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Mesenchymal stem cells (MSCs) represent a promising means to promote tissue regeneration. However, the heterogeneity of MSCs
impedes their use for regenerative medicine. Further investigation of this phenotype is required to develop cell therapies with
improved clinical efficacy. Here, a small-sized population of human umbilical cord blood-derived MSCs (UCB-MSCs) was
isolated using a filter and centrifuge system to analyze its stem cell characteristics. Consequently, this population showed higher
cell growth and lower senescence. Additionally, it exhibited diverse stem cell properties including differentiation, stemness, and
adhesion, as compared to those of the population before isolation. Using cell surface protein array or sorting analysis, both
EGFR and CD49f were identified as markers associated with the small-sized population. Accordingly, suppression of these
surface proteins abolished the superior characteristics of this population. Moreover, compared to that with large or nonisolated
populations, the small-sized population showed greater therapeutic efficacy by promoting the engraftment potential of infused
cells and reducing lung damage in an emphysema mouse model. Therefore, the isolation of this small-sized population of UCB-

MSCs could be a simple and effective way to enhance the efficacy of cell therapy.

1. Introduction

Mesenchymal stem cells (MSCs) have been characterized
according to stemness, ability to differentiate into various cell
types, low immunogenicity and tumorigenicity, and the secre-
tion of trophic factors. Based on these beneficial properties,
MSCs have been extensively utilized for cell-based therapy
[1]. However, they generally have been shown to comprise a
heterogeneous mixture of different subpopulations. Impor-
tantly, the heterogeneity of MSCs is the result of various
conditions including cell size, growth rate, morphology,
differentiation potential, and senescence, leading to hurdles
in the development of MSC-based therapy [2-4]. This hetero-
geneity limits a general understanding of the mechanism
through which MSCs maintain their proliferative capacity
and undergo differentiation toward specific lineage potentials,
as well as approaches to achieve better outcomes with thera-
peutic applications. Heterogeneity is mainly affected by

growth media, two-dimensional adherence to plastic dishes,
and subculture methods within culture. However, this
processing can be repeated to obtain an adequate number of
MSC:s for mass production.

In this context, many researchers have attempted to estab-
lish a standard set of criteria to attain more homogenous
populations of MSCs. However, few studies have attempted
to culture MSCs derived from a single cell or colony, and each
original cell differs from each other [5-7]. Moreover, these
obtained MSCs contain mixed populations exhibiting vary-
ing morphological features and gene expression patterns
[8], which might imply that all cells are cultured in transi-
tional culture environments. Recently, several groups have
developed protocols to isolate more homogeneous cells from
heterogeneous populations using specific antigens [9-11];
however, none of these processes have gained widespread
acceptance, because there is no unique single marker. Other
studies suggested cell seeding density or confluence as a
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major contributor to alterations in morphology and size [3,
12, 13]. However, to the best of our knowledge, these proce-
dures have not been shown to affect MSC phenotypes.
Despite such attempts, there is still no defined culture proto-
col available to overcome MSC heterogeneity.

Although cellular heterogeneity is caused by various
factors, heterogeneous cells display a number of common
characteristics that make them easily distinguishable based
on cell size. The size of MSCs significantly increases during
expansion. Importantly, senescent cells increase in cell size,
sometimes enlarging more than twofold relative to the size
of nonsenescent cells [14], which helps to explain some of
the biological activities of senescent cells; SA [3-gal activity
and growth arrest [14]. Further, MSCs show heterogeneity
in size as primary cells when cultured to senescence. Addi-
tionally, several studies have indicated an advantage using
small cells from heterogeneous MSCs of the bone marrow
(BM) or umbilical cord (UC) to enhance the function of stem
cells due to the following reasons: (i) MSCs contain small
spindle-shaped cells with rapid growth, whereas large or flat
cells expand more slowly; (i) the size of rapidly self-
renewing cells or recycling stem cells is known to be in the
range of <7~8um or smaller in diameter; (iii) small cells
(<8~10 yum diameter) have a greater potential for multiline-
age differentiation than populations enriched in large cells;
and (iv) the small population (<11 pm diameter) exhibits
faster growth and slower aging [15-17].

Small MSCs can be mainly separated through the follow-
ing three methods: flow cytometric sorting, counter flow
elution [17, 18], and microfluidic sorting [19]. However, no
markers have been characterized for small cells. Moreover,
to establish markers contributing to the formation of poten-
tiated small MSCs, we screened the expression of surface
proteins in small cells by fluorescence-activated cell sorting
(FACS) analysis with 242 different cell surface antibodies.
Among the examined surface proteins, we found the highest
expression of epidermal growth factor receptor (EGFR) and
integrin a6 (CD49f) in the small size population. In the pres-
ent study, we aimed to analyze the stem cell characteristics of
the small-sized population of human umbilical cord blood-
MSCs (UCB-MSCs) using a filter and centrifuge system.
The findings of our study provide evidence supporting the
effect of this small population derived from UCB-MSCs
and contribute new surface markers of small cells, which
are contributors to MSC heterogeneity and of interest for
therapeutic applications.

