of regulated THMs and HA As. The existing compliance requires aggregated levels of THMs and
HAAs, rather than exposure levels of individual THMs and HA As. Individual levels of these DBPs
may show substantial variability in exposure levels in different environmental conditions. The handful
of studies that use exposure data on individual regulated DBPs indicate improved associations with
adverse birth outcomes among brominated DBPs [13,17,18]. Brominated THMs, including TBM and
DBCM, and brominated HAAs, including DBAAs, are considered more genotoxic and mutagenic than
chloro-derivatives of THMs and HAAs, and aggregated data mask these distinctions [3,32-36].

Therefore, we conducted a study with two aims. First, to evaluate whether LRAA compliance
and QA data adequately represent short-term exposure levels of total THMs and HAAs in the peak
DBP season (i.e., May—August, when high temperature and rainfall in the study area lead to high DBP
formation). Second, to determine the exposure variability in individual DBPs that exposure assessment
should account for.

2. Materials and Methods

We designed a residential tap water monitoring plan to collect residential tap water samples
from multiple locations in a large water distribution system and compared the levels of THMs and
HAAs with QA and LRAA compliance data. We also evaluated the short-term exposure variability
of individual regulated DBPs to determine their influence on aggregated THM and HAA levels. We
preferred residential tap water samples over water samples collected from a treatment facility because
they account for the spatially formatted excess THMs and HAAs in the distribution system due to
excess contact time of natural organic matter with residual chlorine.

2.1. Description of the Community Water System

A large community drinking water distribution system that serves nearly 1 million people in a
major midwestern city in the United States was chosen for this study. We included five water treatment
stations (A through E) in the distribution system, wherein each station gets water from a separate
source water body. The treatment stations that receive raw water from surface water bodies are A, B,
C, and D; E receives groundwater. All treatment stations use chloramine as the primary disinfection
method. Table 2 provides historic data from 20112015 depicting the main physical and chemical
characteristics for each source water body (raw water) and treatment stations (finished water).
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Table 2. Physicochemical properties of raw and finished drinking water.

% UV Temperature

Treatl.nent Water pH Transmittance TOC mg/L Degree F Chlorine mg/L
Station Type
Raw  Finished Raw  Finished Raw  Finished Raw  Finished Raw  Finished
A SW 7.94 7.37 75.76 91.49 4.25 2.46 74.64 74.94 7.0 1.9
B SW 8.07 7.46 81.12 90.57 3.48 2.41 71.43 75.49 5.5 1.5
C SW 8.11 7.55 69.03 90.53 3.63 2.59 74.92 75.03 5.0 22
D SW 8.22 7.63 77.42 90.84 3.63 2.10 72.78 68.59 5.6 2.0
E GW 7.34 7.66 N/A N/A 58.32 N/A 1.6 1.5

SW and GW represent surface water and ground water sources, respectively. Total organic carbon (TOC) and
temperature data were calculated using the seasonal average (May-August) data from 2011-2015. pH and % UV
(Ultra-violet) Transmittance data were calculated using the seasonal average (May—-August) data from 20112014
and 2014-2015, respectively. In the surface water treatment stations, the chlorine in raw water represents total
residual chlorine. It was estimated based on the chlorine demand of the water, and added at multiple locations in
the disinfection process. The chlorine in finished drinking water represents the free chlorine, preventing the growth
of algae, aiding in the coagulation of organic substances and reducing odor. For groundwater, the chlorine demand
does not change significantly from raw to finished water, possibly because of low levels of natural organic matter,
iron, and manganese.

