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Abstract
: Viral oncogenes and mutated proto-oncogenes are potentBackground

drivers of cancer malignancy. Downstream of the oncogenic trigger are
alterations in protein properties that give rise to cellular transformation and the
acquisition of malignant cellular phenotypes. Developments in mass
spectrometry enable large-scale, multidimensional characterisation of
proteomes. Such techniques could provide an unprecedented, unbiased view
of how oncogene activation remodels a human cell proteome.

: Using quantitative MS-based proteomics and cellular assays, weMethods
analysed how transformation induced by activating v-Src kinase remodels the
proteome and cellular phenotypes of breast epithelial (MCF10A) cells. SILAC
MS was used to comprehensively characterise the MCF10A proteome and to
measure v-Src-induced changes in protein abundance across seven
time-points (1-72 hrs). We used pulse-SILAC MS ( ), toBoisvert  ., 2012et al
compare protein synthesis and turnover in control and transformed cells.
Follow-on experiments employed a combination of cellular and functional
assays to characterise the roles of selected Src-responsive proteins.

: Src-induced transformation changed the expression and/or turnoverResults
levels of ~3% of proteins, affecting ~1.5% of the total protein molecules in the
cell. Transformation increased the average rate of proteome turnover and
disrupted protein homeostasis. We identify distinct classes of protein kinetics in
response to Src activation. We demonstrate that members of the polycomb
repressive complex 1 (PRC1) are important regulators of invasion and
migration in MCF10A cells. Many Src-regulated proteins are present in low
abundance and some are regulated post-transcriptionally. The signature of
Src-responsive proteins is highly predictive of poor patient survival across
multiple cancer types. Open access to search and interactively explore all
these proteomic data is provided via the EPD database (

).www.peptracker.com/epd

: We present the first comprehensive analysis measuring howConclusions
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: We present the first comprehensive analysis measuring howConclusions
protein expression and protein turnover is affected by cell transformation,
providing a detailed picture at the protein level of the consequences of
activation of an oncogene.
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Introduction
Cancer malignancies have in common the development of  
cellular phenotypes that alter the normal behaviour of the  
respective terminally differentiated cell types. Advanced forms 
of malignancy that are associated with poor clinical outcomes,  
including high-grade breast and oesophageal tumours, are  
characterized by tumour invasion into the surrounding stroma 
(illustrated in Figure 1A) and the development of metastases 
at sites distal to the initial tumour. Specific phenotypes, or  
‘hallmarks’ (Hanahan & Weinberg, 2011), are associated with 
late stage development of cancer and strongly linked with poor  
clinical outcomes for patients. These include increased motility 
and invasion, migration and immune cell evasion phenotypes,  
which are not active in the healthy differentiated cells. This 
is reflected in corresponding changes in patterns of gene  
expression in the transformed cells, leading to changes in the  
‘properties’, e.g. including the abundance, post-translational  
modification, half-life and/or activity, of specific subsets of  
proteins that mediate the metastatic phenotypes. Such profound 
changes in gene expression can be triggered endogenously by 
the mutation of proto-oncogenes and tumour suppressors, and/or 
exogenously, e.g. by viral expression of oncogenes, such as v-Src  
(Rous, 1910).

The v-Src gene has played multiple paradigmatic roles in  
advancing our understanding of cell biology and disease  
mechanisms (Yeatman, 2004). v-Src was first discovered over 
a century ago as a viral oncogene that triggers cellular transfor-
mation and cancer malignancy in chicken cells (Rous, 1910).  

Decades later, the study of v-Src kinase activity resulted in the 
discovery of a new form of signalling through protein tyrosine  
phosphorylation (Eckhart et al., 1979).

c-Src is the human homologue of v-Src and is one of several  
Src family kinases (SFKs) encoded in the human genome  
(Thomas & Brugge, 1997). Like v-Src, SFKs are potent  
protein tyrosine kinases. Human SFKs regulate diverse func-
tions in cells, including T-cell activation (Seddon & Zamoyska, 
2002), cell motility (Hsia et al., 2003), and cell focal adhesions  
(Jones et al., 2000). In common with many kinases, the  
switching of Src from an inactive to active form is stimulated 
by its phosphorylation in the activation loop, i.e. on tyrosine 
Y416. c-Src is also regulated by reversible phosphorylation on a  
C-terminal tyrosine residue (Y527) (Thomas et al., 1991), 
which, when phosphorylated, auto-inhibits kinase activity.  
v-Src lacks this Y527 residue, and is therefore thought to be  
constitutively active. Consistent with these observations, unlike  
c-Src, overexpression of v-Src alone is sufficient to drive  
tumourigenicity in human cells.

To understand better the downstream phenotypic consequences 
of Src kinase-mediated cell transformation, we have under-
taken a detailed characterization of the molecular mechanisms  
triggered by Src, using a comprehensive, unbiased proteomic 
approach (Bekker-Jensen et al., 2017; Geiger et al., 2012; Ly  
et al., 2014; Mann et al., 2013). Our hypothesis is that the  
resulting protein-level data may provide important new insights  
that reveal key pathways, downstream of SFK activity, which  

Figure 1. Active Src kinase is a predictor of poor clinical outcome. Cartoon schematics illustrating the development of metastatic 
phenotypes (A), and the Src-ER model system for oncogenesis (B). (C) The Cancer Genome Atlas patients were stratified into three cohorts 
based on reverse phase protein array intensities for pSrc-Y416. Kaplan-Maier curves for patients showing the top (green dashed line) and 
bottom (red dotted line) third signal are plotted. Log rank test p < 1 × 10-10. (D) A similar survival analysis as (C) for total Src protein level 
signal.
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drive the changes in cell phenotype associated with oncogenic 
transformation.

To perform these analyses, we have taken advantage of the  
well characterized MCF10A Src-ER (Src-ER) human epithe-
lial cell model for oncogenic transformation resulting from acti-
vation of v-Src kinase activity (Hirsch et al., 2010; Iliopoulos  
et al., 2009). These cells constitutively express a fusion protein 
between v-Src and the oestrogen-responsive, repressive domain 
of oestrogen receptor. Under basal conditions, the fusion protein 
is expressed, but the cells are not transformed, because the  
Src-ER fusion shows only low levels of kinase activity.  
However, when these cells are exposed to the steroid hormone, 
4-hydroxytamoxifen (4-OHT), there is a resulting elevated burst 
of v-Src tyrosine kinase activity that triggers events causing the 
cells to undergo phenotypic transformation within 48–72 hrs  
(Figure 1B). As a result, the cells lose contact-inhibition, show 
increased motility, display heterogeneous morphologies and 
become tumourigenic in mouse models (Iliopoulos et al., 2009).

We recently used the MCF10A Src-ER model to study how 
cell transformation affects specifically the chromatin proteome  
(Endo et al., 2017). In this current study, we have significantly 
expanded both the scope and scale of our unbiased proteomic  
characterization of this cell model. Using a quantitative, mass  
spectrometry (MS)-based approach, we have characterized in 
depth the global proteome of untransformed, human epithelial  
Src-ER cells and also measured the proteome at seven time  
points, spanning 1 to 72 hr, after activation of v-Src kinase. We 
also performed a global, MS-based analysis of protein synthesis 
and turnover, both in untransformed cells and in the same cells  
following Src-induced transformation.

Open access to all of the resulting data, representing the most 
comprehensive, quantitative description to date of the detailed  
changes in protein abundance and protein dynamics accompany-
ing oncogenic transformation, is provided via the Encyclopedia of  
Proteome Dynamics (EPD) (Brenes et al., 2017), a searchable 
online database.

Results
With the aim of identifying a relevant cellular model in which to 
characterize in depth how oncogenic transformation remodels 
the cell proteome, we first performed a meta-analysis of exist-
ing data sets provided by The Cancer Genome Atlas (TCGA)  
(Cancer Genome Atlas Research Network et al., 2013) to iden-
tify proteins correlated with poor clinical outcome. Kaplan-Meier 
(KM) survival curves were generated from each antigen 
in the TCGA reverse phase protein array (RPPA) data set 
(Akbani et al., 2014). We compared how variation in the  
expression levels of each of these antigens correlated with patient  
survival (Supplementary Table 1).

One of the most striking effects seen in this analysis was a  
significant decrease in median survival time of approximately  
4 years observed for patients showing the highest expression  
levels of Src-pY416 (Figure 1C), a marker for SFK activity  
(log rank test p < 0.001). In contrast, no significant difference in  
median patient survival time was observed for stratification based 
on total levels of Src protein (Figure 1D).

These data are consistent with previous reports (Elsberger  
et al., 2010) that it is the levels of Src kinase activity, not total 
Src protein expression levels, that correlate with poor patient  
outcome across multiple cancer types in the clinic. Based on these 
data, we therefore focused our quantitative proteomic analysis 
on characterising a cellular transformation model driven specifi-
cally by activation of Src kinase activity in human epithelial cells  
(Iliopoulos et al., 2009).

Proteomic analysis of v-Src activation: overview of 
experimental design
To assess the effect of Src-induced cell transformation at the 
protein level, we designed a two-part experimental strategy to 
analyse changes in both protein abundance (Experiment (Exp) 
A) and protein turnover (Exp B), as summarised in Figure 2.  
Exp A involved characterizing in depth the proteome of human 
MCF10A Src-ER epithelial cells and then systematically analysing 
global proteome changes in these cells across seven time points, 
following activation of v-Src kinase activity i.e., 1 hr, 3 hr, 6 hr, 
12 hr, 24 hr, 48 hr and 72 hr (Figure 2A, Exp A). Exp B involved 
measuring protein half-lives in both the basal, untransformed 
cell state and in the transformed state, i.e. comparing cells -/+ 48 
hours of v-Src activation, using our previously described pulse 
SILAC labeling strategy (Boisvert et al., 2012) (see Methods and  
Supplementary File 1). The overall experimental design is  
illustrated in Figure 2B. All experiments, in both Exp A and  
Exp B, were performed in biological triplicate, with each  
replicate harvested on a different day.

Briefly, the proteomic workflow involved SILAC labelling 
of MCF10A Src-ER cells, either comparing control- versus  
OHT-treated cells (Exp A) or pulse-SILAC to measure protein  
turnover (Exp B). In both cases, SILAC labelled cells were then 
mixed in a 1:1 cell number ratio, lysed, and the extract digested 
with lysyl endopeptidase C (LysC) and trypsin. The resulting  
peptides were fractionated using hydrophilic Strong Anion 
Exchange (hSAX) chromatography into 32 fractions and each  
fraction was analysed on a Q-Exactive Plus Orbitrap mass  
spectrometer (MS) instrument, using 2-hr nano LC gradients.

The proteomic analyses in this study generated >2,000 raw MS  
files, all of which are freely available via the ProteomeXchange 
PRIDE repository (PRIDE accession PXD009270). In total,  
>33 million MS1 spectra and >95 million MS2 spectra were 
acquired. Analysis of the spectra (see Methods for details)  
resulted in >19 million peptide spectrum matches (PSMs), which 
identified >350,000 unique peptides (including post translation-
ally modified peptides), with >200,000 corresponding to unique, 
unmodified peptide sequences. These peptides were mapped 
to ~13,900 protein groups, with a median protein sequence  
coverage of ~36% per protein (Figure 2C). For further discussion 
of the numbers of proteins and isoforms expressed and methods 
for estimating integrated protein false discovery rates (FDR),  
see Methods.

Most of the protein groups were identified in both the time course 
(Exp A) and protein turnover (Exp B) experiments (cf. Figure 2A), 
with 966 and 1,562 protein groups exclusively detected in Exp A 
and Exp B, respectively (Figure 2C). We identified >10,000 protein 
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Figure 2. A comprehensive proteomic analysis of basal and Src-transformed human epithelial cells. (A) Experimental design 
to characterise the changes to protein abundances (“Exp A”) and half-lives (“Exp B”) proteome-wide in a cellular model of oncogenic 
transformation (MCF10A Src-ER). (B) Sample preparation and analysis workflow, including extensive peptide pre-fractionation prior to liquid 
chromatography-tandem mass spectrometry (LC-MS/MS). (C) Venn diagram showing the number of proteins (protein groups) identified 
in each and in both experiments. The bottom panel shows the number of proteins identified in each time point of Experiment A. (D) The 
distribution of protein abundances (bottom panel) spans 8 orders of magnitude. An analysis of mean sequence coverage in protein abundance 
bins (top panel). The average sequence coverage (%, top panel) is 36.5% across the entire data set, but approaches 100% for the bins 
containing the most abundant proteins. (E) A plot of number of CORUM (Comprehensive Resource of mammalian Protein Complexes) 
subunits experimentally detected versus number of subunits listed in CORUM. Each point represents a different CORUM complex. The line 
approximates to y = x, a situation where all CORUM complexes are completely detected. (F) An analysis of UniProt keywords comparing 
the number detected versus the total number in the reference proteome (UniProt) for all keywords (left). The line is a best-fit regression. A 
zoomed-in section is also shown (right) to highlight selected keywords.
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groups at each of the seven time-points analysed after v-Src activa-
tion (Figure 2C).

Overview of the epithelial proteome in untransformed cells
First, we characterised the proteome of untransformed epithelial 
cells with respect to protein expression and protein turnover.  
The protein groups identified by MS analysis represent ~55% of 
the reference SwissProt total human proteome (see Methods).  
This level of coverage is comparable to recent deep proteome  
analyses reported for transformed human cell lines, e.g.  
(Bekker-Jensen et al., 2017). Collectively, these findings sug-
gest that a differentiated human cell may typically express at the  
protein level up to ~70% of the protein coding genes in the  
human genome.

Depth of epithelial proteome coverage
To investigate further how comprehensively our present data 
set describes the human epithelial cell proteome, we evaluated 
the depth of proteome coverage using several approaches. First, 
we compared how protein sequence coverage was affected by  
protein copy number (see below for discussion of copy number 
estimations). While the median sequence coverage across the  
entire data set was ~36.5% per protein, this rose to >95% for  
many of the most abundant proteins (Figure 2D). This is  
consistent with the data set providing a detailed picture of the  
proteins expressed in these cells.

Second, we determined the subunit coverage across the core  
human protein interactome, i.e., complexes curated by CORUM 
(Ruepp et al., 2008). Figure 2E shows that the subunit coverage 
for proteins expressed in this cell line is near 100% for almost 
all complexes. This indicates that our data set captures a broad  
spectrum of expressed protein complexes, spanning highly  
multimeric complexes with >100 subunits, to smaller complexes 
with <10 subunits.

Third, we addressed what range of known biological functions and 
protein classes were included amongst the proteins expressed in 
this epithelial cell line. To do this, we compared the numbers of  
proteins detected with each UniProt keyword annotation  
between our data set and the entire reference SwissProt  
proteome (Figure 2F). The relationship between our empirically 
determined data set and the SwissProt reference data set is well 
described by linear regression analysis (r2 = 0.97), with an average  
UniProt keyword annotation coverage of ~60%. For comparison, 
a recent comprehensive study of the HeLa cell proteome reported 
an average UniProt keyword coverage of ~66% (Bekker-Jensen  
et al., 2017). This again suggests that our data set provides a  
comprehensive view of the proteins expressed in this cell line.

Further analysis of the data set (Supplementary Table 2), shows 
essentially complete detection (~100%) of proteins annotated 
with the UniProt keywords describing most core cell and  
metabolic functions (covering >100 Keywords). This is consist-
ent with comprehensive detection of most proteins expressed from  
so-called ‘housekeeping’ genes. In contrast, we detect expres-
sion of ~50% of the proteins annotated with ~500 further UniProt  
Keywords, which describe a broader range of protein classes  
and cell type-specific expression patterns.