2. Methods

2.1. Cell Culture and Growth Kinetics. The UCB obtained
from the umbilical vein after the neonatal delivery of an infant
was processed within 24 h for the isolation and separation of
mononuclear cells (MNCs) with Ficoll-Hypaque solution
(density = 1.077 g/cm3; GE Healthcare, Uppsala, Sweden),
followed by previous protocol [20, 21]. This protocol was
approved by the Institutional Review Board of MEDIPOST
Co., Ltd. (MP-2014-07-1-1). MNCs were washed with phos-
phate buffer saline (PBS) and cultured in minimum essential
medium « medium (MEM-a, Gibco/Invitrogen, Carlsbad,
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Grand Island, NY, USA), supplemented with 10% fetal bovine
serum (Gibco) at 37°C in a humidified atmosphere containing
5% CO,. The culture medium was changed twice per week.
The basic characterization of UCB-MSCs is summarized in
Supplementary Table 1. Primary BM-MSCs and human AT-
MSCs were purchased from Promega (Gibco/Invitrogen,
Heidelberg, Germany). For growth kinetics, the trypan blue
exclusion method was performed to analyze the expansion
of live cells. At each passage (P), MSCs were cultured for 5
days, then reseeded at a cell density of 2,000 cells/cm>. The
PD at each passage was calculated by dividing the logarithm
of 2 [20]. The analysis of PD was continued until the
proliferation of cells was stopped.

2.2. In Multilineage Differentiation Potential. To assess
multilineage potential, cells were incubated under specific
conditions to induce differentiation into osteocytes, chon-
drocytes, and adipocytes. After differentiation, the multili-
neage potential was evaluated as previously described [21,
22]. Briefly, osteocyte formation was assessed by measur-
ing the level of ALP staining (Sigma-Aldrich, St. Louis,
MO, USA); chondrocyte formation was determined by
safranin O staining (Sigma); adipocyte formation was
assessed based on the staining of accumulated lipid vacuoles
with oil red O (Sigma).

2.3. Isolation by Cell Size. MSCs were separated into three
groups based on a diameter of 8 yum as follows: nonsieved pop-
ulation (heterogeneous), population >8um (large), and
population < 8 ym (small). Size-sieved samples were proc-
essed by methods summarized Supplementary Figure la.
For isolation based on size, we prepared the filter
considering the risk of damaging MSCs and safety using the
Xiaogan Yaguang’s filtration membrane tube (8 m pore
size, Xiaogan, Hubei Province, China). First, the filtration
membrane tube was inserted into a 50 mL culture tube.
Next, 1x10° MSCs/mL were loaded on a filtration
membraned tube. Finally, the tube was centrifuged 1200 rpm
for 5min to obtain three populations (heterogeneous:
unsieved; large: upper layer of filter; and small: lower layer of
filter). For size measurements, cells were harvested, pelleted,
suspended in media, and pipetted in a hemocytometer.
Images were then acquired at 100x magnification (Nikon
Instruments Inc. ECLIPSE TS100, Melville, NY, USA) in
multiple regions. At the photographed regions, the sizes
of live cells were analyzed using SABIA (MeTooSoft,
Seoul, Korea). The light-scattering properties of the cells
were measured using a flow cytometer (BD Biosciences,
San Diego, CA, USA) as the probing beam. The forward
scattering distribution histograms for each cell population
were generated on a computer from raw data files of
flow cytometry.

2.4. Cell Adhesion Assay. Cell adhesion assays were performed
using the IncuCyte (Essen Bioscience, Ann Arbor, MI). Cells
were seeded in three replicates at 2,000 cells/cm? in 6-well flat
dishes and grown at 37°C, with 5% CO,. Images were acquired
at 6, 12, 18, and 24 hours using the automated image
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acquisition software. Cell numbers at each time point were
also determined using the Cell Counter plugin in Image]J [23].

2.5. Cell Surface Antibody Screening with Lysoplates. To
screen the human surface marker of MSCs, 242 antibodies
were lyophilized in 96-well plates (BD LysoplatesTM; BD
Biosciences) at 0.5 yug/well and incubated with 500,000 MSCs
per well. With 20 min reconstitution on ice, the washed cells
were stained with an Alexa Fluor® 647-conjugated goat-anti-
mouse IgG secondary antibody (Molecular Probes, Eugene,
OR). Flow cytometry was performed to measure the surface
markers using a FACSCalibur instrument (BD Biosciences).
The data from flow cytometry were analyzed in Excel 2013
(Microsoft, Redmond, WA) to generate heat maps [20].