A total of eight residential sampling locations were included in the sampling plan based on
their geographical connectivity with the treatment stations (Figure 1). Location 1 receives water from
treatment station A; locations 2, 3, and 4 receive water from treatment station B; location 5 corresponds
to D; location 6 corresponds to E; and locations 7 and 8 correspond to C. A total of 30 samples were
collected during the sampling period (May—-August), where 12 samples were from residential locations
served by treatment station B, four by treatment station E, five by treatment station A, seven by
treatment station C, and two by treatment station D. Except for treatment stations D and E, each
treatment station had residential monitoring data collected from May through August. For treatment
station D, the water samples were only collected in May and June, and for treatment station E, the
water samples were collected only in June and July. Although we intended to collect a consistent
number of tap-water samples from each treatment station during the study period, we failed to do
so because of the unavailability of volunteers, noncompliance with the sample collection protocol,
and damage to samples during shipment or transport. Thirty samples may seem small for this study,
but it is substantially greater than what water suppliers collect in a given sampling period. For
most public water suppliers, regulations require the collection of four samples in different locations
once per quarter.

The water age in the distribution system may affect the quality of the finished drinking water [37].
Therefore, we also obtained data on water aging. The reported water aging for surface water systems
varies from 1 to 4 days. This range is consistent with the American Water Works Association reported
values of 3-7 days for a comparable water system that serves 800,000 people. [38] The Water Industry
Database indicates an average water distribution system retention time of 1.3 days and a maximum
retention time of 3.0 days based on a survey of more than 800 U.S. utilities [39].
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Figure 1. Schematic of the community water system used in this study. Initial distribution system
evaluation (IDSE) monitoring sites from treatment stations A, C, and D were used to collect water
samples for compliance reporting.

2.2. Sampling Plan and Laboratory Analysis

The participants at each treatment station were randomly selected to participate in the study.
They were provided training for sample collection, storage, and shipment. They received a sampling
kit, tap water collection protocol, and a code to preserve anonymity. The sampling protocol included
color coordinated diagrams with associated labels, making it easier for volunteers to understand
and execute sampling accurately as per the laboratory standard procedure. On a given sampling
day, we collected tap water samples from multiple participants. Sampling days occurred weekly or
biweekly depending upon the availability of participants. All of the samples in the study were collected
between 5 am and 8 am. The sampling kit included two vials, first for HAAs testing, and second for
THM s testing. The sampling kit also included preservative hydrochloric acid (HCl) for THMs, and a
proportionate number of ice packs for temporary storage. At lower pH, no THM formation is expected
to occur in water [40]. Therefore, HCl was used as a preservative to minimize excess formation
of THMs during storage. Samples were shipped on the same day for analysis to an EPA-certified
laboratory for water testing. The samples were analyzed within 7 days of the collection date using the
EPA recommended methods for THMs (# 524.2) and HAAs (# 552.2) [41,42].

2.3. Collection of Compliance Data

Both QA and LRAA data for THMs and HA As were provided by the water supplier for the same
year. Through treatment stations’ compliance with the Stage 2 DBP rule, they associated compliance
sampling locations within the distribution system with treatment stations A, C, and D. However, we
used the same compliance data as an indirect measure for treatment station B and E because they are
also part of the same distribution network.

2.4. Data Analyses

All data analyses were conducted using R (v 3.1.2) (R Foundation for Statistical Computing,
Vienna, Austria) and Microsoft Excel® 2013 (Microsoft, Sacramento, CA, USA). We included two
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datasets in our analyses: (i) residential tap water monitoring data on total and individual THMs and
HAAs, and (ii) compliance reported QA and annual LRAA data. We assessed the following: (a) the
summary statistics of the measured levels of total THMs and HAAs, (b) comparison of the measured
levels of total THMs and HAAs with the QA and LRAA data, and (c) short-term temporal and spatial
variability in individual THMs and HAAs.

Summary statistics on the concentration distribution of total THMs and HA As were calculated
per treatment station for the 4-month sampling period. The temporal variability of total THMs and
HAAs was represented by time-series graphs depicting monthly mean concentrations per treatment
station and was plotted against QA and LRAA data. Similarly, we compared the spatial variability
of THMs and HAAs in comparison with the LRAA data and calculated the significance. Individual
THMs and HAAs were evaluated for temporal and spatial differences based on percent deviation
in measured residential levels. A two-tailed Student’s ¢-test (o« = 0.05) was conducted to determine
statistical significance between any two treatment stations for total THMs and HAAs concentrations.