Coverage of the epithelial cell proteome is further illustrated in 
Figure 2F, (right panel), which shows selected protein classes, 
namely kinases, phosphatases, proteins involved in protein 
ubiquitination and transcription factors (TFs), including both  
transcriptional activators and repressors. For each of these 
well characterised protein families, the proportion of anno-
tated family members in the human genome we detected here  
was >60%. For example, of the 523 kinases in the manually 
curated kinome (Manning et al., 2002), 330 (~63%) were iden-
tified in our data set (Figure 3A). This compares, for example, 
with a total of 349 protein kinases that were previously reported 
as being expressed at the protein level in the 2014 ‘draft human  
proteome’, which collated proteome data from multiple human 
cell types and tissues (Kim et al., 2014; Wilhelm et al., 2014).  
Similarly, of the 267 genes encoding phosphatases and  
phosphatase-regulatory subunits in the human genome (Sacco  
et al., 2012), we identified expression at the protein level of  
178 (~67%) in this epithelial cell data set (Figure 3B).

In summary, we conclude that our data set has identified most, 
and potentially in some cases all, of the members of each of the  
gene families that are expressed at the protein level in these  
differentiated human epithelial cells.

Protein expression levels
Having established that this data set is of sufficient depth, protein 
copy numbers could be estimated using the ‘proteome ruler’ 
approach (Wisniewski et al., 2014), which normalizes protein 
abundances to the intensities measured for core nucleosome his-
tones. The estimated protein copy numbers for the basal, untrans-
formed epithelial proteome follow a log-normal distribution  
(cf. Figure 2D, Supplementary Table 3). Figure 4A shows a 
plot of cumulative copy number, ranked from highest to lowest 
copy number protein (left to right). As previously reported for 
other mammalian cell lines (Beck et al., 2011; Bekker-Jensen  
et al., 2017; Hukelmann et al., 2016; Ly et al., 2014; Nagaraj  
et al., 2011), a small number of proteins constitute the major  
proportion of the cumulative protein abundance measured. 
For example, ~5% of the cumulative protein abundance 
in this epithelial cell line is contributed by histones alone  
(Figure 4). Further, the top 169 most abundant proteins make 
up 50% of the total protein abundance, while the top 1,988  
proteins contribute 90% of the cumulative protein abundance  
(Figure 4A). The corollary is that the great majority (>85%) of  
proteins detected, together represent less than 10% of the total  
protein abundance in the cell.

The top 100 most abundant proteins in this data set  
(representing ~41% of the cumulative protein abundance), are  
dominated by ribosomal proteins, histones, metabolic enzymes  
and cytoskeletal proteins (Figure 4B). Notably, S100 calcium- 
binding proteins also contribute significantly to the bulk protein 
composition of these epithelial cells, contributing ~4% of the  
total protein by copy number.

To assess any potential relationship between protein copy 
number and cellular function, we performed enrichment analy-
sis using the DAVID analysis tool v6.8 (Huang et al., 2009). In 
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Figure 3. Coverage of the human kinome and phosphatome. Illustrations of (A) the kinome and (B) the phosphatome, with the proteins 
detected in human epithelial MCF10A cells indicated by solid points.

addition to gene ontology terms, enrichment analysis by DAVID  
considers annotations from multiple sources, including structural 
databases and the UCSB transcription factor binding database.  
We used two approaches to calculate quantiles, i.e. (i) rank order 
and (ii) copy number. We then asked whether these protein sets, 
representing extreme quantiles, either in rank, or copy number, 
were significantly enriched in any gene annotations.

Using rank quantiles, the top and bottom 5% represent the top 
and bottom 611 proteins ranked by abundance, respectively. As  
illustrated in Figure 4C, the top ranked proteins are enriched 
in ribosomal proteins and proteins that are localised in either  
extracellular exosomes, or in cytosolic and membrane-associated 
subcellular compartments. The bottom ranked proteins are 
enriched in zinc-finger transcription factors, many of which 
contain the Krueppel-associated box (KRAB) zinc-finger  
associated domain and also proteins annotated with alternative 
splicing.

Using copy number quantiles (Figure 4D), there is a dramatic 
difference in the protein composition of the highest and lowest 
5% protein groups. Thus, the top 5% of protein copies per cell 
is composed of only histone proteins, whereas the bottom 5% is  
composed of a diverse array of >7,300 proteins. This low  
abundance group is enriched in transcription factors, kinases 

(UniProt keyword: ‘protein phosphorylation’), glycoproteins and 
enzymes that add ubiquitin to proteins. For example, of the ~330 
kinases detected, 258 (~78%) are in the bottom 5% protein copy 
number bin.

Steady state protein turnover
We used our previously described control + pulse-SILAC 
approach (Ahmad et al., 2012; Boisvert et al., 2012) to measure 
steady-state protein synthesis and degradation rates in both con-
trol, untransformed epithelial cells and in the same cell line after 
it had been transformed by activation of v-Src kinase activity 
for 48hrs (described above as Exp B, cf. Figure 2). Briefly, the 
pulse-labeling protocol (Figure 5) involved differentially labeling  
MCF10A Src-ER cells with isotopologues of arginine and lysine, 
i.e. either Arg0-Lys0 (R0K0, ‘light’, L), or Arg6-Lys4 (R6K4, 
‘medium’, M). The culture media for fully R6K4 (M) labelled 
cells was then replaced with Arg10-Lys8 (R10K8, ‘heavy’, H) 
media. At 1, 3, 6, 12, 24, 48, and 72 hrs after the media switch, 
cells were harvested, mixed with equal numbers of R0K0 (L) cells 
at each time point, then the combined control + pulsed cells were 
lysed and processed for in-depth, MS-based proteomic analysis  
(Figure 5A).

Using this experimental design, the anticipated MS measure-
ments over time are: (i) decreasing signal from R6K4-labeled  
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Figure 4. The copy number profile of the untransformed epithelial cell proteome. (A) A plot of cumulative sum of protein abundance 
versus protein ranking by abundance (most abundant protein on the left). (B) A tree diagram where each internal box represents a different 
protein and the box size indicates the proportion of total abundance. A zoomed-in view of the most abundant 100 proteins (right panel).  
(C) Gene ontology analysis based on rank percentiles, comparing the top versus bottom 5% ranked proteins. (D) Gene ontology analysis 
based on abundance percentiles.

peptides, due to the decrease in intracellular protein levels  
resulting  from either degradation, or via secretion, and (ii) 
increasing signal from the R10K8-labelled peptides, due to 
increasing intracellular protein levels resulting from nascent  
protein synthesis (Figure 5B). The R0K0-labelled peptides, 
which are mixed in at a constant 50% level at each time point, 
are used as a reference internal standard that normalizes 
the data for potential technical variation, e.g. associated with 
either sample processing and/or cell count precision, etc.  
(Ahmad et al., 2012; Boisvert et al., 2012).

Synthesis and degradation rates were estimated by modeling the 
change in isotope-labeled peptide ratios over time as an expo-
nential fit, as shown in Figure 5C. The model assumes steady 
state equilibrium conditions, where the rate of increase is coun-
terbalanced with the rate of decrease, leading to stable intracellu-
lar protein levels (Boisvert et al., 2012). In brief, the model has 
three parameters: amplitude (A), tau (equal to half-life / ln(2)),  
and offset (C). A is the difference in the ratios of pulsed pro-
tein abundance/control (as judged from SILAC data) between 
t = 0 and t = 72 hrs. C is the estimated asymptotic limit of the 
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Figure 5. Workflow for comprehensive analysis of protein synthesis and degradation. (A) Metabolic labelling strategy, (B) expected 
ratiometric measurements, and (C) modelling for measuring protein turnover. The experimental design used to measure protein half-life 
proteome-wide is largely based on (Boisvert et al., 2012). Briefly, cells were labelled with Arg0-Lys0 (R0K0, “Light”) or Arg6-Lys4 (R6K4, 
“Medium”) stable isotope labelling with amino acids in cell culture (SILAC) media. The R6K4 labelled cells were then switched to Arg10-Lys8 
(R10K8, “Heavy”) media and cultured for seven time points (i.e., 1, 3, 6, 12, 24, 48 and 72 hrs) before mixing with R0K0 and cell harvest.  
A schematic is shown of the expected SILAC MS data (top right panel). Data were modelled using an exponential fit, where t1/2 is half-life.

exponential curve, resulting from the combined effect of amino 
acid recycling, as previously described (Boisvert et al., 2012;  
Jovanovic et al., 2015) and the average proportion of protein 
that is refractive to degradation over the timescale of the  
experiment, i.e., 72 hrs (see Methods). Errors in the three  
parameters were determined both from individual peptide 
measurements and from comparison of the three biological  
replicates. Fit qualities were estimated separately using chi-
squared, least-squares regression (r2) and root-mean-squared 
(rms) analyses (Supplementary Table 4). For further description  
of the model, see Methods.

Kinetic half-life data were obtained for 9,013 proteins in the 
combined data set (i.e., basal + transformed, vide infra). Under 
basal conditions, kinetic data were measured for 8,682 pro-
teins, corresponding to ~60% of the different protein species 
detected in this cell line (vide supra). The proteins for which 
kinetic data were measured span a wide dynamic range of  
expression levels, ranging between an estimated average of <500 
to >96 million, copies per cell. As discussed further below, this 
represents measurements of the turnover of >97% of the total  
protein molecules in the untransformed epithelial cells.

Figure 6A shows an example of these kinetic data for the protein 
STAT6, which is a transcription factor associated with interleukin 
(e.g. IL-4 and IL-13) signalling (Goenka & Kaplan, 2011) that is 
expressed here at a typical intermediate level, (i.e. ~70,000 copies 
per cell). We detect expression of all seven known STAT transcrip-
tion factors in these epithelial cells, albeit at varying abundance 
levels. STAT6 is amongst the three most highly expressed STAT 

factors. Synthesis and degradation curves for STAT6 are plotted, 
showing errors as ribbons, with the crossover point of these curves 
identifying the half-life (t

1/2
 = 11 ± 0.5 hr). This plot is calculated as 

the mean of each peptide assigned to the STAT6 protein for which 
values were measured. Figure 6B shows the corresponding data for 
each of the individual peptides (N=46) that were mapped to the 
STAT6 protein. Most of these peptides show high correlation in the 
values of their individual half-lives (green boxes), with the mean 
half-life calculated for the STAT6 protein.

Protein abundance and half-life profiles across the proteome
In untransformed MCF10A Src-ER cells, protein half-lives 
show a log-normal distribution, with a median half-life of ~11.6 
hrs (Figure 6C). An example of a protein with a short half-life 
in this data set is the hypoxia-induced angiogenesis factor  
ANGPTL4, (t

1/2
 0.42 ± 0.1 hrs). Conversely, the longest protein 

half-lives estimated from this data set exceeded 200 hr. An  
arbitrary limit was set for tau (300 h), which corresponds to a 
half-life of 208 hr. As expected, the error associated with very  
long half-life measurements is generally large, because they 
significantly exceed the value of the final time point of the  
experimental time course (i.e. 72 hr).

These data show that many shorter-lived proteins (t
1/2

 < 10 hours) 
have relatively low copy numbers (Figure 6D; median copy 
number 30,000). In contrast, longer-lived (t

1/2
 > 10 hours) proteins, 

on average show approximately three-fold higher copy number  
(Figure 6E; median copy number ~100,000). These results sup-
port the hypothesis that proteins with shorter half-lives in these  
epithelial cells tend to show lower steady state expression  
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Figure 6. Protein half-lives in a contact-inhibited epithelial cell monolayer. (A) A plot showing the synthesis (red) and degradation (brown) 
curves for STAT6. The lines and ribbons show the mean ratios and standard errors, respectively, from three biological replicates. The half-
life point is indicated with an arrow. (B) A ‘carrot’ plot showing the per-peptide analysis of half-life. The x-axis is peptide number (ordered 
by sequence position). Size of the box indicates the intensity for the peptide and the colour indicates the correlation between the individual 
peptide half-life versus the mean aggregate half-life for the protein (green – high correlation, red – low correlation). The y-axis is time and the 
hourglass shapes represent individual ratio measurements, with centre widths indicating standard error, and end widths and blue shading 
indicating the mean ratio across three biological replicates. Grey boxes indicate single replicate measurements. (C) The distribution of half-
lives measured in the basal state. (D, E) The distribution of protein abundance for proteins that have either half-lives > 10 hrs (D) or half-lives 
< 10 hrs (E). (F) A plot of log10 copy number versus half-life (x-axis is log2 space). The bars illustrate the range of half-lives for the highest 
and lowest copy number proteins. (G) Copy number distributions for proteins whose half-lives could not be determined (top) versus proteins 
whose half-lives were measured (bottom).
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levels. The trend is robust towards a range of quality thresholds  
for the exponential fitting (e.g., r2), making it unlikely that that  
these differences are due to variation in fit quality.

However, when half-life values are analysed across the whole 
proteome, rather than considering specifically the highest and  
lowest half-life bins, protein half-life has only a poor correlation 
overall with protein intensity (r ~ 0.3), as shown in Figure 6F. A 
likely explanation for this observation is that the preponderance 
of lower abundance proteins in the proteome show a much wider  
distribution of half-life values than the smaller number of high 
abundance proteins (Figure 6F, cf. purple and blue horizontal  
bars).

Abundance weighted proteome turnover
Considering the high dynamic range of protein expression  
levels measured for the epithelial proteome (cf. Figure 4A), 
we next evaluated how the measurement of protein turnover is 
impacted by copy number. As predicted, proteins whose half-
lives were not determined show a bias towards low copy number 
proteins (Figure 6G). However, the 8,682 proteins for which we 
have measured half-life values in the untransformed epithelial  
cells, (corresponding to ~62% of the basal proteome), accounts 
for >97% of the protein molecules in the cell. This striking  
observation suggests an alternative approach for evaluating the 
rate at which the global cell proteome turns over. Specifically, 
since we determined that the protein products of only 169 genes  
account for ~50% of the total protein abundance, the half-life  
values of this small subset of all the genes expressing proteins 
will disproportionately affect the rate at which the total number  
of protein molecules in the cell are turned over.

Therefore, we next calculated an ‘abundance weighted’ average 
proteome turnover value, taking into account the copy numbers 
of each expressed protein for which a half-life was measured. 
This abundance weighted average turnover value provides an  
estimate of the intracellular half-life of a theoretical population  
of ‘average’ protein molecules in the cell.

For untransformed epithelial cells, the abundance weighted 
median protein half-life value is 14.2 hrs, as compared with the 
unweighted median value of 11.6 hrs (i.e. calculated from the  
individual protein half-life values measured without reference to 
their abundance), a difference of ~20%. Calculation of the mean, 
rather than median, half-life value across all of the proteins  
measured similarly shows an increase (~10%) in the average  
protein turnover value, when abundance weighting is taken into 
account (weighted mean turnover, ~15.5 hrs).

Profiling protein half-life with protein function
To investigate potential links between the cellular function and 
half-life of proteins, we binned the protein half-life distribution 
into deciles and asked whether any functional annotations were 
statistically enriched in each bin. Figure 7A shows a heatmap of 
the annotations that had p-value False Discovery Rates (FDR) 
of 0.01 or less. The decile containing the shortest-lived proteins  
shows an enrichment in proteins that are secreted and/or have 
a secretion signal peptide, cell cycle proteins, IgG-domain  
containing proteins and laminin proteins. This suggests that 
in this analysis, with little or no cell division during the time 
course of the pulse-SILAC experiment and with the cells show-
ing contact inhibition, protein secretion is a significant mecha-
nism contributing to proteins measured with short intracellular  
half-lives.