2.6. Flow Cytometry and Sorting. To assess and analyze the
surface marker on MSCs, cells were stained with human
CD14, CD45, CD49b, CD49d, and HLA-DR (BD Biosci-
ences)-fluorescein isothiocyanate (FITC) antibodies, human
CD29, CD44, CD90, CD340, EGFR, HLA-ABC (BD Biosci-
ences), and CD105 (Serotec, Kidlington, UK)-phycoerythrin
(PE) antibodies, and human CD49f (BD Biosciences)-Alexa
647 antibody. Isotype controls were matched to the mouse
to detect the nonspecific background signal as negative con-
trols. The stained MSCs were determined with a FACSCali-
bur instrument. To sort using specific markers, MSCs were
stained with an EGFR or CD49f monoclonal antibody. Both
EGFR and CD49f were sorted to 95% purity using a FACS-
Vantage cell sorting system (BD Biosciences).

2.7. Senescence-Associated [3-Gal Staining (SA p-Gal
Staining). To assess the senescence in MSCs, SA 3-gal stain-
ing was performed using a histochemical staining kit (Cell
Signaling Technology, Danvers, MA, USA) according to the
manufacturer’s instructions. The percentage of senescent
cells = the number of positively stained cells/total number of

cells [20].

2.8. Western Blotting. Cells were lysed with RIPA buffer to
extract proteins. A total of 10 ug of each protein extract was
electrophoresed on a sodium dodecyl sulfate-(SDS)-poly-
acrylamide gel, and then the resolved proteins were trans-
ferred to a nitrocellulose membrane. Blocked membranes
were incubated with primary antibodies against phospho-
p53 (pho-p53), pl6, phospho-Rb (pho-Rb), p21, p53, Rb
(Cell Signaling), and p16 (Abcam, Cambridge, UK), followed
by horseradish peroxidase-conjugated secondary antibodies.
Chemiluminescent intensity of immunoblotted bands was
visualized using a ChemiDoc Imaging System (Bio-Rad,
Hercules, CA, USA). The intensity of each band was nor-
malized to that of S-actin (Novus Biologicals, Centennial,
CO, USA).

2.9. Quantitative Real-Time PCR and Small Interfering RNA
Experiments. Quantitative real-time PCR (qPCR) was
performed with universally designed Oct4 or Nanog TagMan
probes using a LightCyclerTM 480 (Roche, Mannheim,
Germany). The relative expression levels of Oct4 or Nanog
mRNAs were normalized to f-actin mRNA expression.
EGFR, CD49f, and control small interfering RNA (siRNA)

were purchased from Dharmacon (Chicago, IL, USA). siR-
NAs for EGFR siRNA, CD49f siRNA, or scrambled siRNA
were transfected for 24h using DharmaFECT Reagent
(Dharmacon) according to the manufacturer’s instructions.
The four different siRNA duplexes were described on Supple-
mentary Table 2. When cells were examined at multiple
passages, de novo transfection of siRNAs was performed at
each passage.

2.10. Animal Model of Emphysema. All animal experiments
were reviewed and approved by the Institutional Animal
Care and Use Committee of MEDIPOST Co., Ltd. (MP-
2015-6-5). C57BL/6 mice were purchased from Samtako
BioKorea Co. Ltd. (Osan, Korea). To generate the elastase-
induced model, 6-week-old female C57BL/6] mice were
intratracheally instilled with porcine pancreatic elastase
(0.4 U per mouse) (Sigma). The mice were then intravenously
injected with 1 x 10* of UCB-MSCs at day 7. After 7 days, all
lung tissue preparation procedures were performed only for
surviving animals. For histopathological evaluation, the
lungs were perfused with phosphate-buffered saline (PBS)
through the right ventricle and inflated with PBS through
the trachea. The trachea was then ligated, and the lungs were
removed and immersed in the same fixative overnight at
room temperature. Fixed lungs were embedded in paraffin
and sectioned to 4 ym thickness. Sections from the paraffin
blocks were assayed based on six nonoverlapping random
fields per section stained with hematoxylin and eosin
(H&E). The level of alveolarization was determined by
measuring the mean linear intercept (MLI). The mean inter-
alveolar distance was measured as the MLI, by dividing the
total length of lines drawn across the lung section by the
number of intercepts encountered, as described [24]. For
immunofluorescence, lung sections were then incubated at
4°C overnight with primary antibodies including mouse
anti-surfactant protein C (SP-C, Abcam), mouse anti-von
Willebrand factor (vVWF, Cell signaling), and human anti-
f2-microglobulin (82MG, Santa Cruz Biotechnology, Dallas,
TX, USA), which were visualized using FITC or Cy3-labeled
secondary antibody (Jackson ImmunoResearch Europe Ltd.,
Newmarket, UK). Nuclei were counterstained with 4'6-dia-
mino-2-phenylindoled (DAPI, Sigma).

2.11. Statistical Analysis. Statistical analysis was performed
with SPSS 18 (SPSS Inc., Chicago, IL, USA) using one-way
analysis of variance followed by the least-significant differ-
ence (LSD) post hoc test. The data represented as mean +
standard deviation (SD) of values obtained in experiments
performed at least in triplicate. p < 0.05 was considered to
indicate statistical significance.