3. Results

3.1. Summary of the Residential Monitoring Data

The measured levels of total THMs and HAAs in residential tap water samples were used to
summarize the mean concentrations for the entire monitoring period (May—-August) by each treatment
station for their use in analyzing the central tendency and variability in THMs and HAAs (Table 3).

Table 3. Summary statistics of the residential monitoring data for total THMs and HAAs.

s . Number of
Treatment  Monitoring  Numberof \y .\ nin Max  Median GM SD CV  95%CI Samples ' Samples
Station Location Samples SMCL >MCL

Total THMs (ug/L)

A 1 5 68.65 3877 9871 67.63 65.60 22.09 0.57  42.65-100.90 1 20
B 2,34 12 7486 59.60 89.90 74.08 7414 10.66 033  67.59-81.33 5 42
C 78 7 6793 51.74 7945 7195 6726 10.02 036  58.28-77.62 0 0
D 5 2 80.98 71.10 90.86 80.98 80.38 1397 022 16.92-381.72 1 50
E 6 4 2693 1619 34.07 2874 2676 873 038  14.62-45.38 0 0
Total HAAs (ug/L)
A 1 5 4695 19.88 8346 4138 4085 26.67 0.32  19.36-86.20 2 40
B 2,34 12 59.76  42.00 9249 4821 57.05 19.86 0.14  46.84-69.49 4 33
C 7,8 7 48.60 2529 71.86 5093 45.68 1742 0.15 31.79-65.64 2 29
D 5 2 6282 71.10 90.86 6282 6272 13.97 0.17  31.41-125.23 1 50
E 6 4 16.69 11.17 2463 1547 1579 6.42 0.32 8.58-29.05 0 0

GM = Geometric Mean, SD = Standard Deviation; CV = Coefficient of Variation; CI = Confidence Interval.

The monitoring data shows a large range of concentrations across treatment stations (THMs
Min = 16.19 pg/L, Max = 98.71 pg/L; HAAs Min = 11.17 ug/L, Max = 92.49 ug/L). Residential
samples associated with treatment station D had the highest mean concentration of THMs (80.98 nug/L)
and HAAs (62.83 ug/L), while samples from station E exhibited the lowest mean concentration of
THMs (26.93 ng/L) and HAAs (16.69 ug/L). Each of the surface water locations showed significantly
higher concentrations of THMs and HA As than the groundwater location. The comparison of treatment
stations shows that the location associated with station A displayed the highest variability for both
THMSs (SD = 22.09, CV = 0.57) and HAAs (SD = 26.67, CV = 0.32). Although, mean concentration
levels for the sampling period rarely exceeded the EPA maximum concentration limit (MCL) for
THMs (80 ng/L) and HAAs (60 pg/L), several individual water samples exceeded MCL. More than
a quarter of the surface water samples, 27%, exceeded the MCL for THMs, with stations D and B
showed the highest number of exceedances (>42%). The water samples coming from stations C and
E never exceeded the MCL for THMs. All of the surface water locations showed a large range of
HAAs concentrations (range: 19.88-92.49 ug/L) and 35% of the samples associated with surface water
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locations exceeded the HAAs MCL. The treatment station E had the lowest mean concentration of
HAAs (16.69 ng/L) and never exceeded the HAAs MCL.

3.2. Temporal and Spatial Assessment of Total THMSs and HAAs

The temporal and spatial variability in the total THMs and HAAs levels were evaluated for
the monitoring period. Residential tap water samples were analyzed to estimate monthly mean
concentrations of total THMs and HAAs. For each treatment station, the corresponding monthly
monitoring data from each location were pooled to obtain total THMs and HAAs. Mean monthly
THMSs concentrations ranged from 26.93 ug/L to 80.98 ng/L and mean HAAs concentrations ranged
from 16.69 ng/L to 62.82 ug/L across all the treatment stations during the sampling period. Monthly
mean concentration data (short-term) were compared with long-term LRAA and QA data calculated
for treatment stations A, B, and D (Figure 2).