Interestingly, there is a difference in the categories of proteins 
enriched between the first (<4.2 hrs) and second (4.2–7.7 
hrs) deciles. Thus, the second decile is enriched in zinc fin-
ger domain containing proteins and transcription factors, which 
is not seen in the first decile. In contrast, the third through sixth  
deciles (containing proteins with half-lives from 7.7–19 hrs) 
do not show any significant annotation enrichments. This rep-
resents the large group of proteins with half-life values centred 
around the median proteome half-life. For proteins with longer  
half-lives, enrichment for extracellular exosome associated  
proteins is detected across the seventh through ninth deciles,  
representing proteins with half-lives between 19–32 hrs.

Figure 7. Gene ontology annotation analysis of short-lived and long-lived proteins. (A) A heatmap of gene ontology annotation versus 
proteins, binned into 10 deciles. The colour indicates the magnitude of the p-value, i.e. the significance of the enrichment. (B, C) ReviGO plots 
with enriched GO ontology terms associated with short-lived (B) and long-lived (C) proteins. The bubble colour and size represent half-life 
and number of proteins, respectively.
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The eighth decile (21–25 hrs), also contains many of the  
ribosomal proteins, along with enrichment of annotation terms 
such as translational initiation and poly(A) RNA binding. This 
is consistent with the known long half-lives of proteins in the  
cytoplasmic translation machinery (Boisvert et al., 2012; Lam  
et al., 2007). Interestingly, membrane and mitochondrial- 
associated proteins are also enriched in the eighth decile. The 
ninth decile (25–32 hrs), is enriched in metabolic enzymes and 
protein folding chaperones. Finally, the longest-lived proteins  
(>32 hrs), are associated with annotations for alternative spliced 
variants and phosphoproteins. Interestingly, these very long  
half-life proteins tend to be present in relatively low copy  
number, as discussed below.

A bootstrap-based gene ontology (GO) enrichment analysis was 
performed to compare the annotations enriched in short-lived, 
versus long-lived proteins (see Methods). In brief, a per-GO 
term mean half-life was calculated for annotated proteins. Itera-
tion over each GO term creates a distribution of mean half-lives.  
Distribution extremes were identified using permutation- 
based scoring (Pscore). GO terms with Pscore < 0.001 or > 0.999 
indicate enrichment in significantly short-lived and long-lived 
proteins, respectively. Enriched GO terms were then visualized 
using ReviGO (Supek et al., 2011) to group GO terms with similar  
meaning. Figures 7B and 7C show the enriched GO terms for  
short-lived and long-lived proteins, respectively.

As shown in Figure 7B, short-lived proteins are significantly 
enriched in annotations associated with cell division (mitotic 
cell cycle, DNA replication), the cellular stress response,  
cell-cell adhesion, cell-cell communication (Notch signalling), 
MHC class I antigen presentation, and regulation of cellular  
differentiation. In contrast, long-lived proteins are associated 
with different functional annotation terms. Thus, long-lived pro-
teins are enriched in terms for mitochondrial organization factors,  
metabolic enzymes (many of which localize to mitochondria) and 
proteins regulating gene expression (Figure 7C). For example, 
enzymes in the glucose metabolic pathway have an average t

1/2
  

of 15.8 hr (unweighted), compared with a proteome-wide, 
unweighted median value of 11.6 hr.

Profiling protein half-life with protein complex formation
We previously observed that average protein half-life values  
measured in total cell extracts can mask situations where the 
same protein shows differential stability in separate subcellular  
compartments. This was shown for several protein complexes, 
including RNA polymerases as well as ribosomal subunits,  
analysed in cancer cell lines (Boisvert et al., 2012; Boulon et al.,  
2010; Lam et al., 2007). We therefore analysed the current  
data set for a relationship between protein stability and mem-
bership of protein complexes. To test this, we took the CORUM  
database of human complexes (Ruepp et al., 2008) and asked 
whether there was any difference in the similarity of protein  
half-lives among subunits ascribed to the same complex, as  
compared with the same number of proteins chosen at random.

Figure 8 shows a plot of the cumulative distribution functions 
of calculated variances, comparing half-lives of subunits 

within a complex (black line), with proteins chosen at random  
(see Methods section for bootstrapping procedure) from the 
epithelial proteome (blue line). The two distributions show a  
statistically significant difference, with proteins in the same 
CORUM complex having smaller variance in half-life values 
than seen for random protein sets. These data thus support the 
hypothesis that proteins that associate in the same complex 
can be co-regulated by mechanisms affecting protein stability  
(McShane et al., 2016).

Src kinase-induced remodeling of protein expression (Exp A)
Having characterized the proteome of untransformed epithelial 
cells, we next analysed how this proteome is affected by cell 
transformation induced by activating v-Src kinase, starting 
with the effect on protein abundance. We measured protein  
expression at seven time points, from 1–72 hrs, during which 
the MCF10A Src-ER cells undergo profound phenotypic trans-
formation (cf. Figure 2A, Exp A). Ratiometric SILAC-based  
measurements (Ong & Mann, 2006), were performed in  
biological triplicate at each of the seven time points (Figure 9A).  
Proteins were classified as changing ‘significantly’ during this 
time course if their abundance altered by at least 2-fold, with 
an associated p-value <0.01 (using a shrink-variance t-test,  
see Methods and Supplementary Table 5).

We observe that activation of v-Src kinase activity promotes 
reproducible changes in the abundances of only a small  
subset of the epithelial cell proteins (~2.7% of total proteome), 
as shown in the respective volcano plots for each time point  
(Figure 9B). An interactive volcano plot showing data for the  
72 h timepoint is shown in Figure 10. The majority of affected 
proteins show a reduction in abundance, with the first responses 
detected at the 3 hr time point. These ‘immediate early’ decreas-
ing proteins include protein phosphatase 1D (PPM1D), which 
has been shown to inactivate the checkpoint proteins p53 and 
Chk1 (Lu et al., 2005) and the sprouty homologue 4 (SPRY4), 

Figure 8. Proteins belonging to the same complex are more likely 
to have similar half-lives. The cumulative distribution function for 
standard deviation in half-life, for proteins either belonging to the 
same complex, as listed in CORUM (black), or proteins randomly 
grouped into decoy pseudo-complexes, identically-sized to CORUM 
(blue).
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which suppresses insulin receptor- and epidermal growth factor- 
dependent ERK/MAPK signalling (Sasaki et al., 2003).

At every time point, downregulated proteins outnumbered 
upregulated proteins. At these cut-off values, 273 proteins 
show differential expression with 203 proteins downregulated 
and 70 upregulated (Figure 9C). A less stringent cut-off  
of 0.05 increases the total number of differentially expressed 
proteins to 456 (Supplementary Table 5). Proteins just over the  
p <0.01 threshold include NFKIA (NF-kappa-B inhibitor),  
which shows decreased abundance at 24 hr.

Due to the previously described high dynamic range of pro-
tein expression levels (see the cumulative abundance plots dis-
cussed above; cf. Figure 4A), the ~2.7% of proteins showing  
a significant abundance change during cell transformation 
could represent either a relatively minor, or a large fraction, of 

the total protein copies in the cell. Therefore, it was important 
to evaluate the observed changes in protein abundance in the 
context of protein copy number. This analysis showed that the  
proteins significantly changing in abundance represent only  
~1.5% of the total protein molecules in the cell. Interestingly, the 
great majority of the significantly changing proteins are in the  
lowest abundance region (i.e. <10%) of the cumulative protein 
abundance curve (cf. Figure 4A and Figure 9D).

We conclude that the activation of Src kinase activity pre-
dominantly affects expression of low abundance class proteins, 
many of which are not present in the TCGA reverse phase pro-
tein array dataset (Akbani et al., 2014) and also may have  
escaped detection in previous analyses.

Protein response kinetics
We next used clustering analysis to characterize patterns of  
protein abundance changes across the time course of cell  

Figure 9. Dynamic remodeling of the proteomic landscape in response to v-Src kinase activation. (A) The experimental design for 
measuring protein abundance changes. R0K0 and R6K4 labelled cells were treated either with vehicle control, or 4-hydroxytamoxifen  
(4-OHT) and incubated for the indicated times, prior to mixing and harvest. SILAC MS data expected from the time course are illustrated 
(right). (B) ‘Volcano’ plots of –log10 p-value versus log2 fold change for the seven time points. (C) Proportion of downregulated, upregulated, 
and not significantly changing proteins. (D) Cumulative abundance plot (cf. Figure 4A) with significantly changing proteins highlighted in 
red.
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Figure 10. Proteomic changes 72 h after Src kinase activation. Interactive volcano plot showing -log10 p-value versus log2 fold change for 
the 72 h timepoint. Horizontal dotted lines indicate 0.05 and 0.01 significance, and vertical dotted lines indicate 2-fold change. The online 
version of this figure is interactive.

transformation. In this case proteins that behave similarly – but 
that individually may not meet the stringent cut-offs established 
above – are grouped together, increasing the analysis sensitivity.  
To focus specifically on the highest quality data in this study,  
average temporal profiles were calculated only for proteins 
that were detected both (a) in all three biological replicates 
and (b) at all seven time points. This very high stringency 
selection resulted in 6,890 ‘complete’ protein profiles. These 
highest quality data profiles were grouped into clusters,  
using k-means (Figure 11A).

The number of clusters (k) was chosen as 30, corresponding to 
the point where the decrease in within-group sum of squares  
became asymptotic with increasing k. Clusters where the  
maximum fold change across the time-course was 3-fold or  
greater (clusters highlighted in yellow in Figure 11A) were 
manually agglomerated, based on their mean profiles, into six  
qualitatively similar groups: ‘early up’ (EU), ‘mid up’ (MU), 
early down’ (ED), ‘mid down’ (MD), ‘up down’ (UD), and ‘not  
changing’ (NC). Figure 11B shows the mean profile (cyan) and 
standard deviation (grey ribbon) for each cluster.

Consistent with our observation that transformation affects 
the abundance of only a small fraction of the epithelial pro-
teome, the largest number of proteins (~83%) belonged to the  
‘non-changing’ (NC) cluster (Figure 11C). There were vary-
ing numbers of proteins mapped to each respective vary-
ing cluster. However, despite differences in the numbers of 

proteins in each cluster, they each had a similar distribution  
of protein copy numbers (Figure 11D).

Next, we asked whether specific biological functions were  
differentially represented in the respective clusters. To do this,  
each cluster was subjected to gene ontology term enrichment 
analysis, as described above (cf. Figure 4). Selected GO terms 
with high enrichment p-values are shown in the grey boxes  
in Figure 11B. Each of the clusters appear to contain function-
ally distinct proteins, as shown by their differential enrichment  
of gene functions and predicted transcription factor binding.

For example, the EU cluster is enriched in the serine protease 
inhibitor (serpin) domain and proteins involved in the inflam-
matory response. Members of the EU cluster include the serine  
protease inhibitors B3 and B4 (SERPINB3 & SERPINB4). 
While we detect expression of 13 members of the serpin protein  
family in untransformed cells (cf. Supplementary Table 1), only  
5 of these serpins show an increased abundance after v-Src  
activation (Figure 11E). Of these, serpin B3/B4 shows the most 
rapid response and the largest overall increase of abundance,  
reaching ~10 fold or greater abundance by 72 hrs post Src  
activation. This dramatic and rapid change in serpin B3/B4 seen 
by MS analysis was also confirmed by independent detection of  
serpin B3/B4 using protein blotting (Figure 11F).

Early downregulated (ED) proteins are characterized by  
factors involved in cell-cell junctions, exosome constituents and 

Page 14 of 48

Wellcome Open Research 2018, 3:51 Last updated: 01 JUN 2018



Figure 11. Clustering of Src response kinetics. (A) Expression profiles for all proteins with complete time course data (n = 6,890) were 
grouped into 30 clusters, using k-means. (B) Gene ontology enrichment analysis of six agglomerated clusters. The enrichment p-values 
are indicated by asterisks (* < 0.01, ** < 0.001 *** << 0.001), and n is the number of proteins in each cluster/group. (C) Proportion of each 
cluster relative to the entire proteome data set. (D) Box plots of protein copy number versus protein cluster. E) Line graph of serine protease 
inhibitor proteins measured across the complete time course. SERPINB3&B4 (black) increases rapidly upon v-Src activation. F) Immunoblot 
analysis of control- and 4-OHT-treated lysates shows upregulation of SERPINB3&B4 protein upon v-Src activation, consistent with the MS 
measurements.
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genomic targets of the NF-kappa-B transcription factor. Later  
upregulated events (i.e., ‘mid up’) are enriched in proteins  
involved in cell division and extracellular matrix organization. 
Late downregulated events are enriched in lysosomal proteins 
and glycoproteins. Notably, the great majority of epithelial cell  
proteins are in the ‘not changing’ group, which is enriched in 
factors associated with housekeeping functions, e.g. bulk gene  
expression and protein translation.

Dynamics of proteome remodeling induced by activated Src 
kinase
This comprehensive proteome analysis provides an opportunity 
to compare how specific signalling pathways and protein  
families respond to Src kinase activation. To illustrate this,  
we highlight here selected examples of the responses of  
individual pathways and protein families. Further analysis on a 
wider range of pathways and protein families can be performed  
using the Encyclopaedia of Proteome Dynamics (EPD), as  
described below.

The data show that cell transformation is accompanied by an 
increase in the abundance of a subset of secreted proteins and  
extracellular matrix (ECM) remodelling factors (Figure 12). 
For example, Src-responsive ECM components include laminin  
proteins (LAMB3, LAMC2), cell surface receptors that interact 
with ECM, such as integrins (ITGB, ITGA5), enzymes that 

remodel ECM (PLAU, MMP14) and transcription factors that 
have been shown to play a role in regulating ECM factors  
(DLG5).

Many of the clustered proteins detected to change abundance 
by 2-fold or more have been previously shown to associate with  
multivesicular bodies and extracellular exosomes, as annotated 
by GO and UniProt. For example, changes in exosome- 
associated proteins include an increase in the abundance of a  
subset of serine protease inhibitors (i.e., serpins B1/B3/B4/E1/A1,  
Figure 11E), an increase in IL1alpha and a decrease in the 
abundance of the innate immunity factors C3, DCD & M2BP  
(Figure 12). Many of these changes are detected within 12 hrs.

We looked for evidence of v-Src-mediated transformation  
triggering significant changes in enzyme abundances, consistent 
with rewiring in central metabolic pathways. Such changes 
could provide evidence of potential mechanisms involved in the  
Warburg effect and would be consistent also with our observa-
tions that 4-OHT-treated cells produce more lactate compared to 
control cells (unpublished observations, Endo and Ly). Our total 
data set detects expression of most enzymes (~72%) in the KEGG 
map of metabolism (KEGG, hsa01100), including essentially all 
major isoforms of enzymes that drive glycolysis, the TCA cycle 
and oxidative phosphorylation (Figure 13A). In contrast, the  
enzymes in KEGG that we do not detect are mainly associated 

Figure 12. Src activation remodels cell-cell and cell-matrix interactions. Diagram highlighting significantly changing proteins associated 
with extracellular communication and remodeling. Colours indicate direction of change (blue – upregulated, red – downregulated). Stars 
indicate current clinical markers. Arrows indicate relationships, e.g. secretion of laminins (LAMB3, LAMC2) and plasminogen activator 
(PLAU).
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with pathways at the periphery of the KEGG metabolic map,  
e.g., connected with the metabolism of xenobiotics, terpenoids, 
chlorophylls and porphyrins.