3. Results

3.1. UCB-MSCs Display a Heterogeneous Cell Size. UCB-
MSCs expansion is dependent on adherence to plastic
flasks, which is of concern regarding heterogeneity. Cell
morphology was observed with a microscope, and single cells
were obtained by trypsinization. UCB-MSCs were fibroblas-
toid morphology with heterogeneity regarding shape and size



at P5 (Figure 1(a)). We analyzed the cell size of UCB-MSCs
based on cell diameter. As expected, UCB-MSCs exhibited
different cell sizes, ranging from 3 ym to 25 ym in diameter
(Figure 1(b)). Moreover, with prolonged passaging in vitro,
UCB-MSCs showed an increase in cell size, became morpho-
logically enlarged and flattened, and SA f-gal activity, known
as a marker of replicative senescence (Figure 1(c)). These
results revealed that the cell size of UCB-MSCs is related to
cellular senescence. Previous research reported that cells with
a diameter < 7~10 ym (smaller cell or smaller size) are recy-
cling stems cells, which rapidly proliferate, compared to that
in other cell populations [14, 15]. In this study, small cells
were <8 ym in diameter. To further confirm the association
between smaller size and the growth ability of UCB-MSCs,
we analyzed the cumulative population doubling (PD) and
cell size of UCB-MSCs from 10 different donors. The cellular
expansion growth kinetics were evaluated by counting cells at
each passage. We measured cell size based on images of single
cells from four fields at the early stage and analyzed the
proportion of smaller cells (Supplementary Table 3) in
long-term culture. Next, we categorized these into two
groups. Particularly, MSCs of group I stopped growing
sooner and showed a faster senescence process with a lower
cumulative PD than those in group II (group I, 24.0+6.2
versus group II, 59.7+7.8; p<0.01; Figure 1(d) and
Supplementary Figure 2). Interestingly, these groups
showed significant differences in cell size (group I, 13.6 + 5
% versus group II, 10.1 + 5%; p < 0.01; Figure 1(e)) and the
portion of smaller cells (group I, 37.7.5 £ 5% versus group
II, 15.5 + 5%; p < 0.01; Figure 1(f)) at P2. Collectively, these
results suggest that cell size is related to heterogeneity
regarding the cell growth and senescence of UCB-MSCs.

3.2. The Small Cell Population of UCB-MSCs Possesses
Enhanced Stem Cell Properties. After isolating differentially
sized populations (hetero, large, and small), we compared
their stem cell properties including morphology, immuno-
phenotype, differentiation ability, stemness, and adhesion
potentials. A similar spindle-shaped morphology was
observed in the three populations (Figure 2(a)). Immunophe-
notypic analysis revealed that the three populations were
positive for the expression of CD29, CD44, CD90, CD105,
and human HLA-ABC, but negative for CD14, CD34,
CD45, or HLA-DR, according to the International Society
Cell Therapy (ISCT) criteria [25] (Table 1). To investigate
multilineage differentiation, cells were cultured in stimula-
tion media and assessed by staining for alkaline phosphatase
(ALP), safranin O, and oil red O, as positive markers for oste-
ogenic, chondrogenic, and adipogenic differentiations,
respectively (Figure 2(b)). A direct comparison of small cells
to the other populations demonstrated similar differentiation
potential into chondrogenic or adipogenic lineages. Notably,
for osteoblasts, small cells expressed strong ALP activity and
widespread staining, as compared to that in the other cells
(Figure 2(b)). Regarding stemness-related genes (Oct4,
Nanog), expression levels in small cells were significantly
higher than those in the other populations (Figure 2(c)). To
examine adhesion potential, we analyzed confluence during
various culture times using IncuCyte. Data showed differ-
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ences in the adherence of small cells to the culture flask com-
pared to that with hetero or large cells (Figure 2(d)). Taken
together, these results suggest that small-sized populations
have enhanced properties such as stemness, adhesion, and
osteogenic lineage differentiations.

3.3. The Small Cell Population Has Higher Growth Potential
and a Lower Rate of Senescence. For therapeutic use, higher
proliferative potential and decreased senescence are impor-
tant parameters. Here, we investigated the growth kinetics
and cellular senescence of three differently sized populations.
All cells were continuously passaged in culture flasks at
regular intervals until growth ceased. PD was measured for
every passage MSC from four different donors. In culture,
small cells exhibited significantly greater expansion capacity,
whereas large cells showed the lowest growth rate at all
passages (Figure 3(a)). To determine whether various
teatures of cellular senescence were similar among the three
populations, we tested SA f-gal staining and senescence-
related protein expression. SA f-gal staining revealed no
positive cells in the small-sized populations, whereas the
mean in heterogeneous and large cells was 11.7 +2.8% to
16.3 + 3.8% by P9. Further, SA $-gal expression dramatically
increased in all populations to P12, but the level in small cells
was significantly lower than that in the other groups
(Figure 3(b)). Because cell cycle regulators are associated with
cell senescence, we assessed pho-p53, pho-Rb, p21, and p16
by immunoblotting. The expression of pho-p53, p16, and
p21 was lower in small cells, whereas the level of pho-Rb
was increased, compared to those in heterogeneous and large
cells at P12 (Figure 3(c)). Thus, the small-sized population
exhibited the highest growth potential and lowest senescence.