(a) THMs
120

100

THMs Concentration (ug/L)
[o)]
o
=
—_
—

MAY JUN JUL MAY JUN JUL AUG MAY JUN JUL AUG MAY JUN JUN JUL
A B C D E

(b) HAAs
120

100

80 J-

HAAs Concentration (pg/L)
[o)]
o
—

—
iy

20

—
—

MAY JUN JUL MAY JUN JUL AUG MAY JUN JUL AUG MAY JUN JUN JUL
A B C D E

Figure 2. Temporal comparison of monitored (a) total THMs and (b) HAAs levels with LRAA
compliance and QA data.
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The green and blue lines represent the LRAA and QA reported data for systems A, C, and D,
respectively; the error bars represent the 95% confidence interval of the mean of multiple samples
(experimental error). Although the LRAA compliance sampling locations within the distribution
system were associated with treatment stations A, C, and D, the same compliance data will be used as a
proxy for treatment station B and E because they are also the part of the same water distribution system.

Treatment stations A, B, and C consistently have higher mean concentrations of THMs and HAAs
in May followed by a gradual decline in June, July, and August. We only obtained mean concentrations
for two months for systems D and E and therefore did not measure the fluctuations over time for
these systems. The mean concentrations of A, C, and D were higher than the corresponding QA and
LRAA compliance data at every measurement. We observed large differences in the monthly mean
concentrations of THMs and HA As across treatment stations A, B, and C, with a large coefficient of
variations (CV; for THMs: CV range (0.33-0.57); for HAAs: CV range (0.14-0.32)).

The residential monitoring data for the total THMs and HAAs for the entire sampling period was
compared with the QA and LRAA data for each treatment station (Figure 3). With few exceptions,
the monitoring data consistently showed higher concentrations than the QA and LRAA compliance
data for each station. The comparison of monitoring data from all surface water stations (A, B,
C, and D) with QA and LRAA showed significant differences in THMs and HAAs concentrations
(p < 0.05). On the contrary, the monitoring data from groundwater station E consistently showed lower
concentrations than the QA and LRAA compliance data. Also, these differences between monitored
and compliance levels were statistically significant (p < 0.05).

(@) THMs (b) HAAs
100 -

—~ ~ 75~
= <
e & E
C c $
RS (]
g | g
< <
o 50- )
(@] (&) e l
2 2
T <<
~ .y
25-
25 _ —|_ E
L]
A B c D E A B c D E
Treatment Station Treatment Station

E Monitoring - LRAA - QA E Monitoring ‘ LRAA - QA

Figure 3. Spatial comparison of monitored (a) total THMs and (b) HAAs levels with LRAA compliance
and QA data. The boxplots above utilize Tukey-style whiskers in that the upper whisker extends from
the upper hinge (75th percentile) to the highest value that is within 1.5 x IQR (interquartile range) of
the hinge and the lower whisker extends from the lower hinge (25th percentile) to the lowest value
within 1.5 x IQR of the hinge. The black dots are outlier data points (outside the 1.5 x IQR range).

3.3. Temporal and Spatial Assessment of Individual THMs and HAAs

Temporal assessment of individual THMs and HA As was performed by calculating the monthly
mean and standard deviation (SD) for each treatment station (Table 4). The percent deviation across
all surface water treatment stations (A, B, C, and D) was calculated based on the highest reported SD
for the ground water station (E). Ground water does not show high variability due to low contents of
natural organic matter and inorganics (e.g., iron and manganese), and moderate temperature. Thus, we
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assumed that the highest reported variability (SD) for each chemical in the ground water station
as the baseline variability to compare with the surface water stations. Overall, most chlorinated
THMs and HA As show higher temporal variability than brominated THMs and HAAs. Among all the
regulated THMs, TCM is the major driver of variability in surface water (75%). For the regulated HAAs,
both chlorinated and brominated HAAs show high temporal variability. However, TCAA (100%),
and DCAA (87.5%) were the major drivers. For all surface water stations, we found high temporal
fluctuations for individual TCM (0.8-16 ug/L), TCAA (1.1-11 pg/L), and DCAA (1.1-13.7 ug/L).