In considering the impact of Src activation on cell metabo-
lism, we note that several of the enzymes involved in steroid and  
cholesterol metabolism change in abundance by 2-fold or more, 
including upregulation of the low-density lipoprotein recep-
tor (LDLR) and enzymes involved in catabolic steroid recycling  
(i.e., AKR1C2 & HSD11B1). Additionally, the glucose trans-
porter GLUT3 increases by 2-fold. Interestingly, however, the 
core metabolic enzymes that drive cellular production of ATP  
show little to no change in abundance at any of the time points 
following activation of v-Src kinase activity. For example, the  
majority of glycolytic enzymes show no change, although a  
small subset of 3 enzymes (i.e., gamma enolase, hexokinase-2 and  
ADP-dependent glucokinase), show a small percentage increase 
of ~25–40% (Figure 13B, second peak on right shoulder of  
distribution). Further work is required to determine whether 
these modest abundance changes in a subset of enzymes in 
the glycolysis pathway contribute to the changes in glycolytic 
activity that occur in Src-transformed cells, or whether alterna-
tive mechanisms, such as changes in either phosphorylation, 

or other post-translational modifications, are predominantly  
responsible.

As shown above, we detected protein expression of ~63% of 
the human kinome in this data set (cf. Figure 3). The kinetic 
data show that only a minor fraction of the kinases expressed in 
untransformed cells change in abundance after Src activation,  
as illustrated for the 72 hr time point (Figure 14A). The kinases 
that change in abundance include HER-family, Ephrin receptor,  
Aurora and casein kinases. Interestingly, this also includes Src 
kinases. Consistent with the MS data, immunoblot analysis 
confirms that both the endogenous c-Src and exogenously  
expressed v-Src-ER fusion proteins increase in abundance (data  
not shown).

A similar analysis of the phosphatome (Figure 14B), shows again 
that only a small subset of these enzymes change in abundance 
after v-Src activation. Specifically, we detect increased abun-
dance of CDC25C, a protein involved in regulating the activity 
of the master cyclin-dependent kinase CDK1 and increased abun-
dances of the dual-specificity tyrosine and serine/threonine protein  
phosphatases, DUSP1 and DUSP4. Furthermore, preliminary 
analysis of changes in phospho-peptide levels following v-Src  

Figure 13. Src has minimal effect on metabolic enzyme abundances. (A) KEGG metabolic map showing the metabolic enzymes detected 
in this data set as colour nodes and connections. Enzymes not detected are shown in grey. (B) Log ratio distributions of glycolysis enzymes, 
versus the total proteome.
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Figure 14. Src-mediated remodeling of epithelial kinome and phosphatome. Illustration of (A) the human kinome and (B) the phosphatome, 
with significantly changing proteins indicated by filled circles. (C) Schematic of the regulation of ERK2 phosphorylation by DUSP1 and DUSP4 
(left panel) and the measured ratios of total ERK2 protein, pERK2-T185, and pERK2-Y187 (right panel).

activation, are consistent with these changes in protein phos-
phatase abundance levels altering cell signalling pathways. For  
example, we detect a clear decrease in the levels of phosphoryla-
tion at residues T185 and Y187 on the protein ERK2 (Figure 14C). 
Both of these sites are known to be dephosphorylated by DUSP1 
& DUSP4 (as reviewed in (Caunt & Keyse, 2013)), whose abun-
dances increase after Src-induced cell transformation (Figure 14B). 
A more detailed, global analysis of the effect of v-Src activation 
on the phospho-proteome and signalling pathways will be reported 
separately.

Role of Polycomb complexes in cell transformation
Previously, we showed that the increased motility phenotypes seen 
after v-Src activation are mediated, at least in part, by decreased 
abundance of the chromatin assembly factor 1 (CAF1) subu-
nits (Endo et al., 2017). Furthermore, siRNA-mediated depletion 
of CAF1 subunits could increase cell motility and invasiveness 
in the absence of v-Src activation. Therefore, we examined  
whether v-Src activation caused any effects on epigenetic  
pathways and/or epigenetic factors known to be involved in  
reprogramming cellular phenotypes. For this, protein expression 
ratios for cells at the 72 hr time point -/+ v-Src activation were 

ranked according to p-value and filtered for relevant UniProt 
keywords, e.g. “epigenetic” and “chromatin” (Supplementary 
Table 6). This revealed decreases in the abundances of the his-
tone lysine demethylase PHF8, MCM proteins and the polycomb  
repressive complex 1 (PRC1) subunits, PHC3 and CBX6.

Only two of the total PRC1 and PRC2 subunits identified, i.e., 
PHC3 and CBX6, change in abundance by two-fold or more, as 
summarized in Figure 15A. While smaller abundance decreases in 
other PRC1 subunits are also observed, all of the PRC2 subunits 
either show small increases in abundance, or do not change.

We next examined the effect on polycomb complexes of 
CAF1 depletion, in the absence of v-Src activation. To do this, 
we carried out a SILAC proteomic screen (Figure 15, B–E,  
see Methods), comparing MCF10A Src-ER cells depleted of 
CAF1 subunits by siRNA, with control cells treated with a non-
targeting siRNA. As observed with Src induction, CAF1 deple-
tion also resulted in a decrease in the levels of several PRC1 
subunits (Figure 15, C–D). In contrast, no significant change in  
abundance was observed for PRC2 subunits (Figure 15, C–D). 
Downregulation of PHC3 by either Src induction, or CAF1  
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Figure 15. Src activation and CAF1-depletion both decrease levels of PRC1 subunits. (A) Diagram of the polycomb repressive complexes 
(PRC1 & PRC2) and their subunits. Subunits in red show significantly decreased abundance after v-Src activation. (B) Experimental diagram 
of a SILAC experiment to measure proteome differences between cells treated with non-targeting siRNA (siControl) versus cells treated with 
siRNA targeting CHAF1A/p150, a critical component of the CAF1 complex. (C) Plot of –log10 p-value versus fold change shows downregulation 
of all PRC1 subunits measured. In contrast, PRC2 subunits remain either unchanged, or slightly increased. (D) Bar chart showing fold change 
data from (C). PRC1 and PRC2 subunits are shaded light and dark grey, respectively. (E) Immunoblot analysis of PHC3 either (left) comparing 
-/+ Src induction conditions, or (right) comparing siCTRL versus siRNA targeting CAF1 p150 subunit (sip150). F) qPCR analysis of PHC3 
mRNA, comparing same conditions as (E).
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depletion, was also observed by immunoblot analysis  
(Figure 15E). Downregulation of PHC3 protein levels appears 
to occur via a post-transcriptional mechanism(s), because there 
is no parallel decrease detected in PHC3 mRNA levels, either  
following CAF1 knock-down, or after v-Src-induced cell  
transformation (Figure 15F).

In summary, either CAF1-depletion, or v-Src-induced cell  
transformation, both resulted in a similar, reproducible decrease 
in the protein levels of the PRC1 subunit PHC3, compared to  
control cells, without a corresponding change in the levels of  
PRC1 mRNA.

PHC3 is a suppressor of cell motility
We next tested the functional consequences of PHC3 downregu-
lation on cellular phenotypes associated with oncogenic trans-
formation and metastasis induced by activation of v-Src kinase, 
including altered cell morphology, wound healing and inva-
sion. To do this, we compared MCF10A Src-ER cells depleted 
of PHC3 protein by siRNA, with control cells treated with a 

non-targeting siRNA, which retained unaltered levels of PHC3  
(Figure 16, A–D). The PHC3-depleted cells exhibited a ‘cell  
scattering phenotype’ (Ridley et al., 1995), which is character-
ized by loss of cell-cell adhesion, a more homogeneous distri-
bution of cells across the 2D tissue culture dish and increased 
motility, which was not seen in the control cells (Figure 16A).  
Consistent with reduced PHC3 levels promoting an increase 
in cell motility, the relative wound area remaining after  
16 hrs was lower for PHC3-depleted (~40%), versus control 
cells (~90%), (Figure 16, B & C). PHC3 depletion also led to 
increased numbers of cells positive for invasion (n = ~120), 
compared to the control cells treated with non-targeting  
siRNA (n = ~30), as measured in a Matrigel-coated transwell  
migration assay (Figure 16D).

The PHC3 depletion data indicate that basal levels of PHC3  
protein are important for suppressing cell motility in untrans-
formed cells. We next explored this further by testing how PHC3 
protein domains and expression levels influence the phenotypes  
mediated by activation of Src kinase activity. To do this, we 

Figure 16. PHC3 depletion alters RING1A localization, cellular motility and invasion. Cells treated with either non-targeting siRNA 
(siControl), or siRNA targeting PHC3, were analysed by light microscopy for (A) morphological changes, (B, C) wound healing assays, 
and (D) transwell Matrigel invasion assays. Error bars indicate standard error between three biological replicates. E) A summary of data 
comparing the ability of full length PHC3 and PHC3 truncation mutants to repress the invasion phenotype induced by v-Src activation.  
(F, G, H) Cells were transduced with lentivirus encoding for either (F) HA-PHC3WT (full length, wild-type), empty (G), or (H) HA-PHC3ΔSAM 
(SAM domain deletion mutant). Cells were then treated either with ethanol (control), or 4-OHT, and immunostained for HA tag (green) and 
RING1A (red). Arrows indicate RING1A nuclear foci. Representative images of three replicates. Scale bar: 5 µm. (I) Immunoblot analysis of 
H2AK119ub -/+ Src activation. Note that the loading control shown is identical to Figure 15E.

Page 20 of 48

Wellcome Open Research 2018, 3:51 Last updated: 01 JUN 2018



analysed the effect of exogenous expression, from lentiviral  
vectors, of either wild-type HA-tagged PHC3, or various  
HA-tagged PHC3 truncation mutants, in cells -/+ Src activation  
(Figure 16E). This showed that the number of cells positive for 
invasion, following Src activation, was significantly reduced 
in cells expressing wild type HA-PHC3, as compared with cells 
transduced with an empty HA vector control (Figure 16E and  
Figure Supplement 1 – (Figure 16)).

These expression data using HA-tagged, wild type PHC3  
support the conclusion that PHC3 suppresses the increased cell 
invasion caused by activation of v-Src kinase. A comparison of 
the ability of transduced HA-tagged PHC3 truncation mutants 
to suppress Src-mediated, increased cell invasiveness, indicates  
that this requires the carboxy-terminal sterile alpha motif (SAM) 
domain in PHC3. In contrast, either a deletion of the amino  
terminal domain, or several short internal PHC3 deletions, each  
still show suppression of motility (Figure 16E).

The SAM domain of PHC3 is thought to be important for  
homo-oligomerisation and transcriptional repression (Frey  
et al., 2016; Robinson et al., 2012). Fluorescence microscopy  
analysis, immunostaining for the HA epitope in wild type  
HA-PHC3, reveals the expected pattern of prominent punctate  
nuclear foci, i.e. ‘polycomb bodies’ (Figure 16F, arrows).  
This staining is specific, because no signal is detected with the  
anti-HA antibody in the mock-transduced control cells  
(Figure 16G). In contrast, immunostaining for HA-PHC3ΔSAM 
shows that this mutant fails to concentrate in the nucleus, does  
not form a similar pattern of foci to wild type PHC3 and instead 
produces granular staining throughout the cell (Figure 16H).

We conclude that the SAM domain is critical for the function  
and nuclear organization of the wild type PHC3 protein.

Given the known role of PHC3 in formation of PRC1 complexes 
and the importance of the PHC3 SAM domain in forming  
protein-protein interactions, we next investigated the immunos-
taining patterns of other PRC1 subunits in cells transduced with 
either wild type, or mutant, HA-tagged PHC3 (Figure 16F).  
RING1A, a PRC1 subunit with E3 ligase activity, predominantly 
colocalises in a similar punctate staining pattern to wild type  
PHC3 (Figure 16F; white arrows indicate co-localisation of 
RING1A and wild type HA-PHC3 proteins in nuclear foci).

Following activation of v-Src kinase activity by treatment of  
cells with 4-OHT, both the levels of PHC3 seen by protein  
blotting (Figure 15E) and the intensity of RING1A foci seen by 
immunostaining (Figure 16F, compare upper and lower panels), 
decreases. A similar decrease in the intensity of RING1A foci 
seen by immunostaining is evident in the mock-transduced,  
control cells following 4-OHT treatment (Figure 16G, compare 
upper and lower left panels). Further, there is a striking disrup-
tion in the pattern of RING1A localization in cells expressing the  
HA-PHC3ΔSAM mutant protein, independent of v-Src kinase  
activation (Figure 16H, right panels). These data suggest that 
the HA-PHC3ΔSAM mutant may act as a dominant negative,  
reducing the ability of endogenous WT PHC3 to suppress invasive 

phenotypes. Indeed, expression of the HA-PHC3ΔSAM mutant  
construct led to an increase in invasion compared to mock  
transduced control (Figure 16 FS1B).

We conclude that the SAM domain of PHC3 is important for 
the correct nuclear localization of both PHC3 and RING1A  
proteins.

To assess whether PRC1 E3 ligase activity is reduced after  
v-Src activation, we probed lysates for H2AK119ub. No  
significant change in the total H2AK119ub signal was observed 
after v-Src activation (Figure 16I). In contrast, as a positive con-
trol, siRNA co-depletion of both RING1A & RING1B proteins 
was seen to result in a significant reduction in the H2AK119ub  
signal (data not shown). PHC3 is thus not required to maintain  
overall H2AK119ub levels, at least not at the majority of loci  
(Figure 16F).

Effect of v-Src Activation on Protein Turnover (Exp B)
In Exp B we evaluated the effects of Src-mediated cell  
transformation on the rates of protein synthesis, degradation and 
turnover, using the same pulse-SILAC method described above 
for untransformed cells (cf. Figure 2 & Figure 5). Measure-
ments were made in cells that had been transformed by v-Src  
kinase activation for 48 hr, before starting the heavy isotope 
amino acid pulse (see Methods). This time point was chosen to  
coincide with the transformed cells reaching apparent steady state 
in global protein abundance changes and altered morphologies  
(cf. Figure 9).

Pulse-SILAC measurements of protein turnover (i.e. Exp B, both 
basal and transformed cell states; see Methods), were merged 
and filtered to include only data meeting the following stringent 
criteria: (i) tau (cf. Figure 5), measured in both conditions must 
not exceed the duration of the pulse-SILAC experiment (72 hr),  
(ii) the errors for tau must be less than 12 hr and (iii) the  
offsets (cf. Figure 5) must be greater than zero. The resulting  
data table (Supplementary Table 7) comprises 8,412 proteins,  
along with their measured half-lives under both basal and  
transformed conditions and the corresponding time course data.

From the data presented in Supplementary Table 7, the  
(unweighted) median protein half-life in transformed cells is  
10.9 hr, compared with 11.6 hr for untransformed, control cells  
(p < 0.001, t-test). Figure 17A shows a scatter plot, compar-
ing protein half-lives measured in control (CTRL), versus  
transformed (4-OHT), cells. A line of best fit from linear regres-
sion, calculated across the entire data set, has a slope of 0.86  
(r2 = 0.88). The bias towards decreased half-lives in 4-OHT treated 
cells is more easily observed in the histogram of half-life differ-
ences shown in Figure 17B, consistent with our finding that the 
unweighted, median protein half-life is reduced in transformed 
cells.