3.4. Both EGFR and CD49f Mediate Various Characteristics of
Small Cells. A variety of surface proteins has been proposed
to govern MSC features such as stemness and differentiation
potential. Thus, we hypothesized that small cells might
employ cell surface proteins to actively control stem cell
properties. To test this hypothesis, we utilized a surface
marker array containing antibodies against 242 CD markers
to screen for expression differences between heterogeneous
or small cells (Supplementary Table 4). As a result, we
identified five cell surface proteins that were markedly
upregulated in small cells, including CD49b, CD49d, CD49f,
CD340, and EFGR (Figure 4(a)). To further examine these
screening results, we measured the expression levels of these
five surface proteins from three different donors by flow
cytometry. The data shown in Figure 4(b) confirmed that
EGFR and CD49f were significantly upregulated in small
cells compared to levels in heterogeneous or large cells.
Furthermore, the expression of EGFR or CD49 dramatically
decreased after passaging. In detail, the expressions of
EGFR'CD49" on small cell were dramatically decreased
from 70% at passage 3 into 40% at passage 7
(Supplementary Table 5). To verify the role of EGFR or
CD49f in stem cell properties, we silenced them using
siRNA in small cells (Supplementary Figure 3).

Compared to those in scramble siRNA-transfected cells
(si Con), cells from three different donors transfected with
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TaBLE 1: Surface marker expression among different stem cell populations.

Marker CD14 CD34 CD45 HLA DR CD29 CD44 CD90 CD105 HLA ABC

Heterogeneous - - - + + + +

Large - - - + + + +

Small - - - - + + + +

+: more than 95%; -: less than 5%.

siRNA against EGFR or CD49f were assessed for morphol-
ogy, cell size, growth rate, stemness, adhesion potential, and
senescence phenotypes. First, in EGFR-silenced cells, larger
morphology and increased cell size were observed
(Figures 5(a) and 5(b)). Further, they exhibited significantly
lower expansion capacity, whereas the control group (naive,
si Con) had a higher growth rate (Figure 5(c)). Based on the
senescence phenotype, SA S-gal activity was significantly
augmented in EGFR-silenced cells (Figure 5(d)), with a
concomitant change in pho-p53, pho-Rb, p21, and pl6
expression at P12 (Figure 5(e)). Moreover, EGFR-silenced
cells showed restored osteogenic differentiation based on
ALP staining (Figure 5(f)). In contrast, the stemness and
adhesion potential were unaffected by EGFR siRNA (data
not shown). Next, CD49f-silenced cells were flatter and
showed an increase in size (Figures 6(a) and 6(b)). Stemness
gene levels (Oct4, Nanog) in CD49f-silenced cells were signif-
icantly lower than those in the control groups (naive, si Con,
Figure 6(c). Greater adhesion potential was also observed
compared to that in the control groups, and cells quickly
adhered to culture flasks compared to that with CD49-
silenced cells (Figure 6(d)). CD49f silencing also resulted in
significantly reduced osteogenesis, as confirmed by ALP
staining (Figure 6(e)). In contrast, cell growth and the senes-
cence phenotype were not changed in the CD49 siRNA group
(data not shown). To determine whether EGFR or CD49f
expression is related to stem cell properties in small cells, we
sorted cells based on EGFR or CD49f expression using an
antibody. The sorted cells were purified by >95% (Supple-
mentary Figure 4), and sorted groups were validated by
evaluating ALP efficiency as an osteoblast marker. SA 3-gal
activity was analyzed as an indicator of senescence. We
found that EGFR" cells showed higher osteogenic potential
and lower senescence than EGFR’™ cells (Supplementary
Figure 5a). Additionally, higher ALP activity was detected in
CD49f" cells than in CD49™ cells (Supplementary
Figure 5b). Thus, these data indicate that the suppression of
EGFR or CD49f affects markers that control the biological
activity of small-sized populations, suggesting their utility as
potential markers.