The spatial assessment of individual THMs and HA As was performed by plotting the average
concentrations of individual THMs and HAAs for the entire monitoring period for each treatment
station (Figure 4). The assessment of monitoring data for individual DBPs across different treatment
stations highlights that TCM, TCAA, and DCAA are the major drivers of spatial variability. Brominated
species such as DBCM and BCAA show the least spatial variability (p < 0.05). Since, DBP compliance
does not require the reporting of concentration levels of individual THMs and HA As, we were not
able to compare temporal and spatial differences between monitored levels of individual THMs and
HAAs with LRAA and QA.

(a) Individual THMs (b) Individual HAAs

80- 50-

1y - ‘ |

20-

20-. ; .* - ‘ 10- EH
* -

o == _® - - O.I_ii:ilz! S _

: ' ' ' A B c D E

Treatment Station Treatment Station

‘ BDCM - TBM - TCM ‘ DBCM ‘ MCAA E DCAA E TCAA E MBAA - DBAA

Figure 4. Spatial distribution of (a) individual THMs and (b) HAAs. BDCM = bromodichloromethane,
TBM = bromoform, TCM = chloroform, and DBCM = dibromochloromethane. MCAA = monochloroacetic
acid, DCAA = dichloroacetic acid, TCAA = trichloroacetic acid, MBAA = monobromoacetic acid,
and DBAA = dibromoacetic acid. The boxplots above utilize Tukey-style whiskers in that the upper
whisker extends from the upper hinge (75th percentile) to the highest value that is within 1.5 x IQR of
the hinge and the lower whisker extends from the lower hinge (25th percentile) to the lowest value
within 1.5 x IQR of the hinge. The black dots are outlier data points (outside the 1.5 x IQR range).

Concentration (ng/L)
Concentration (ug/L)
iy
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Table 4. Temporal variability of individual THMs and HAAs for all surface water stations.

10 of 16

Chemical ¢ D e

May Jun Jul Aug May Jun Jul Aug May Jun Jul Aug May Jun Jul Aug May Jun Jul Aug eviation
TCM 815  56.6(5.1) (?51;) NA 70(2.1)  60.3(6.0) 57.6(9.9) 43.2(0.8) NA 58.6(8.5) 41.9(12.9) 33.6 56.5 75.0 NA NA NA 11.6 (4.0) 223(2.1) NA 75.0
BDCM 1630 13.6(1.6)  11(0.5) NA  146(07) 132(0.8) 14.0(19) 144(04) NA 121(0.6) 17 (4.0) 183 12.1 (113'66) NA NA NA 58(0.7)  89(13) NA 375
DBCM 1.91 25(.1) 29(13) NA 0.9 (1.3) 2.0 (0.5) 50(54) 21(0.1) NA 1.8 (0.6) 4.8(0.2) 6.9 25 2.3 NA NA NA 2.7(0.26) 28(0.8) NA 37.5
TBM <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD NA
MCAA 656  2.8(3.9) NA NA 69(04) 39(1.3)  05(L1) <LOD NA 3.7 (1.4) <LOD <LOD 55 54 NA NA NA <LOD <LOD NA NA
DCAA 32.80 20.1(59) 82(11) NA 324(3.0) 232(7.0) 19125 16.9(45) 222 25.2(4.9) 18.0(11.0) 127 235 27.3 NA NA NA 62(02) 10.8(1.3) NA 87.5
TCAA 4410 292(7.3) 13.5(4.6) NA 46.5(1.1) 36.0(137) 289(15) 27(1.9) 22.1 28.6 (10) 22.0(11.7) 15.3 28.4 32 NA NA NA 39(0.1) 10.0(0.8) NA 100.0
MBAA <LOD <LOD <LOD NA 0.5(0.7) <LOD 0.3 (0.5) <LOD <LOD 0.4(0.7) <LOD <LOD <LOD <LOD NA NA NA <LOD <LOD NA NA
DBAA <LOD 0.6(09) 1.1(15) NA 2.1(0.7) 0.6 (0.7) 04(0.7)  0.7(1.0) 2.1 0.5(0.8) 1.9(0.8) 24 2 15 NA NA NA 15(0.1) 1.2(1.7) NA 0.0