We also calculated the abundance-weighted, median protein 
half-life in transformed cells, which was 12.7 hrs. This increase 
in median half-life of ~17% in transformed cells, when abun-
dance weighting is accounted for, is similar to the abundance 
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Figure 17. Comparison of half-lives in basal (CTRL) versus transformed (4-OHT) cells. A) Scatterplot of half-lives in 4-OHT- versus 
control-treated cells. The equation of the line shown is y = x. B) A histogram of half-life difference between 4-OHT- and control-treated cells 
shown for all proteins. The dotted line in the centre indicates 0, i.e. no difference between the two conditions. C) Volcano plot of –log10(p-value) 
versus difference in half-life. Yellow and purple shading demarcates cut-offs for proteins either significantly shorter-lived, or longer-lived, 
respectively, in 4-OHT-treated cells. D) Proportion of proteins that significantly change half-life. E) Histogram of half-life difference between  
4-OHT- and control-treated cells shown for proteins that significantly change half-life. The dotted line in the centre indicates 0, i.e. no difference 
between the two conditions. F) Cumulative abundance plot (cf. Figure 4A) with proteins that significantly change half-life highlighted in red.

weighted increase of ~20% measured in untransformed cells  
(cf. Figure 6). Thus, both the weighted and unweighted median 
half-life calculations show that cell transformation results in  
a proteome-wide reduction of average protein half-lives. The 
weighted median half-life decreased by ~1.5 hrs, consistent with 
cell transformation causing an increase in protein turnover.

Regression analysis was also performed on a subset of 4,954 
proteins, selected for having the highest quality data, as defined 
by an exponential fit r2 > 0.95 under both the control and trans-
formed cell conditions. This results in a slope of 0.88 (linear  
regression r2 = 0.91; data not shown). We conclude that the  
decrease in median half-life induced by transformation is robust  
to differences in exponential fit quality.

In summary, we conclude there is a robust reduction of ~1.5 hr  
in the average protein half-life in cells transformed by v-Src  
kinase activation.

Proteins showing altered half-life in transformed cells
Next, we assessed how the half-lives of individual proteins were 
affected by cell transformation induced by v-Src activation. To 

do this, Z-scores were calculated based on both the difference  
in half-life between control and transformed cells and the errors 
determined for individual half-life measurements. These data 
were visualized in a volcano plot, comparing p-value versus  
half-life difference (Figure 17C). Selecting an arbitrary p-value  
cut-off value of 0.01, 177 proteins showed a significantly 
changed half-life, with >75% having a lower half-life in the  
transformed cells (Figure 17D).

Figure 17E shows Δt
1/2

 in a histogram, illustrating the  
distribution of protein half-life values for the proteins signifi-
cantly changing half-life after transformation. Interestingly, the  
majority of altered proteins (136/177), decrease half-life after 
transformation, with an average reduction of ~8.3 hrs. Most 
of these proteins are expressed at medium to low abundance  
(Figure 17F).

We next analysed further the subset of 177 proteins showing 
altered half-life in v-Src transformed cells, to examine whether 
changes in half-life correlated with protein abundance changes 
between CTRL and 4-OHT treated cells at 48 h (Figure 18A).  
We note these proteins include several members of the serpin  
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family, including SERPINB3/B4 and SERPINB1 (cf. Figure 11E). 
Interestingly, despite showing a decreased half-life, indicating 
a higher turnover rate, these serpin proteins actually increased 
in total abundance after v-Src activation. In particular, the  
abundance of SERPINB3/B4 rapidly increased by ~10-fold 
within 48 hr of activating v-Src, as compared with control cells  
(Figure 11E), while the half-life of SERPINB3/B4 decreases  
from ~13 hrs to ~2 hrs (see Supplementary Table 7).

The dramatic increase in SERPINB3/B4 levels was independ-
ently confirmed by protein blotting analysis of cell extracts, 24 
hr after v-Src activation (Figure 11F). Furthermore, consist-
ent with the pulse SILAC data, immunoblot analysis of cells 
treated with emetine (a small molecule inhibitor of protein 
translation) independently confirmed the significant decrease 
in SERPINB3/B4 protein stability in transformed cells, with 
an estimated half-life of ~2 hr under transformed conditions  
(Figure 18B). One explanation for these unexpected results is 
that the markedly reduced half-life of SERPINB3/B4 could  
reflect the transformed cells attempting to reduce the increased 
levels of SERPINB3/B4 back to the normal abundance seen in  
control cells.

Src proteomic signature is prognostic of poor clinical 
outcome
Next, we evaluated whether the proteomic changes observed 
here in the Src-ER cellular model would be reflected in cancer 
patient outcomes in the clinic. To do this we created a protein-
level ‘Src signature’, using the high stringency clustering data  
(cf. Figure 11). The signature comprises in total 248 proteins, 

which each change in abundance by at least 2-fold and for 
which we have data across all seven time points analysed after  
activation of v-Src kinase (Supplementary Table 8).

We sought to compare this proteomic Src signature with gene 
expression changes in patient tumours measured in the TCGA 
data set (Cancer Genome Atlas Research Network et al., 2013). 
As described above, we had selected the Src-ER model for 
this proteomic study after finding a clear positive correlation 
between increased SFK activity and poor clinical outcome in 
the TCGA protein array (RPPA) data set (cf. Figure 1). Unfortu-
nately, because most of the proteins we detect in the Src signa-
ture were low abundance and not measured in the TCGA RPPA  
dataset (Akbani et al., 2014), we could not make a direct compari-
son of protein level differences with patient outcomes. However, 
because extensive mRNA characterization has been performed  
on the TCGA samples, we therefore resorted to comparing 
our Src signature proteomic data with the TCGA mRNA data. 
This is justified by previous studies showing that bulk protein 
and mRNA abundances are moderately positively correlated, 
(Lundberg et al., 2010; Ly et al., 2014; Schwanhausser et al., 
2011), although we note that the accuracy of this relationship  
can vary significantly on a  per-gene basis.

Therefore, using TCGA mRNA measurements as proxies for 
protein level changes, patient gene expression profiles were 
scored based on conversion of our Src proteome signature 
to a corresponding Src gene signature (Figure 19A). Briefly,  
expression values from Src signature genes were linearly  
combined into a ‘Src signature score’, with coefficients (+1 or -1) 

Figure 18. Cross-correlation of protein abundance and half-life changes. A) Comparison of log2 protein abundance ratio (4-OHT/CTRL) 
at 48 hr and log2 half-life ratio (4-OHT/CTRL). Black points indicate p < 0.01. Green arrows indicate two proteins, SERPIN3&B4 (1) and 
SERPINB1(2). The Pearson correlation (r) is 0.03. B) Densitometric quantitation of the immunoblot images obtained from analysis of cells 
that were treated with emetine (inhibitor of translation) for the indicated time points, harvested, and immunoblotted for beta tubulin and  
SERPINB3 & B4.
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corresponding to whether the encoded protein was either increas-
ing, or decreasing, in our proteomics data set. Patient cohorts 
were identified based on the highest and lowest score bins  
(i.e., top 20th vs. bottom 20th percentiles). We then evaluated  
whether there was a significant difference in survival time  
between patients in the respective cohorts.

Figure 19B shows the resulting KM survival curves plotted for 
these two cohorts. The green and red dashed lines represent 
patients that have high and low Src signature scores, respec-
tively. These data show a strong negative correlation between the 
Src signature score and length of patient survival post tumour  
diagnosis (Figure 19B). The median survival difference between 
the two cohorts is ~4 years. At 5 years post tumour diagnosis,  
there is a difference between the cohorts of ~40% in the fraction  
of surviving patients (vertical line).

As a control for this analysis, a permutation-based, boot-
strapping algorithm was used to estimate the false discovery 
rate (FDR). For this we compared 1,000 randomly gener-
ated protein signatures, all of equal length to the Src signature.  
None of the 1,000 random permutations either matched, or 
exceeded, the experimental result shown from our Src signature 
data (Figure 19B).

In summary, we conclude that the major decrease observed in 
average survival time post tumour diagnosis, between patient  
cohorts with highest and lowest matches to our Src signa-
ture, is highly significant and unlikely to occur by chance 
(FDR < 0.001).

Cancer subtypes
The analysis above ranks patient survival for correlation with 
the Src proteomic signature across all cancer subtypes in the 
TCGA data set. We next asked whether ranking within can-
cer subtypes would show differences in clinical outcome.  
Figure 19C lists the cancer subtypes that show a significant 
(log rank p < 0.05) difference in length of survival between 
patient cohorts with the respective highest and lowest Src sig-
nature scores within that subtype. A breakdown of patient  
cohort membership by cancer type is shown in Figure 19D. 
Interestingly, these data show clear differences in length of 
survival for different cancer subtypes, albeit with significant  
variation in both patient numbers and therapeutic histories  
between the subtypes. Nonetheless, the data show that the Src 
signature score is prognostic for poor patient outcome within the  
TCGA data set, with potentially higher predictive power for  
certain cancer subtypes, notably including liver cancer and lower 
grade glioma.

Relation of Src proteomic signature to mRNA signatures
As explained above, to compare our experimentally deter-
mined protein-level Src response signature with patient out-
comes, we had to convert the protein data into a corresponding 
transcript signature. It is likely, therefore, that the true prognostic 
value of our proteomic Src signature is underestimated, because 
for any of the proteins where a change in their abundance in 

response to Src activation is controlled by post-transcriptional 
mechanisms (e.g. change in rates of translation, degradation, 
and/or secretion), this may not be reflected in a corresponding 
change in mRNA level and therefore not reported by either a tran-
scriptomics, or microarray assay. For example, we showed that 
the PRC1 complex subunit PHC3 decreases in abundance at the 
protein level after Src activation, without a detectable change 
in its mRNA level (Figure 15F).

We therefore addressed the potential impact of post-transcriptional 
and/or post-translational regulation of protein abundances within 
the Src signature, with respect to its ability to predict patient out-
comes when used in conjunction with transcript data. To do this, 
we analysed how well different protein abundances from our 
Src response data set compare with RNA abundances in a previ-
ously published transcriptome study (Lundberg et al., 2010). As 
shown in Figure 20, the proteins that provide the highest prognos-
tic value in comparisons between patient survival and transcrip-
tome data are also the proteins that show the strongest positive 
correlation between corresponding mRNA and protein abundance 
levels in epithelial adenocarcinoma cells (Spearman’s r2 = 0.72, 
p-value = 0.002, Figure 20B, right panel). This finding is con-
sistent with our prediction that the prognostic value of the Src 
proteomic signature is currently reduced, because a subset of the 
proteins do not show corresponding changes at the mRNA level.

Src signature stratifies cell lines resistant to Src inhibitors
While there is currently a dearth of detailed proteome measure-
ments linked with patient records in the public domain, there 
are more proteomic datasets available from analysis of human 
cell lines. Therefore, we next performed a preliminary analysis 
to test whether our proteomic Src signature could also be used 
to stratify human cell lines by predicting whether they are either 
responsive, or resistant, to clinically-relevant Src kinase inhibitors. 
To do this, we used the Src signature data to reanalyze two pre-
viously published data sets. First, a quantitative, MS-based 
analysis of the proteomes of a panel of human triple negative breast 
cancer (TNBC) cell lines (Lawrence et al., 2015). Second, data 
from CCLE showing the sensitivity of these same human cell lines 
to the inhibitor Dasatinib (Seashore-Ludlow et al., 2015), which 
inhibits Src family kinases (on-target) and also ephrin receptors 
(off-target) (Creedon & Brunton, 2012). As shown in Figure 21, 
Src signature scores calculated using proteome-wide protein abun-
dance data for TNBC cell lines showed a statistically significant 
correlation with Dasatinib sensitivity (r2 = 0.40, p-value, 0.016, 
Figure 21). This preliminary analysis, involving a three-way 
comparison of disparate data sets, each with distinct sources 
of variability and technical error, has obvious limitations in its 
sensitivity. Nonetheless, it is striking that a significant level of 
stratification for Dasatinib sensitivity between these cell lines 
was obtained by focusing analysis on the expression levels of the 
proteins within the Src signature.

In summary, the overall results above using the experimentally 
determined Src signature are consistent with our overarching 
hypothesis that proteomic response data measured using this epi-
thelial cell model can identify important pathways downstream 
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Figure 19. Src proteomic signature is a predictor of poor clinical outcome across distinct cancer types. A) Scheme illustrating the 
concept of the Src signature score. B) TCGA patients were stratified into five cohorts based on mRNA intensities for proteins in the Src 
signature. Survival curves for patients showing the top (green dashed line) and bottom quantile (red dotted line) quantile Src signature are 
plotted. Log rank test p < 1 × 10-10. A bootstrapping method was used to calculate FDR for this effect size (~4 years difference in median 
survival). C) Summary of Src signature survival analysis within each cancer type. Cancer types showing significant log rank p-values (p < 
0.05, n = 9) are shown. For two cancer types, ratios of median survival were not determined due to a high surviving fraction for at least one 
cohort. D) The number of samples showing top versus bottom quantile Src signature score grouped by cancer type. Italicised cancer types 
do not have mRNA data currently deposited.
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Figure 20. Prognostic markers are more likely to have correlated protein and mRNA levels. A) Plot of –log10 p-value from log rank test 
for individual gene in predicting patient survival. Shaded boxes indicate three classes (‘class 1’, ‘class 2’, ‘class 3’) of ‘prognostic’ versus 
‘non-prognostic’ genes. Enriched gene ontology terms for each group are shown above the scatter plot. Asterisks indicate enrichment p-value 
of less than 0.001. B) A scatter plot showing the mRNA and protein levels measured in the epithelial carcinoma cell line A431 (Lundberg 
et al., 2010) for all proteins detected in our MCF10A Src-ER data set (left) and proteins that we have deemed ‘not prognostic’ (‘class 2’, 
middle) and ‘prognostic’ (‘class 1’, right).

Figure 21. Src signature scores and dasatinib sensitivity. A 
comparison of Src signature scores calculated from triple-negative 
breast cancer cell lines (Lawrence et al., 2015) and dasatinib 
sensitivity from the CCLE database (Seashore-Ludlow et al., 2015).

Proteome Dynamics (Brenes et al., 2017) (EPD; www.peptracker.
com/epd). As illustrated in Figure 22, the EPD provides multi-
ple interactive visualisations, allowing for convenient searching 
and interactive exploration of all the processed proteomics data. 
It also provides links to download both the processed data and 
associated raw MS files, the latter having been deposited in the 
ProteomeXchange PRIDE repository (accession PXD009270).

The data visualisations in the EPD can be explored by click-
ing on selected data points, which reveals tooltips providing 
additional information and links to other related online data 
resources, including Uniprot and STRING. An important feature 
in the tooltip box is the ability to ‘search in EPD’. Selecting this 
option filters all of the data within the EPD database and displays 
access specifically to all other data sets that include detection of 
the selected protein of interest. Further, using the accompany-
ing Search Box displayed at the top of the user interface, data 
visualizations can be searched using multiple selectable criteria, 
including either proteins/genes of interest, GO terms, or subu-
nits of specific protein complexes (Figure 22A, D). Identified 
components can then be readily highlighted on the displayed plot 
and the resulting annotated visualization also downloaded by 
the user and saved as a .svg file that can be edited further using  
external vector graphics software.

As an example of data exploration facilitated by the EPD,  
protein turnover plots, including calculated half-life values, can 
be displayed for any of the >9,000 proteins for which kinetic data 
were obtained from the pulse-SILAC analysis. For each of these 
proteins, the plot shows a protein synthesis and protein degradation  

of SFK activity that contribute to cell phenotypes associated 
with oncogenic transformation.