3.5. Effect of Small-Sized Cells in Different Adult Tissues. To
investigate whether bone marrow-derived MSCs (BM-
MSCs) or adipose tissue-derived MSCs (AT-MSCs) from
different adult sources have small cell features, we analyzed
their morphology and cell size. As shown in Supplementary
Figure 6a, both BM- and AT-MSCs showed heterogeneity
regarding shape and cell size. BM- and AT-MSCs exhibited
different cell sizes and were larger compared to UCB-MSCs.
UCB-MSCs were used as controls, and cells showed average

diameters of 15.5+3.5um (BM), 17.7 £ 3.5um (AT), and
11.5+3.5um (UCB) at P2 (Supplementary Figure 6b). An
analysis of growth ability showed greater potential for small
cells as compared to that of heterogeneous MSCs from the
three sources. This increased growth rate with small cells was
sustained long-term, at least until passage 6 (Supplementary
Figure 6¢). Next, we measured potency markers including
CD49b, CD49d, CD49f, CD340, and EGFR from the three
sources of MSCs by FACS. Interestingly, the data confirmed
that EGFR and CD49f were significantly upregulated in
UCB-MSCs compared to levels in BM- or AT-MSCs
(Supplementary Figure 6d). Collectively, the small-sized
population from BM- and AT-MSCs also possessed higher
growth potential than heterogeneous cells.

3.6. Small Cells Enhance the Therapeutic Potential of UCB-
MSCs in an Animal Model. We then hypothesized that small
MSCs could be employed for tissue regeneration. To com-
pare the therapeutic potential of small-sized populations with
that of heterogeneous or large cells for lung disease, we
analyzed therapeutic outcomes with these populations using
the elastase-induced emphysema mouse model. The animals
were injected with elastase and intravenously injected with
differently sized populations of UCB-MSCs (1 x 10%) at 7
days after elastase injection. In mouse lung tissue, morpho-
metric analysis was performed by measuring the mean linear
intercept (MLI), and angiogenesis was assessed based on von
Willebrand factor (vWF) expression, whereas lung repair was
analyzed by surfactant protein C (SP-C) levels at 7 days post-
transplantation. The elastase-induced increase in MLI was
significantly attenuated by treatment with heterogeneous or
small cells, with the greatest reduction using small cells.
Specifically, the alveolar phenotype with small cell treatment
showed dramatic regeneration, and MLI returned to a near-
normal range (70.9 +2.3 um, Figure 7(a)). The elastase-
induced decrease in vWEF or SP-C expression was
significantly enhanced by the injection of heterogeneous or
small cells, but not by large cells (Figures 7(b) and 7(c)).
The expression of vVWF and SP-C was higher with small cell
treatment than with heterogeneous cells. For the engraftment
of infused cells, we tested the number of engrafted cells by
staining the lung tissue with an antibody specific to human
B2MG (green) at 3, 5, and 7 days after injection, and small-
sized MSCs resulted in greater engraftment capacity in lungs
(Figure 7(d)). In a different set of experiments, we compared
the therapeutic effect based on the proportion of small-size
cells using the elastase-induced emphysema mouse model.
For the two MSC lines used, with MSC-], as the larger lot
(group I of Figure 1(d)), the proportion of small cells was
9.2%. In the MSC-II group, as the smaller lot (group II of
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Figure 1(d)), the rate of small cells was 35%. The elastase-
induced morphological changes and impaired angiogenesis
were attenuated with the transplantation of these two MSC
groups. The MLI was significantly lower in lungs injected
with MSC-II than in lungs receiving MSC-I (Supplementary
Figure 7a). In addition, the level of vVWF in animals treated
with MSC-II was significantly higher than that in mice
treated with MSC-I (Supplementary Figure 7b). There have
been several reports about paracrine effects on treatment of
MSCs on various disease models, including emphysema
[26-28]. Also, engrafted MSCs into the lung epithelium of
acute respiratory distress syndrome have secreted paracrine
factors, such as KGF (keratinocyte growth factor), VEGF
(vascular endothelial growth factor), and HGF (hepatocyte
growth factor), to promote the protective effects of
pulmonary vascular permeability and the proliferation of
epithelial cell [29]. Additionally, PGE2 (prostaglandin E2)
secreted by MSCs suppressed the inflammatory cytokines
and stimulated the alveolar macrophage to secrete the
anti-inflammatory cytokines, IL-10 [27, 28]. To explain
the therapeutic effects of small cells, we analyzed the
protein expression levels with a fluorescent human
antibody array to compare the protein expression between
small and heterogenous cells. Among biologic processing
(Supplementary Figure 8a), the result of secretion protein
has been demonstrated that VEGF, EGF, TIMP-2 (tissue
inhibitor of metalloproteinases 2), TSP-1 (thrombospondin-
1), and Decorin secreted by small cells were increased,
markedly (Supplementary Figure 8b). Collectively, our result
suggests that small-sized populations augment beneficial
outcomes of lung regeneration in a lung disease model.

4. Discussion

The simplicity of MSC culture comes with concerns regarding
the heterogeneity of the resulting cell population, which is

overpassaging until the enough number of MSCs is obtained
for clinical use. This heterogeneity remains a major con-
cern, not only for gaining a general understanding of the
biological function through which MSCs maintain their
stemness, growth potential, senescence, and undergo
differentiation toward specific lineage features but also
with respect to achieving better outcomes in cell-based
therapy. To overcome this heterogeneity, we focused on cell
size and assessed the association between growth rate and the
size of MSCs. Here, depending on the proportion of small
cells, UCB-MSCs exhibited heterogeneity in growth and
senescence during subculture.