where, BDCM = bromodichloromethane, TBM = bromoform, TCM = chloroform, and DBCM = dibromochloromethane. MCAA = monochloroacetic acid, DCAA = dichloroacetic acid,
TCAA = trichloroacetic acid, MBAA = monobromoacetic acid, and DBAA = dibromoacetic acid. A, B, C, and D, are surface water treatment stations (SW), and E is ground water (GW)
treatment station. % Deviation represents the deviation between concentration levels of each chemical across different SW stations. The following equation was used to calculate percent
deviation: % Deviation = (number of SW data points with standard deviation (SD) greater than the highest reported SD in GW/(total number of SW data points with SD) x 100. All the
SDs for SW stations are shown in parentheses. NA represents no data available. <LOD represents reported data below the limit of detection. The highest SDs (ug/L) for each chemical in

GW (station E) are as follows: TCM = 4.0, BDCM = 1.3, DBCM = 0.8, DCAA = 1.3, TCAA = 0.8, and DBAA = 1.7. For the remaining chemicals in GW, the levels were below <LOD.
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4. Discussion

The comparison of frequently measured residential mean concentrations of THMs and HAAs over
the course of a summer period shows large deviations from the maximum allowable concentration limit
(Table 2). The measured concentrations of total THMs and HA As exceeded the MCL for several surface
water systems. The deviation was significantly higher for THMs (CV = 0.57) than HAAs (CV = 0.32)
for most surface water systems because of high natural organic contents and residual chlorine in the
distribution system. On the contrary, HAAs show relatively low deviation in chloramine distribution
systems. HAA concentrations decrease as they approach the farthest points in the distribution system
due to microbial degradation [43]. Serodes et al. (2003) assessed the spatial variability of HAAs in
two distribution systems using two different disinfection methods (chloramine and chlorine) [44].
In both systems, HA As increased, followed by a gradual decrease, a phenomenon probably related to
biodegradation. There is also evidence that iron pipes within a chlorinated distribution system can
cause the abiotic reduction of HAAs. This could explain the lower but still positive deviation that this
study found between frequently measured mean concentrations of HAAs and LRAA and QA data.

Temporal analysis of monthly mean concentrations of regulated THMs and HAAs measured
at residential locations in this study suggest that May and June are high months of DBP formation
in this system, which is consistent with other surface water systems with similar seasonal patterns
of rainfall [14,43-47]. Treatment stations A, B, and D show high mean monthly concentrations in
May (June in some cases, e.g., THMs in station D and HAAs in stations B and D). Spatial analysis of
all surface water treatment stations show significantly higher concentrations for THMs and HAAs
than the groundwater treatment station. This temporal and spatial variability was consistent with
other studies conducted for different water systems, which have reported high temporal and spatial
variability of THMs and HAAs in the summer and spring months [14,48]. High natural organic matter,
water temperature [49], pH, and chloramine dose [50] may explain the high temporal and spatial
variability in the surface water systems.

The comparison of monthly mean concentrations during the sampling period with corresponding
QA and LRAA compliance data suggests that all surface water treatment stations in this study
underestimate residents” exposure to THMs and HAAs during some summer months (Figure 2).
Conversely, the treatment system sourced from groundwater showed low variability and lower mean
concentrations of THMs and HAAs because it requires a low chlorine dose and contains low dissolved
organic matter, stable pH, and stable year-round temperatures (Table 1). Therefore, populations that
rely on the groundwater supply are not exposed to high DBPs and the distribution system exhibits
low spatial and temporal variability. Thus, the LRAA and QA compliance data overestimate the
exposure for residents who depend on groundwater based public water supplies. In contrast, due to
high temporal and spatial variability in surface water based treatment stations, frequent monitoring is
essential in the summer months to capture high concentrations of THMs and HAAs. Assuming that the
same compliance data derived from treatment stations A, C, and D can be used as an indirect measure
for the population that relies on treatment stations B and E, it will underestimate the population
exposures of THMs and HA As for the sampling months for station B and overestimate them for station
E. This may lead to a potential exposure misclassification issue in the populations that rely on these
two systems.