Data visualization through the Encyclopedia of Proteome 
Dynamics
To increase the value of the comprehensive proteomic data pre-
sented in this study, we have incorporated all the data into our 
open access, searchable online database, the Encyclopedia of 

Page 26 of 48

Wellcome Open Research 2018, 3:51 Last updated: 01 JUN 2018

http://www.peptracker.com/epd
http://www.peptracker.com/epd
https://www.ebi.ac.uk/pride/archive/
https://www.ebi.ac.uk/pride/archive/projects/PXD009270


Figure 22. The Encyclopedia of Proteome Dynamics. A) Homepage in EPD for the ‘Protein Analysis Mode’ of the interactive viewer, showing 
data types available. The page includes a dialogue box for searching for either proteins/gene names, GO terms, or protein complexes. 
Example plots of (B) time-course kinetics and (C) abundance histogram, for SERPINB3 & B4. (D) Homepage for the EPD ‘Global Analysis 
Mode’, enabling researchers to view the dataset mapped to (E) Reactome pathways and (F) a bubble plot of protein copy numbers. Protein 
identities show up as tool tips when moused over.
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curve, which can be separately toggled off and on. Similarly, 
the error for each curve, shown as a ribbon, can also be toggled 
off and on. Also, for each of the 8,412 proteins for which turno-
ver data were obtained under both control and transformed 
conditions, the respective synthesis and degradation curves, under 
both conditions, can be displayed on the same plot and each 
curve toggled off/on, in any combination. Furthermore, by typing 
the name of a protein of interest in the protein search box at the 
top of the interface, kinetic data from additional proteins can be 
added to the plot and compared. The visualization also auto-
matically creates a colour-coded legend at the bottom of the plot, 
with each element in the legend clickable to reveal a tooltip box 
with display options.

For more detailed descriptions of the functionality and use 
of the EPD, see (Brenes et al., 2017). We also highlight here new 
functionality for pathway analysis that has been added recently 
to the EPD and integrated with the Src transformation proteom-
ics data set. Specifically, the EPD now provides pathway analysis 
via integration with Reactome (https://reactome.org). As illus-
trated in Figure 22E, the Reactome module can be selected from 
the analysis options presented for the Src data set in the EPD user 
interface. Clicking on the disk labelled ‘Reactome’ provides 
access to a wide range of graphical displays, each showing  
different pathways and cell structures, which can be viewed with 
the cognate protein data from this study overlayed. Here, the  
protein data are colour-coded to represent abundance levels at  
each time point following activation of v-Src kinase activity.

In summary, via the combined EPD and PRIDE resources, 
open access to the entire proteomic data set presented in this 
study, from processed protein level abundance and kinetic data 
through to raw MS files, is provided in a uniquely convenient, 
searchable and interactive format.

Discussion
In this study, we have performed an in-depth characterization 
of the proteome of untransformed, human breast epithelial cells. 
We also carried out a comprehensive ‘time-lapse proteomics’ 
and functional study on the remodelling of this proteome driven 
by activation of v-Src kinase, across a time course during 
which the cells undergo oncogenic transformation, showing pro-
found phenotypic changes in morphology, motility and inva-
siveness. In addition, we performed the first global analysis to 
measure how rates of protein synthesis and protein turnover 
are affected by cell transformation. Our study of this epithelial 
cell model thus provides the most detailed picture reported to 
date of the downstream consequences, at the protein level, of 
cellular transformation induced by activation of any oncogene.

In addition to the unbiased identification of specific proteins 
affected by Src activation and analysis of their potential clinical 
significance (vide infra), these data offer several general con-
clusions, at a proteome-wide level, regarding the effects of cell 
transformation. First, we conclude that Src-induced transforma-
tion significantly alters cell phenotypes while only changing the 
expression and/or turnover levels of a minor fraction (~3% or less) 
of the cell proteome. Taking abundance weighting into account, 

this corresponds to only ~1.5% of the total protein molecules 
in the cell. Second, we find that the predominant effect of  
transformation, i.e. for ~75% of Src-responsive genes, is to 
decrease protein expression and/or to increase protein turnover.  
However, there are notable exceptions where specific proteins 
also increase. Third, we show that transformation increases the 
average rate of proteome turnover. The data suggest transforma-
tion can disrupt mechanisms involved in protein homeostasis. 
Fourth, we identify distinct classes of protein kinetics in response 
to Src activation. We find that proteins showing similar kinetics 
share related cellular functions, which can be linked with the kinet-
ics of changes in cell phenotypes. Importantly, fifth, we show 
that many of the Src-regulated proteins are present in low, to very 
low, abundance and some are regulated post-transcriptionally. 
Therefore, some important components of the cellular response 
to transformation may not have been detected in previous stud-
ies, particularly when exclusively RNA-based detection methods 
(e.g. microarray, RNA-seq etc.), were used to identify gene- 
expression changes in cancer.

To maximize the value of all these proteomic data, we provide 
open access to search and interactively explore all of this informa-
tion via the online, EPD database (www.peptracker.com/epd).

Src signature & cancer
Our proteomic data define a ‘Src signature’, corresponding to 
a set of 248 proteins whose abundance significantly alters after 
activation of Src tyrosine kinase activity. The identities and func-
tions of some of these signature proteins are discussed further 
below. The clinical relevance of the Src signature was shown by 
several observations. First, multiple genes already used in the clinic 
as cancer biomarkers encode proteins within the Src signature, 
including Her2, MUC16, PLAU, SERPINE1, Aurora A kinase, 
Cyclin B1, GRB7 and Ki-67. Second, the signature is highly 
prognostic of poor patient survival across multiple tumour types, 
with potentially strongest predictive power for certain cancer  
subtypes, including liver cancer and lower grade glioma (cf. 
Figure 20). Thus, in an analysis comparing our data with  
clinical data from TCGA, cancer patients showing gene expres-
sion changes with the closest match to the pattern of the  
Src signature, on average survive ~4 years less post diagnosis  
than the patients showing the lowest match.

Amongst the key drivers of poor cancer patient survival in the 
clinic are the specific changes in the behaviour of cancer cells that 
contribute to metastases, e.g. phenotypes causing increased cell 
motility and invasiveness. These phenotypes can arise through 
multiple different triggering events. Therefore, rather than focus-
ing on the event that may initiate cell transformation, we focussed 
here instead on measuring the downstream, protein level conse-
quences of transformation. Our hypothesis was that proteome 
remodelling induced by v-Src activation in cell culture could 
mirror, at least in part, some of the protein-level effects driving 
adverse phenotypic changes in cancer patients, even although 
these may be initiated in vivo by different oncogenes and muta-
tional mechanisms. The fact that the proteomic ‘Src signature’ we 
identified is prognostic of poor patient survival across a range of 
cancer types supports this hypothesis.
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As highlighted above, our proteome remodelling data show that 
multiple proteins, encoded by genes that are already in use in 
the clinic as tumour markers, alter their expression levels after 
the activation of Src kinase activity in this epithelial cell model. In 
addition, the data also identify new potential protein biomarkers, 
protein activities and cellular pathways that may be useful as 
future clinical markers and/or cancer drug targets. We note that 
since many of the Src-responsive proteins identified are expressed 
at very low abundance, and since some of these proteins appear 
to be regulated post-transcriptionally (e.g. PHC3), they may not 
have been detected in previous screening studies that either relied 
exclusively on transcriptomic measurements, or that used pro-
tein detection methods lacking the depth of our current MS-based 
proteomics analysis. For example, most of the proteins we iden-
tify here in the Src signature were not included in the previous 
TCGA protein array studies.

Proteogenomic efforts have recently begun to characterise the 
proteome variation ‘in situ’ using cancer patient material. The 
challenging nature of analysing limited sample material in com-
plex tissue environments means that these approaches currently 
have to trade depth of proteome analysis to enable an increase 
in the breadth of clinical samples that can be analysed. For 
example, recent analyses achieve an impressive proteomic depth 
of ~8,000 proteins, quantitatively measured in 77 breast cancer 
samples, with matched measurements of gene copy number altera-
tions and mRNA abundances (Mertins et al., 2016). Interestingly, 
our Src signature includes proteins shown by Mertins et al. to be 
associated with specific breast cancer subtypes. These include 
GRB7, which was shown to be associated with ERBB2 copy 
number amplification, and the cell cycle/replication stress kinases 
Aurora A (AURA) and Chk1 (CHEK1), which were shown 
to be associated with basal-like subtype.

However, our analysis here on the MCF10A cell model of 
oncogenic transformation showed that the epithelial proteome 
extends to expression of ~14,000 proteins or more, with >7,000 
of these proteins accounting for less than 5% of the total protein 
copies in the cell. This set of low abundance proteins includes 
>75% of the expressed kinases, along with many transcription 
factors and other functionally important proteins that are typi-
cally ‘missing’ from current clinical analyses. Additionally, we 
show here that many of the Src signature proteins responding to 
cell transformation belong to this group of low copy number 
factors in epithelial cells. Therefore, many of the signature 
proteins will be challenging to detect in unbiased, high-throughput 
studies, unless increased proteome depth is achieved. Our data 
suggest that to capture relevant disease phenotype-associated 
proteins (as identified in our Src signature), further technologi-
cal development is still required to achieve high breadth of clini-
cal samples without sacrificing the requisite proteomic depth 
needed to detect important protein biomarkers that respond to 
transformation.

We have characterized the downstream, protein-level effects of 
cell transformation resulting from activating Src kinase activity 
(cf. Figure 1). Previous reports have highlighted a correlation 
between elevated c-Src expression and cancer patient survival. For 
example, increased levels of c-Src mRNA were reported to 

correlate with poor clinical outcome in many tumour types,  
including colon, liver, lung, breast and the pancreas (reviewed in 
(Irby & Yeatman, 2000)). However, an immunohistocytochemi-
cal analysis of breast cancer tissues, comparing antibodies 
recognizing either total SFK protein levels, or active SFKs (i.e., 
SFKs phosphorylated at Y416), indicated that it is specifically 
markers of Src activity that are highly correlated with breast 
tumour malignancy, while total levels of Src protein are not 
correlated (Elsberger et al., 2010). Our analyses in this study 
support the latter view that it is primarily the level of active Src, 
rather than total Src protein expression, which may be important 
in regulating molecular mechanisms involved in carcinogenesis 
and/or cancer progression. (cf. Figure 1).

SFKs were an early target for pharmacological development 
(Levitzki & Gazit, 1995) and potential clinical intervention, with 
several small molecule Src kinase inhibitors now either approved, 
or in development, for clinical use (Hennequin et al., 2006). 
However, despite the strong links between elevated Src kinase 
levels and poor patient survival, the clinical benefit for patients 
treated with SFK inhibitors was so far disappointing (Creedon 
& Brunton, 2012), particularly in patients presenting with solid 
tumours (Fury et al., 2011). One possible reason for this could 
be that cancer phenotypes that are triggered initially by increased 
Src kinase levels, subsequently become independent of continued 
Src activity. For example, a potential mechanism is provided by 
the observation that v-Src induction can trigger a positive, feed-
forward loop, involving the let-7 microRNA and proteins involved 
in a pro-inflammatory response, e.g. NFkappaB, STAT3, and IL-6 
(Iliopoulos et al., 2009). Additionally, based on our observations 
that Src activation regulates proteins affecting cell motility and 
invasiveness phenotypes in culture, it may be worth re-evaluat-
ing the clinical use of Src inhibitors to treat the development of 
metastases, rather than late stage solid tumours.

Proteome remodelling & cell transformation
Our current data set provides a unique insight into both the iden-
tities of the specific proteins whose expression levels change 
following activation of Src kinase activity, along with the 
kinetics of their respective responses. As these data are also linked 
with the corresponding kinetics of change in transformed cell 
phenotypes, this provides important clues concerning potential 
molecular mechanisms and signalling pathways that may contrib-
ute to changing the behaviour and/or responses of the cells upon 
transformation. To facilitate hypothesis generation and further 
exploration of the relationships between altered protein expres-
sion and cancer cell phenotypes, we have integrated these time-
lapse proteomics data with Reactome pathways and provided open 
access via the online EPD database (www.peptracker.com/epd).

A major conclusion from our study is that oncogenic transfor-
mation of human epithelial cells results in only a small subset 
of cell proteins (<3%) changing in abundance. Indeed, this repre-
sents the abundance-weighted change of an even smaller fraction 
of the total protein molecules in the cell (<1.5%), because most 
of the affected proteins are expressed at low copy number. The 
majority of proteins responding to Src activation (~75%) decrease 
their expression after transformation, with notable exceptions. 
Clustering analysis showed that each of the respective groups of 
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proteins showing altered abundance at different times after 
activation of Src kinase are associated with different cellular 
functions, as illustrated in Figure 23.

Amongst the earliest detected responses to Src activation are 
the decreased expression of proteins involved in cell-cell junc-
tion interactions and extracellular exosome components, which is 
consistent with the observed phenotypic changes in cell motility 
and loss of contact inhibition. Other early responses to Src acti-
vation include changes in the abundance of proteins encoded 
by targets of the transcription factor NF-kappaB. The sprouty 
homologue 4 (SPRY4) protein, which is involved in suppress-
ing ERK/MAPK signaling, dependent on insulin receptor and 
epidermal growth factor, also shows a rapid decrease in abun-
dance. With regard to ERK pathways, it is interesting that we also 
see evidence of Src activation affecting ERK signalling through 
upregulation of the expression of protein phosphatases DUSP1 
and DUSP 4. We also measured a corresponding decreased stoi-
chiometry of phosphorylation of the DUSP target sites, T185 
and Y187, on ERK2.

Other early protein responses following Src kinase activa-
tion include a rapid increase in the levels of a specific subset of  

serpin-family protease inhibitors, along with increased levels of 
proteins involved in the inflammatory response. The response of 
the serpins to Src activation is of particular interest, as discussed 
further below also with respect to the effect of transformation 
on protein turnover. We detect protein expression in the untrans-
formed epithelial cells of 13 different members of the serpin  
family, but only a subset of these proteins show an abundance 
change after Src activation, including SERPINs B1/B3/B4/E1/A1, 
(cf. Figure 11E). These SERPINs inhibit a range of proteases, 
including papain-like cysteine proteases (SERPINB3) and chy-
motrypsin-like serine proteases (SERPINB4) (Schick et al., 1998) 
as reviewed in (Sun et al., 2017).

As noted above, SERPINE1 is already used in the clinic as a can-
cer biomarker. Furthermore, SERPINB3, which shows the most 
rapid and dramatic increase in abundance, was identified previ-
ously as ‘squamous cell carcinoma antigen’ (SCCA1), because it 
was found in many sera isolated from patients with squamous cell 
cancers of the cervix (as reviewed in (Sun et al., 2017)). Subse-
quently, however, it was also associated with multiple other types 
of cancer, of either epithelial, or endodermal origins, e.g. lung 
cancer, head and neck cancer and hepatocellular carcinoma and 
it was also reported to associate with poor patient survival after 

Figure 23. Summary model showing effects of Src activation on the cellular proteome. A) Model illustrating the time-course of protein 
changes observed following v-Src activation. Captions show enriched GO terms from clusters displaying differential response kinetics. B) A 
model summarising the role of CAF1 and PHC3 in suppressing increased cell invasiveness phenotypes.
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chemotherapy and proposed as a predictive biomarker in advanced 
non-small-cell lung cancer (Urquhart et al., 2013). Interestingly, 
SERPINB3 has also been reported to promote oncogenesis 
and epithelial-mesenchymal transition via the unfolded pro-
tein response and IL6 signalling in mammary epithelial cells 
(Sheshadri et al., 2014).

Given the very strong clinical links between increased SER-
PINB3 expression and many forms of aggressive cancers, our 
finding here that SERPINB3 protein expression is also strongly 
upregulated by Src activation strongly supports the clinical  
relevance of studying this human breast epithelial cell model 
to identify pathways relevant to cancer phenotypes linked with 
malignancy and poor patient survival. Considering the increased 
cell motility, invasiveness and morphology phenotypes induced 
by v-Src activation (Iliopoulos et al., 2009) (Endo et al., 2017), 
it is interesting that we also observe here that transformation 
coincides with an increase in extracellular matrix (ECM) compo-
nents, such as laminin proteins (LAMB3, LAMC2), cell surface 
receptors that interact with the ECM, such as integrins (ITGB, 
ITGA5), enzymes that remodel the ECM (PLAU, MMP14) 
and transcription factors that have been shown to play a role in 
regulating ECM factors (e.g. DLG5). Furthermore, many of the 
clustered proteins that change in abundance are associated with 
multivesicular bodies and extracellular exosomes. Such exo-
some-associated factors include the previously described subset  
of SERPINS (i.e. B1/B3/B4/E1/A1), which along with IL1β 
increase in abundance, while there is a parallel decrease in the  
abundance of the innate immunity factors C3, DCD & M2BP.