Although previous studies have suggested that the small-
sized population of BM- or UC-MSCs possesses the capacity
for proliferation, differentiation, and delayed senescence
[15-17], isolation protocols for small cells were not fully
established due to the good manufacturing practices require-
ment for clinical trials. In the present study, we applied an
isolation strategy as an easy approach, which obtained small
cells and was associated with an advantage in terms of safety
issues and yield during size separation. Aseptic processing is
one of the most significant factors for success of GMP safety.
Here, we use filter and centrifugation in a closed system as a
new strategy to successfully solve previous contamination
issues. Furthermore, the effect of the small-sized population
from UCB-MSCs on stem cell features had not previously
been reported. Here, we provide the first demonstration that
this population exhibits enhanced stem cell properties, as
compared to heterogeneous and large-sized cell populations.
Interestingly, we observed that small-sized cells from UCB-
MSCs more extensively differentiated into osteoblasts, as
assessed by increased ALP staining, consistent with previous
reports on BM-MSCs. Plastic adherence is a well-defined fea-
ture of MSCs when maintained in basic culture conditions
using culture flask. Our data showed that the small-sized
population exhibited the best adhesion. Next, we investigated
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stem cells (MSCs) were transfected with scramble siRNA (si Con) or EGFR siRNA (si EGFR). (a) Morphological differences were
observed by microscopy for adhesion (upper panel) or single cells (lower panel, scale bar = 10 ym). (b) Cell sizes of the three populations
were assessed during expansion. The expression levels were normalized to those observed in naive cells, defined as 1-fold expression
(mean + SD, n=45; *p <0.05, **p <0.01). (c) Cells were cultured under regular conditions and population doubling (PD) was assessed
until cell growth ceased (means + SD, n =3; *p <0.05, **p < 0.01). (d) The cells were stained with SA f-gal, and the activity was measured
by counting positively-stained cells at P9 or P12 (means + SD, n=3; *p <0.05, scalebar =10 um). (e) The expression of senescence-
associated proteins was measured by immunoblotting analysis and f-actin was used as a control at P12. The expression levels were
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induction, the level of ALP was determined by staining (scale bar = 50 ym).

stemness including Oct4 and Nanog, as the expression of
these genes is needed to maintain differentiation potential
and growth activity [30, 31]. However, the effects of cell size
on these markers had not been characterized. In our study,
levels of Oct4 and Nanog were significantly enriched in the
small-sized population compared to those in the heteroge-
neous or large-sized population.

The growth ability of the small-sized population was
significantly higher, and these cells could be extended for
longer periods in culture than other populations. For clinical
applications, the ability of MSCs to rapidly propagate in
culture and a cell number of 1 x 10° cells are desirable [32],
making the small-sized population a useful model in alloge-
neic settings. In addition, small-sized populations can
expand for more than 15 passages with a normal karyotype
(Supplementary Figure 9). After extensive culture
expansion, cellular senescence can be a major obstacle; this
is mainly described as growth arrest and the loss of
differentiation ability in MSCs [20, 32, 33]. In this study, we
demonstrated that senescence of the small-sized population
was slower than that of the heterogeneous or large
population, suggesting the superiority of small-sized cells.
Further, SA f-gal staining revealed significantly reduced
expression of this senescence marker in the small-sized
population. Two major proteins, p53 and Rb, have been

shown to be the main contributors to senescence. When
cellular senescence progresses, p53 protein activates its
transcriptional targets such as p21 [34]. Rb is maintained in
its phosphorylated form during senescence and binds to E2F
protein family members to suppress their transcriptional
activity [35]. Our previous data demonstrated that the levels
of pho-p53, p16, and p21 were significantly increased during
expansion, whereas the level of pho-Rb was decreased [34].
These proteins were strongly expressed in heterogeneous
and large cells, but their expression was markedly lower in
small cells. In UC-MSCs, Majore et al. demonstrated that
smaller-size populations exhibit low SA f-gal activity,
suggesting that the small-size population might be
precursors of mature and larger cells [17].