The temporal and spatial analysis of individual THMs and HAAs is essential to understand which
chemical is driving overall THM or HAA variability in the water distribution network. This may be
helpful to improve the sampling strategy to capture individual DBPs with seasonally high variability.
Major individual chemicals such as TCM, DCAA, and TCAA are the key drivers of temporal and
spatial variability in this chloramine distribution system (Table 4 and Figure 4). A majority of other
chloramine and chlorinated water treatment systems show a similar pattern of individual THM and
HAA distribution. For example, the seasonal concentrations of individual THMs in a chlorinated
surface water system in Istanbul, Turkey found that TCM is the main driver of THM variability in
the system. Data collected from the summer months (June-August) indicate that TCM, DBCM, and
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BDCM levels are 1.2 to 1.8 times higher than in the fall (September—October) and spring (March-May).
Summer months also show spatial variability in the range of 1.2 to 1.8 for both individual and total
THMSs [46]. This is consistent with our findings that show variability in the range of 1.3-1.6, with
TCM being the largest contributor to THM concentrations, followed by BDCM, DBCM, and TBM.
At three distinct geographical locations in the U.S., TCM shows the highest variability in the three
water systems [51]. In Quebec City, Canada, individual TCM (SD = 40), TCAA (SD =+ 22), and DCAA
(SD = 16) show high temporal fluctuations (standard deviation ranges from 16 pug/L to 40 pg/L) in the
distribution systems with levels that pose significant health concerns for small for gestational age [19].

However, these studies did not look at the temporal and spatial variability of individual HAAs to
compare them with the monitoring data on individual HAAs. Most water supply providers are not
required to submit individual DBP data along with their quarterly compliance reports. The absence
of individual level DBP data further limits our understanding of individual DBP behavior in the
distribution system. It also limits the usability of compliance data to assess the role of individual THMs
and HAAs in causing adverse health effects. Several epidemiologic studies have shown an increased
association between individual THMs and HA As with adverse birth outcomes at the measured levels.
For example, the consumption of tap water during pregnancy, containing different levels of BDCM,
elevates the risks of neural tube defects (at >20 pg/L Risk Ratio (RR) = 2.5) [25], and spontaneous
abortion (at >18 png/L Odd Ratio (OR) =2.0) [23] and (at >5 pug/L OR =1.1-1.2) [16]. The concentrations
of TCM > 36 ug/L [17], DCAA > 18 ug/L, and TCAA > 17.8 ug/L increased the risk of small for
gestational age (OR = 0.95-1.14). Similarly, the consumption of drinking water contaminating DBAA
(>5 ng/L) during weeks 33-40, and DCAA (>8 ug/L) during weeks 37-40 of pregnancy evaluated the
risk of low birthweight and intrauterine growth restriction [22].

4.1. Limitations of the Study

Although we collected multiple tap water samples each week for several weeks, we were not able
to recruit people from the extreme ends of the distribution system. We also lacked precise information
about the distance between each sampling location and the corresponding treatment station. Most of
our residential sampling locations were located within an 8-mile radius of the treatment stations;
therefore, we were not able to establish intra-day spatial distribution of THMs and HAAs levels
across different locations. However, we suspect higher THMs formation at locations furthest from the
treatment station because of residual chlorine in the distribution system and relatively long contact
time. Another limitation of our study is that the monitoring period was restricted to the late spring
and summer months and thus it cannot be generalized to the relationship between compliance data
and more-frequently gathered data in other months. Therefore, the findings from this study are
only meaningful for the specified sampling period when THMs and HAAs peak in the drinking
water. Also, this study was designed to compare frequently measured short-term levels with sparsely
collected compliance data to evaluate the effectiveness of the compliance data for short-term exposure
assessment applications for reproductive and developmental investigations. Thus, the generated
monitoring data should not be used for exposure assessment applications.