In addition to Src activation inducing changes in proteins affect-
ing the ECM and cell-cell interactions, we also see abundance 
changes in proteins that regulate cell division. For example, 
there is a rapid decrease in the levels of protein phosphatase 
1D (PPM1D), which has a role in inactivation of the check-
point regulators p53 and Chk1. We also detect an increase in 
the protein phosphatase CDC25, which is a regulator of the key  
cyclin-dependent kinase CDK1. Later in the time course (i.e. 
‘mid up’ cluster), we detect an increase in the levels of multiple 
proteins involved in cell division, including CCNB1, AURKB,  
INCENP and Borealin (CDCA8).

Consistent with cell transformation resulting in specific changes 
in intracellular signalling pathways, following Src activation we 
detect abundance changes affecting a small subset of kinases. For 
example, of the ~330 kinases expressed in the untransformed cells, 
fewer than 25 alter abundance, including HER-family, Ephrin 
receptor, Aurora and also Src kinases (cf. Figure 14). Thus, Src, 
HER3, EphA2, CLK1, Nek6 and AurA kinases all increase, while 
levels of HER2, CDK4, CHK1, EphB3, EphB4 and TGF-βR2 
kinases decrease. It will be interesting in future to link the observed 
changes in kinase and phosphatase levels with more detailed phos-
pho-peptide quantitation to determine how these responses affect 
kinase activation and phosphorylation of key protein targets that 
may influence cell behaviour and contribute to the transformed cell 
phenotypes. Some of these effects may already be seen with the 
current data set via analysis of the Reactome pathways available 

using the EPD database (www.peptracker.com/epd).

Even although the signature of protein abundance changes 
we detect as responding to Src activation is linked with poor 
patient survival, it is likely that the true prognostic value of 
the proteomic Src signature is underestimated, because not all 
of these proteins are regulated at the transcriptional level (cf.  
Figure 20). This is relevant because most of the data in the  
public domain linking patient survival with gene expression 
changes use either transcriptome, or microarray assays, to meas-
ure mRNA levels and do not directly measure protein expres-
sion. Therefore, any cancer-linked changes in protein abundance 
in patients that arise through mechanisms that do not alter mRNA  
levels will not be detected.

Polycomb repressor complex 1 (PRC1)
In considering novel, Src-modulated protein targets that are reg-
ulated at the post-transcriptional level, we show here that this 
includes the Polycomb Repressive Complex 1 (PRC1) subu-
nit PHC3. We have integrated our data from the experiments 
on PHC3 in this study, with our previous observations that Src 
downregulates CAF1 (Endo et al., 2017) and summarized the 
results in a simplified model (Figure 22B). We find that either 
activation of Src kinase activity, or depletion of CAF1 without 
activating Src, both result in decreased PHC3 protein levels. The  
data suggest a potential functional role for PHC3, acting  
downstream of CAF1, in regulating the increases in motility and  
invasion phenotypes seen in transformed cells. The model  
therefore highlights that normal expression levels of wild 
type PHC3 protein are important to suppress cellular motil-
ity and invasion phenotypes and that the PHC3 SAM domain is  
required both for this suppressive function and for localiza-
tion of PHC3 and RING1A proteins in punctate nuclear foci  
(Figure 22A). It will be interesting in future to identify 
whether any of the genes that are transcriptionally regulated in  
response to Src activation colocalise at these sites of PRC1 foci.

Our finding here of a potential functional role for the PRC1 
complex in cancer cell transformation, and the alteration of  
phenotypes associated with poor patient survival, is interest-
ing in light of the physiological role of the PRC1 complex in 
regulating gene expression during embryonic development. The 
establishment and maintenance of terminally differentiated cell  
types requires suppression of a range of cell functions that 
were active in the embryo and that contributed to the pro-
grammed cell migrations and interactions required to create 
tissues and shape the adult organism. Our data are therefore 
consistent with models in which forms of cancer could result 
from oncogenes re-activating and/or distorting gene regulators 
that control cell movement and division in embryos, inducing  
phenotypes which normally would be suppressed in healthy  
differentiated cells.

In this regard it is interesting that we find downregulation of 
PRC1 components occurs downstream of the chromatin associ-
ated factor 1 (CAF1) complex, which is also downregulated by Src 
(illustrated in Figure 23). We previously showed that decreased 
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levels of the CAF1 p150 subunit, in the absence of Src activa-
tion, can stimulate cell motility and invasiveness in human epi-
thelial cells (Endo et al., 2017). In mice, it was shown that the  
generation of induced pluripotent stem cells (IPSCs), effectively 
a de-differentiation process, was more efficient when CAF1 
subunits were depleted (Cheloufi et al., 2015). These authors 
proposed that CAF1 may play an important role in maintaining 
specific differentiated cell types by regulating the transition state 
barrier between undifferentiated and differentiated cell states. 
Therefore, regulation of CAF1 levels by Src, which in turn affects 
PRC1 expression levels, further supports the idea of cancer  
phenotypes resulting from a form of ectopic de-differentiation.

PHC3 is a co-factor of the canonical PRC1 complex (cPRC1). All 
PRC1 complexes contain the core PRC1 components that confer 
E3 ligase activity, comprising one PCGF protein (e.g. PCGF2/4) 
and one RING protein (RING1A or RING1B). In addition to the 
core PRC1 components, cPRC1 complexes also contain one chro-
mobox protein (CBX2, CBX4 and CBX6-CBX8) and one poly-
homeotic (Ph) protein (PHC1-PHC3). Additional, non-canonical 
PRC1 complexes (ncPRC1) have also been described, which con-
tain, for example, RYBP/YAF2. A second set of developmentally 
and functionally related complexes, the PRC2 complexes have core 
components that are distinct from PRC1 complexes and have lysine 
methyltransferase activities (as reviewed in (Schuettengruber et al., 
2017)). The components of PRC1 and PRC2 complexes are illus-
trated in Figure 15A.

The molecular and functional roles of cPRC1, ncPRC1 and 
PRC2 complexes are still under investigation. For example, recent 
work in the fly system, (Drosophila melanogaster) (Loubiere 
et al., 2016) has suggested that cPRC1 may have tumour suppres-
sive activity by silencing target genes associated with regulation 
of cell proliferation, signalling and polarity. They also show in 
this study that in human Embryonic Stem Cells (hESCs), cPRC1 
targeting to these genes is altered in a differentiation-dependent 
manner. In particular, cPRC1 colocalises with H3K27me3 in 
hESCs, which then are ‘redeployed’ to genes associated with 
proliferation, signalling and polarity.

In the original model (Wang et al., 2004), cPRC1 complexes 
bind to H3K27me3 marks associated with transcriptional silenc-
ing, which are deposited by PRC2. Bound cPRC1 complexes 
then deposit H2AK119ub marks, which function to transcription-
ally silence developmentally regulated genes. However, more 
recent evidence indicates that the majority of the H2AK119ub 
marks are mediated by ncPRC1, (Loubiere et al., 2016) which has 
contributed to an alternative model (as reviewed in (Schuetten-
gruber et al., 2017)) where ncPRC1 recruitment to genomic loci 
via a PRC2-independent mechanism leads to H2A119 ubiquitina-
tion, which may then facilitate subsequent binding of PRC2. Our 
data are consistent with this idea that the majority of H2AK119ub 
marks are mediated by ncPRC1 complexes. It will be interesting 
in future to characterise in more detail the different classes of 
PRC1 complexes that are expressed in differentiated cells and 
how they are affected by, and contribute to, mechanisms of cell 
transformation.

Protein turnover and cell transformation
We, and others, have previously used different pulse-SILAC 
strategies to measure global protein turnover values for mouse 
and human cell lines (Schwanhausser et al., 2011) (Jovanovic 
et al., 2015) (Boisvert et al., 2012) (Zecha et al., 2018) (McShane 
et al., 2016). However, a unique feature of this study is the detailed 
information it provides measuring protein synthesis, degrada-
tion/secretion and turnover rates in both healthy and in trans-
formed cells. To the best of our knowledge, this is the first study 
to assess the impact of oncogenic transformation on protein half-
lives at a systems level. Further, the experimental design chosen 
allows the most direct comparison of the consequence of trans-
formation because we directly compare protein synthesis and 
turnover rates in the same epithelial cells, grown either with, or 
without, activation of an oncogene (i.e. v-Src). Thus, we used our 
previously described pulse-SILAC method (Boisvert et al., 2012) 
to compare protein turnover in the same cells, but under conditions 
where they exhibited altered phenotypes, following growth -/+ 
4-OHT treatment for 48 hrs. This 48 hr time point was selected 
as the time post v-Src activation where we observed a peak in the 
protein abundance changes.

All of these turnover experiments were performed in biological 
triplicate, using cells grown on different days, with the resulting 
turnover values calculated separately for each peptide identified, 
as well as for every protein. In total, turnover data were meas-
ured for >9,000 separate epithelial cell proteins, including 8,412 
proteins where we could determine values in both the untrans-
formed and transformed cells. Open access to interactively 
explore all of these protein turnover data is provided via the EPD 
(www.peptracker.com/epd).

Across the epithelial proteome, protein half-lives showed a log-
normal distribution, with a median value of ~11.6 hrs in control, 
untransformed cells, and a reduced median half-life of ~10.9 hrs 
in the transformed cells. However, these values are calculated on 
a per protein basis, which does not take into account the large 
differences in copy number between proteins with high and 
low expression levels. To address this, we introduced here the 
concept of ‘abundance-weighted’ turnover and used this to calcu-
late proteome-level turnover values for the cells under each growth 
condition. The effect of abundance-weighting is significant, caus-
ing the median half-life values for control and transformed cells to 
increase to 14.2 hrs and 12.7 hrs, respectively.

Our analysis shows that oncogenic transformation resulted in 
a decrease in the average time taken for the entire epithelial 
proteome to turn over. Further, the abundance weighted aver-
age half-life values determined represent a direct experimental 
measurement of the time taken for >97% of the total protein mol-
ecules in the cell to turn over. We note that when studying global 
protein turnover, analysing abundance weighted values provides 
a more comprehensive view of cell proteome turnover and the 
effect of cell transformation, at a system-wide level, than compar-
ing the unweighted average turnover values. This arises because 
of the difficulty in practice of accurately measuring half-lives for 
the many low abundance proteins in the cell. For example, the  
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corollary was that turnover values for ~38% of proteins in the 
basal proteome were not determined, mostly corresponding to 
the proteins with lower expression levels. There is therefore a 
greater uncertainty associated with the value of the unweighted 
average protein half-life, as compared with the abundance  
weighted average used here.

Examination of the protein turnover values across the proteome 
reveal that only proteins with more extreme turnover values show 
clustering for specific functions and/or activities. Thus, GO term 
enrichment analysis showed little or no evidence of specific func-
tions associated with the bulk of proteins having half-life values 
centred around the proteome median value. However, there was 
clear enrichment of distinct functional classes of proteins with 
either higher, or lower, than average half-life values.

The proteins showing fast turnover in untransformed cells were 
enriched for factors involved in cell division. Interestingly, many 
of the other proteins that show fast turnover include secreted 
proteins and proteins with a secretion signal peptide and laminin 
proteins. Since our experiments specifically measured intracellu-
lar protein turnover, these findings indicate that, at least for these 
epithelial cells, protein secretion is an important contributing 
mechanism for many proteins with high turnover rates.

Many of the ECM factors identified have short half-lives and 
have been shown to be secreted. For example, the secreted enzyme 
plasminogen activator (PLAU) had a t

1/2
 of 0.6 hr. Structural 

components of the ECM, such as laminins (LAMA2, LAMA3, 
LAMA5, LAMB1, LAMB3, LAMC1, LAMC2) and fibronectin 
(FN1), had a mean t

1/2
 of 2.7 hr, likely resulting from short-lived 

intracellular residence prior to their secretion. Short half-lives 
were also seen for many receptors and may reflect ligand bind-
ing-mediated receptor recycling. For example, insulin receptor 
(INSR), had a relatively short half-life, t

1/2
 = 2.7 hr, likely due 

to rapid recycling of the receptor in the presence of insulin in 
the cell culture medium (Okabayashi et al., 1989). Several other 
receptors also showed short half-lives (< 5 hr), including the IL-6 
receptor and the TGFbeta1 and TGFbeta2 receptors; however, it is 
unclear in these cases whether the short half-life was triggered by 
ligand binding.

Rapid protein turnover may be contributing to the mechanisms 
affecting the observed contact inhibition and low cell division 
phenotypes under the culture conditions used with the untrans-
formed cells during the SILAC pulse. It is likely that the factors 
associated with mitotic cell cycle and DNA replication show 
short half-lives because they are actively targeted for degradation  
during cellular quiescence and G1 phase. Consistent with this  
idea, previous analyses of protein half-life, which were performed 
on asynchronous cells that are predominantly in G1 phase, showed 
short-lived proteins being enriched in ‘cell cycle’ annotations 
(Boisvert et al., 2012). Short-lived proteins show an enrichment 
in Notch signalling, due both to short-lived Notch receptors, 
NOTCH1 (t

1/2
 = 2.6 hr) and NOTCH3 (t

1/2
 = 3.1 hr), and also 

downstream factors, many of which regulate the G0/G1 transi-
tion, including CCND1 (t

1/2
 = 0.5 hr) and p27 (t

1/2
 = 2.5 hr). Our 

data are consistent with an important role for targeted protein deg-
radation in repressing cell cycle progression and maintaining the  
quiescent state. We note that such regulation of steady state  
protein abundance by a degradation mechanism allows for  
relatively fast stabilization of protein levels and a rapid response  
when the cells need to re-activate growth and division.

We also observe a positive correlation in the turnover values 
for proteins that are predicted to form common complexes, i.e.  
proteins associated in complexes are more likely to have similar 
turnover values to other proteins in the complex than to proteins 
that they do not interact with (cf. Figure 8). These data support 
the hypothesis that proteins that associate in the same complex 
can be co-regulated by mechanisms regulating protein stability, 
such as targeted degradation of unbound, free subunits (McShane 
et al., 2016). This is consistent with our previous observations 
that pools of proteins in different subcellular compartments can 
show different turnover rates, particularly subunits of large, 
multi-protein complexes that assemble and function in different 
compartments, e.g. ribosomes and RNA polymerase II (Lam et al., 
2007) (Boisvert et al., 2012) (Boulon et al., 2010).

It is notable that, following cell transformation induced by Src 
activation, there is a global change in the overall rate of proteome 
turnover, but only a small number of proteins (<3%), show 
major alterations in their half-life. The majority of these proteins 
(>75%), show faster turnover after transformation, with on 
average a reduction in their half-life of ~8.3 hrs. Interestingly,  
however, this increased rate of turnover is not always matched 
by a resulting decrease in protein abundance. Most dramatically, 
in the case of proteins such as SERPINB3, the exact opposite is 
observed, i.e., transformation simultaneously results in the protein 
increasing in intracellular abundance, while also turning over 
more rapidly.