Currently, cell surface proteins are the most widely used
makers [36, 37], not only as the minimal criteria to define
MSCs but also as quality control markers to select functional
MSCs. In addition, numerous studies have shown that these
surface antigens control various biological functions of MSCs
including gene expression [36, 37]. Here, we assessed cell
surface marker expression in small-sized populations using
FACS screening. We identified five proteins that were
increased in small cells. Based on our results, the small size
of UCB-MSCs is regulated by EGFR and CD49f, major medi-
ators of therapeutic activation, which was confirmed by
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knockdown or sorting. First, epidermal growth factor (EGF)
is a well-known growth factor/cytokine that binds the EGFR,
and these mechanisms increase cell growth and differentia-
tion without affecting pluripotency [38, 39]. As EGFR tends
to decrease during aging, it is highly expressed in early cell
types to regulate cellular senescence via phosphoinositide 3-
kinase (PI3K) signaling, which is one of the major pathways
downstream of EGFR [40-42]. Our results also showed that
EGFR in small-sized cells is related to growth, differentiation,
and senescence. Next, integrin a6 (CD49f) is a cell surface

antigen that controls a variety of cellular activities. Of note,
it was reported that CD49f enhances differentiation potential
and maintains stemness via the direct regulation of Oct4 and
Sox2 in spheroid-form MSCs [43]. Another report proposed
that CD49f is a marker of early progenitor cells in cultured
BM-MSCs; CD49f"¢" MSCs were found to be more clono-
genic and differentiated than CD49f°Y cells [44]. In embry-
onic stem cells, CD49f plays a predominant role in the
initial attachment of cells to the ECM [45, 46]. We demon-
strated that CD49f mediates stemness, cell adhesion, and
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differentiation in small-sized populations. Taken together,
our data provide experimental evidence that both EGFR
and CD49f are quality control markers and predict small size.

Interestingly, our results showed that UCB-MSCs
express significantly higher levels of EGFR and CD49f
compared to MSCs from the other two sources. Previous
reports showed that CD49f levels are higher in UCB-
MSCs than in BM-MSCs [47]. Several reports have
proposed that neonatal tissues exhibit certain biological
properties that differ from MSCs originating from adult
sources [47, 48]. Thus, our findings indicated that UCB-
MSCs from neonatal tissue are generally smaller than cells
from adult tissues. It is also reported that fetal MSCs
remain consistently small and are multipotent even after
expansion [12].

Indeed, we first showed that small UCB-MSCs led to a
greater improvement in beneficial effects by not only improv-
ing the engraftment capacity of infused stem cells but also by
reducing lung damage in an emphysema mouse model. The
intravascular delivery of stem cells has been the most popular
route for cell-based therapy in clinical application [49]. MSC
migration and engraftment to injury sites have been tested
previously in several disease models [50-52]. However, the
numbers of intravenously transplanted cells remain low, even
though MSCs showed beneficial effects in an emphysema
model [53]. It is often reported that large cells cause severe
vascular obstruction during stroke in rats [54]. Moreover,
Kim et al. showed that the distribution of injected AT-
MSCs was only detected in the lung 1 day after intravenous
injection [55]. Importantly, small-sized populations main-
tain higher cell numbers for longer periods compared to
other groups. In this study, although heterogeneous cells pro-
vided partial and minimal protection against elastase-
induced lung injury in vivo, small cells resulted in the greatest
attenuation. For example, small cells promote functional
lung regeneration by preventing impaired alveolarization
and angiogenesis. However, the optimal dose for transplanta-
tion needs to be addressed for successful clinical trials. Most
reports have suggested the therapeutic efficacy of different
doses of BM- and AT-MSCs (1 x 10° or 5 x 10° cells) admin-
istered intravenously in an emphysema model [26, 56-58],
whereas our results indicate that a dose of 1 x 10* small cells
is sufficient for therapeutic effects. Cumulatively, our findings
suggest that the small-sized population is the most suitable
for future clinical use. There have been several reports about
paracrine effects on treatment of MSCs on various disease
models, including emphysema [26-28]. Previous reports also
supported that engrafted MSCs in the emphysema-secreted
paracrine factors, such as VEGF, and EGF, to promote mech-
anism for the protective effects of pulmonary tissues from
elastase injury [26, 59]. In our data, the antibody array results
demonstrated that VEGF, EGF, TIMP-2, TSP-1, and Decorin
secreted by small cells were increased, markedly. Recently, we
have found that Decorin is also one of key factors on the
immunomodulation of MSCs, related to repair the damaged
lung by inhibiting the inflammatory reaction [60].

In this context, small-sized populations become larger
during cell expansion during general monolayer culture.
Therefore, maintaining this small size has become an impor-
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tant parameter for further cell-based therapy based on
in vitro cultures of small populations. Recent reports have
suggested that suspension culture is crucial to produce smaller
MSCs. For example, compared to the monolayer culture of
MSCs, various methods including spheroid formation, aggre-
gates, and bioreactors have been developed to maintain the
smaller size of MSCs, and these methods significantly enhance
therapeutic potential in several disease models [61-63].
Further work is needed to determine whether small-sized
populations based on suspension methods also have practical
potential for cell-based therapy.

5. Conclusion

In conclusion, we provide evidence supporting small-sized
culture as a contributor to the enhanced stem cell properties
of UCB-MSCs. We further demonstrated that both EGFR
and CD49f are new markers that regulate small-sized popu-
lations. Therefore, our study suggests an important role of
small size in potentially improving the efficacy of MSC trans-
plantation, which will advance new therapeutic modalities
for the preparation of next-generation MSC-based therapies.
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