4.2. Strengths of the Study

We can identify four strengths of our study that prior research has not offered. First, instead of
sampling water from the distribution system, we collected tap water samples from residents. This type
of sampling captures the excess formation of THMs and HAAs in the distribution system due to
residual chlorine. Second, we collected water samples from both surface and groundwater based
sampling locations. This allows us to compare short-term monitoring data with compliance data and
captures differences in THMs and HAAs levels in surface and groundwater stations, which produce
water with a wide difference in natural organic matter presence. Third, we collected repeated samples
from each location in a relatively short time period. This helps to capture a range of concentration
levels and average concentrations at each location, which minimizes bias in our measured levels.
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Fourth, this is the first study that compares frequently collected monitoring data directly with LRAA
compliance and QA data for the same year. The implication of this work is significant as it provides
the first direct comparison between long term (LRAA compliance and QA data) and short-term (few
weeks) data on THMs and HA As.

5. Conclusions

The findings from residential monitoring are in accordance with our initial hypothesis that QA and
LRAA compliance data do not capture short-term high concentrations of THMs and HAAs. Despite
having no known difference in natural organic matter, water ageing, pH, temperature, disinfection
methods, or dose, all surface water based treatment stations showed high temporal and spatial
variability for total and individual THMs and HAAs. Utilizing a relatively large number of collected
samples in the short term (few weeks), we were able to capture the temporal and spatial variability
that one sample per quarter, as current regulations require, would not capture in high DBP months.
Although this evidence is suggestive, our results indicate that chronic LRAA and/or QA data are
not a good measure for short-term acute exposure. More frequent monitoring, especially in surface
water systems, could help to capture the short-term temporal and spatial variability in individual
and total THMs and HAAs, and to an extent, minimize exposure misclassification. However, further
investigation is warranted to determine if other public water systems show similar patterns so that
compliance can be designed to capture reliable short-term exposure for developmental health outcomes
research. Most countries have similar compliance for THMs and HAAs, and often lack short-term
data on regulated THMs and HAAs. Hence, the findings from this study can also be applied to
other geographical water supply systems to evaluate the usefulness of compliance data to estimate
representative short-term exposure of regulated DBPs. Also, further research on the chemical nature of
surface and ground water born natural organic matter will help to understand the deep differences in
DBP formation and their toxicities for research on their health effects.

Acknowledgments: The authors acknowledge the water utility for the cooperation of its employees in this study
and for providing data on the water distribution characteristics, treatment stations, and treatment methods.
We sincerely appreciate the voluntary participation of individuals who provided tap water samples for the
study. We also sincerely appreciate Rachel Jones from the University of Illinois at Chicago for her review of the
manuscript and helpful comments to improve the quality of our manuscript. We also thank Jeffrey Ashby, research
assistant at the Fairbanks School of Public Health, for his timely help with the formatting of this manuscript. We
are grateful to the Office of the Vice-Chancellor for Research, Indiana University, for funding this project through
the EMPOWER program.

Author Contributions: Shahid Parvez led the study and participated at different stages of the research, including
study design, sample collection plan, data analysis and interpretation, and manuscript writing. Kali Frost helped
in the data analysis and preparation of the manuscript. Madhura Sundararajan coordinated with the study
participants and facilitated the sample collection and processing.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

LRAA Locational running annual average
QA Quarterly running average

DBPs Disinfectant Byproducts

THMs Trihalomethanes

TOC Total organic carbon

HAAs Haloacetic acids

MCL Maximum concentration limit
IDSE Initial distribution system evaluation
BDCM Bromodichloromethane

TBM Bromoform

TCM Chloroform

DBCM Dibromochloromethane
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MCAA Monochloroacetic acid

DCAA Dichloroacetic acid

TCAA Trichloroacetic acid

MBAA Monobromoacetic acid

DBAA Dibromoacetic acid

HC1 Hydrochloric acid

SGA Small for gestational age

PTB Preterm birth

FGR Fetal growth restriction

LBW Low birthweight

IUGR Intrauterine growth retardation
GM Geometric Mean

SD Standard deviation

Ccv Coefficient of variation

CI Confidence interval
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