The parallel destabilization and protein abundance increase of 
SERPINB3, which we could independently validate using  
biochemical assays, as well as pulse-SILAC MS, is consist-
ent with our general finding that overall protein abundance and 
half-life changes are not well correlated (r = 0.03), between  
control and transformed cells (cf. Figure 16F). We conclude that  
Src-mediated changes in steady state protein abundances are typi-
cally not mediated primarily by altering protein turnover rates. 
We propose instead that targeted protein degradation may 
be, at least in part, an important homeostatic mechanism for 
buffering protein expression levels under normal growth condi-
tions in healthy cells. Thus, for proteins whose expression level 
is linked with the control of cell behaviour, a temporary increase 
in expression would result in degradation of the excess protein 
produced to restore normal levels. We hypothesise that this 
homeostatic mechanism, involving degradation of excess protein  
production, is either circumvented, or else simply overwhelmed, 
by the effects of oncogenes. Thus, we propose that, upon cell  
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transformation, SERPINB3 expression levels are induced to 
increase by v-Src activation. As the normal homeostatic mecha-
nism tries to reduce levels of SERPINB3 back to that of untrans-
formed cells, the rate of SERPINB3 degradation increases, causing  
the observed increase in turnover rate. However, in this case, 
despite the increased degradation, the oncogene-driven increase in  
SERPINB3 expression still leads to a net increase in the total 
amount of SERPINB3 protein molecules, which in turn contributes 
to altering the behaviour and phenotype of the cells.

The epithelial cell proteome
We have provided here a comprehensive analysis of the protein 
composition of human breast epithelial cells. Characterisation of 
cell proteomes, including identification of the specific sets of pro-
teins expressed and their respective abundance levels, provides 
an objective and detailed molecular definition of cell identity. 
Deep proteome analyses of different mammalian cell types com-
monly show a wide dynamic range of protein expression levels, 
with bulk protein abundance typically dominated by proteins 
expressed by a relatively small number of genes. While some of 
these hyper-abundant proteins, such as histones and ribosomal 
proteins, are in common between different cell types and perform 
core cellular functions, other types of proteins can show major  
variations in abundance between cell types, linked with the spe-
cialised role of the cell. For example, granzymes are amongst the 
most highly expressed proteins specifically in T lymphocytes,  
reflecting their role in targeted cell killing by activated T cells 
(Hukelmann et al., 2016).

In addition to histones and ribosomal proteins, the proteome of 
untransformed human breast epithelial cells is dominated by 
abundant cytoplasmic enzymes and cytoskeleton proteins, e.g. 
GAPDH and tubulins. Notably, S100 calcium-binding proteins 
also contribute significantly to the bulk protein composition of 
these epithelial cells, contributing ~4% of the total protein by copy 
number. The human genome encodes 21 S100 family proteins, 
of which 13 were expressed in the untransformed epithelial cells, 
with 9 ranked in the top 100 most abundant proteins (i.e. S100A2, 
S100A6, S100A8, S100A9, S100A10, S100A11, S00A13, 
S100A14, S100A16). Interestingly, S100A8, the third most abun-
dant S100 protein in MCF10A cells, was not detected in a recent 
deep proteome characterisation of HeLa cells (Bekker-Jensen 
et al., 2017). We also see differences in the pattern of S100  
proteins expressed in human iPS cells (our unpublished obser-
vations; cell lines used can be found on HipSci). This indicates  
that expression of at least some of the S100 family members is  
cell type specific.

S100 proteins have been reported to be associated with cancer 
and to have a role in metastatic disease. For example, high  
levels of two S100 proteins, i.e., S100A10 and S100A16, are  
associated with non-small cell lung cancer (Uhlen et al., 2017). 
In addition, S100A8 and S100A9 are thought to be important 
for establishing the cellular niche for metastatic colonisation  
(Chaffer & Weinberg, 2011). Interestingly, as observed for  

SERPINB3/B4, both S100A8 and S100A9 proteins increase in 
abundance upon Src activation, while simultaneously showing 
decreased half-life. It is surprising how little is known in 
detail about the functions and physiological roles of this S100  
protein family, considering the major contribution they make 
to the overall protein abundance in many mammalian cell types  
and their potential role in cancer cell phenotypes.

The epithelial cell proteome shows that the great majority of 
genes that are expressed contribute only low, to moderate,  
numbers of protein molecules. Many of the proteins expressed at 
low levels nonetheless play very important functional roles. An 
example is provided by the expression profile of the protein kinase 
family. While we detect expression of ~330 different kinases, 
only a small subset of these are expressed at medium to higher 
abundance levels. Many of the high abundance kinases are meta-
bolic enzymes – e.g. PK, PGK, NME. The most abundant protein 
kinases in epithelial cells are cAMP-dependent kinase, catalytic 
subunit, MAPKs, Src and casein kinases. However, ~78% of the 
kinases expressed in epithelial cells fall within the lowest 5% 
of expressed proteins by copy number. Nonetheless, this large 
number of very low abundance kinases can also play critical 
roles and contribute to regulating major cellular processes and 
responses, e.g. targeting phosphorylation of proteins that are 
themselves low abundance factors and thereby modulating cell 
phenotypes.

It is important to bear in mind the consequence of the wide 
variation in expression levels of different important protein  
factors. For example, in screening strategies to identify biomark-
ers for disease and patient stratification for therapy, technologies 
that do not detect the many lower abundance protein factors are 
likely to miss important signatures with prognostic value. Our  
characterisation here of the proteomic Src Signature, which com-
prises many proteins expressed at low abundance, is consistent  
with this view.

Our systematic analysis here of the protein-level consequences 
of oncogene-induced cell transformation begins the process of 
mapping an atlas of cell transformation, described at the level of a 
multidimensional proteome (Larance & Lamond, 2015). We have 
focussed here on the effect of transformation on the proteomic 
dimensions of protein abundance and turnover, together with 
initial studies also on protein phosphorylation levels. It will be 
important in future to widen this analysis to also measure the 
effect of cell transformation on other important proteome dimen-
sions, such as protein-protein interactions and subcellular protein 
localisation, as well as determining in more detail changes in 
phosphorylation and other protein post translational modifications. 
All of these measurements can potentially provide new mechanis-
tic information that cannot be derived from the more widely used 
current genomics and transcriptomics strategies alone.

Multidimensional proteomics therefore can offer important new 
insights into the molecular mechanisms responsible for altering 
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cell behaviour and causing the cancer phenotypes resulting 
in poor patient outcomes. We used this proteomics approach here 
to characterise the consequences of epithelial cell transformation 
caused by activation of v-Src. Potentially, other cell transformation 
mechanisms may affect different downstream pathways to those 
induced by Src. Therefore, it will be very interesting in future to 
carry out similar analyses also on cell models where transforma-
tion is driven by other oncogenes. This can help to identify the 
key signalling pathways involved in each case and in particular 
can reveal common effectors downstream of the activated onco-
gene that mediate cancer cell phenotypes of clinical relevance for 
diagnosis and therapeutic intervention.

Materials and Methods
Cell culture
MCF10A Src-ER cells (a gift from Kevin Struhl, Harvard Medi-
cal School) were grown in F12/DMEM (Life Technologies) media 
supplemented with 5% horse serum (Life Technologies), 10 µg/ml 
insulin (Sigma), 100 ng/ml cholera toxin (Sigma), 20 ng/ml 
EGF (Sigma), 0.5 µg/ml hydrocortisone (Sigma), 0.5 µg/ml puro-
mycin (Roche), 100 units/ml penicillin, and 100 µg/ml streptomy-
cin (Life Technologies) at 37 °C in 5% CO

2
. 293T cells were grown 

in DMEM (Life Technologies) media supplemented with 10% 
foetal bovine serum (Life Technologies), 100 units/ml penicillin, 
100 µg/ml streptomycin, and 2 mM L-glutamine (Life Technolo-
gies) at 37°C in 5% CO

2
. For SILAC labelling, Src-ER cells were 

grown for 7 days in arginine- and lysine-free F12/DMEM media 
(Thermo Fisher) supplemented with stable isotope-labelled 
arginine (R0 or R6) and lysine (K0 or K4) (UK gas), dialyzed 
horse serum (Dundee Cell Products), and the same supplements as 
normal cell culture. Src-ER cells were isotopically labelled under 
exponential growth conditions and allowed to become confluent 
in 6-well plates.

To measure Src-induced proteome changes (see Figure 2A, 
Exp A), R0K0 labelled cells were treated with vehicle control 
(1:1000 v/v dilution of 99%+ ethanol, Sigma) and R6K4 labelled 
cells were treated with 4-hydroxytamoxifen (4-OHT, Sigma) 
at a final concentration of 1 µM 4-OHT. Cells were then har-
vested by trypsinisation at the indicated timepoints after 4-OHT 
treatment (i.e., 1 hr, 3 hrs, 6 hrs, 12 hrs, 24 hrs, 48 hrs and 72 hrs), 
counted (Countess, Life Technologies), mixed 1:1 by cell number, 
washed 2x Dulbecco’s PBS (DPBS, Life Technologies) and 
then cell pellets collected by centrifugation and snap-frozen.

To measure protein half-life, proteome-wide, in cells treated with 
vehicle control (See Figure 2A, Exp B), R0K0 and R6K4 labelled 
cells were both treated with 1:10,000 v/v 99%+ ethanol (Sigma). 
At 48 hrs, a media change was performed. R0K0 cells were 
refreshed with new R0K0 media containing vehicle control, whereas 
R6K4 cells were refreshed with R10K8 media containing vehi-
cle control. Cells were then harvested at the indicated timepoints 
after media change (1 hr, 3 hrs, 6 hrs, 12 hrs, 24 hrs, 48 hrs and 
72 hrs) by trypsinisation, counted (Countess, Life Technologies), 
mixed 1:1 by cell number, washed 2x Dulbecco’s PBS (DPBS, 

Life Technologies) and then pellets collected by centrifugation 
and snap-frozen. A parallel experiment where cells were treated 
with a final concentration of 1 µM 4-OHT (from a 10 mM stock) 
was performed to measure protein half-life proteome-wide in 
Src-activated cells.

The experiments described above (Exp A and Exp B) were per-
formed once a week for three weeks, for a total of three repli-
cates. Each replicate consists of different batches of the same 
cell line, which were cultured and harvested on different days.

Sample preparation and Liquid chromatography tandem–
mass spectrometry (LC-MS/MS)
Cell pellets were lysed in a buffer containing 2% SDS, 10 mM 
HEPES, pH 7.4, 1 mM EDTA, 1x cOmplete protease inhibitors 
mini tablet (Roche) and 1x tablet phosStop (Roche), sonicated at 
4C using a probe sonifier (Branson, 10% power, 30 s) and then 
the homogenate passed through a homogenisation filter (Qiashred-
der, Qiagen). The protein concentration of the filtrate was 
determined by BCA assay.

An aliquot of the lysate containing 500 µg protein was reduced 
using 25 mM TCEP (Pierce) and alkylated using 50 mM iodoa-
cetamide (Sigma). The lysate was precipitated using chloroform- 
methanol. The resulting pellet was resuspended in 8 M urea in 
digestion buffer (0.1 M Tris, pH 8.0 + 1 mM CaCl

2
). The pellet was 

then diluted to 4 M urea with digestion buffer, digested with 1:50 
w:w LysC (Wako):protein overnight at 37 °C, diluted to 1 M urea 
with digestion buffer, and digested with 1:50 w:w trypsin (Pierce):
protein for 4 hrs at 37 °C. The peptides were then desalted using 
500 mg SepPak cartridges (Waters) using a vacuum manifold 
(Waters). Desalted peptides were then resuspended in 20% ace-
tonitrile / 80% 0.1 M sodium borate buffer, pH 9.3. Peptides were 
fractionated by hydrophilic strong anion exchange chromatog-
raphy (hSAX) (Ritorto et al., 2013) as previously described (Ly 
et al., 2014) and 32 fractions collected. These hSAX fractions 
were desalted using a tC18 96-well plate (Waters) using a posi-
tive pressure manifold (Waters). Peptides were then analysed by 
LC-MS/MS on RSLCnano-Ultimate3000-Q-Exactive Plus instru-
ments (Thermo-Fisher Scientific). Peptides were trapped on 
a PepMap C18 precolumn (100 Å) connected to a PepMap C18 
EasySpray column (2 µm particle size x 75 µm diameter x 50 cm) 
using 2 hr gradients (2% to 35% over 120 min) with a constant 
flow of 200 nl/min. A ‘Top15’ data-dependent acquisition method 
was used, where the top 15 most abundant ions are selected for 
MS/MS fragmentation by HCD. The mass spectrometry  
proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset 
identifier PXD009270.

MS data analysis
MS raw files were processed using MaxQuant version 1.5.2.8, 
which includes the Andromeda search engine (Cox & Mann, 
2008; Cox et al., 2011). MS/MS spectra were searched against 
the SwissProt reviewed human reference proteome (UniProt) 
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accessed on April 15, 2017. Raw files for Exp A were subjected to 
additional database searches for phosphorylation (STY), 
methyl (KR), dimethyl (KR) and di-gly (K) post translational 
modifications. Evidence files from the separate searches were  
combined using an SQL script (see Supplementary File 2) that 
removed redundant hits and filtered on 1% FDR at the PSM 
level. No FDR filtering was performed at the peptide and protein 
levels; however, using the MAYU normalisation (Reiter et al., 
2009), a protein FDR is estimated at ~5–6%.

Intensities measured in the R0K0 and R6K4 channels at the 48 hr 
timepoint were used to estimate protein copy numbers for steady 
state basal and transformed conditions, respectively. Protein 
copy numbers were calculated using the ‘proteome ruler’ 
(Wisniewski et al., 2014), which normalises protein intensities 
based on the total sum of histone intensities.

Protein turnover data were analysed as described in (Boisvert 
et al., 2012). Further details can be found in Supplementary File 1, 
which contains a description of the ratio normalisation, the kinetic 
parameter fitting and extra modelling to estimate the contribu-
tions from amino acid recycling (Jovanovic et al., 2015). Weighted 
medians were calculated using copy numbers as weights. In an 
ordered list of protein half-lives, the weighted median is taken 
as the half-life value where the cumulative sum of protein copy 
numbers equals 50% of the protein copy number total.

Statistical tests were performed using scripts in R (v3.3.0) and 
Perl (v5.8.9). Differential expression analyses in Exp A were  
performed using t-tests (R v3.3.0) and shrinkage estimators for  
variance as described by Opgen-Rhein and Strimmer 2007 and 
as implemented in LIMMA. Tests for differential half-life (Exp 
B) were performed by calculating z-scores using the distribution 
of Δt

1/2
, i.e. t

1/2
 (4-OHT) – t

1/2
 (CTRL) and cut-offs were taken at 

95% confidence intervals.

To compare half-lives of proteins within the same CORUM  
complex, half-life variance was compared between the empiri-
cally determined ‘target’ dataset and a ‘decoy’ dataset contain-
ing randomly selected proteins, grouped into decoy ‘pseudo- 
complexes’. The ‘decoy’ dataset contains the same number of  
protein complexes as CORUM and each protein complex has 
the same number of protein members. The comparison was then  
repeated 1000 times, each time using a different seed for  
randomisation.

Src signature analysis
A gene signature approach was used to calculate a score for 
each patient sample in the TCGA dataset. The proteomic gene  
signature for Src, consisting of 248 proteins, was converted into 
a normalisation array, i.e. a set of numerals of equivalent length 

to the gene signature, either -1 or +1, reflecting whether the pro-
tein was upregulated or downregulated by Src activation in this 
proteomic dataset. Normalised gene expression data for the 248 
genes were then linearly combined according to the normalisation 
array (i.e. dot product of normalisation array and expression data) 
to produce a score (‘Src score’) for each patient in the TCGA 
dataset. Patients were then grouped into highest and lowest 20% 
quantiles and their survival compared using KM estimators, 
ratios of median survival (median survival of highest scoring 
patients / median survival of lowest scoring patients), and log-rank 
tests. Quantiles were either calculated using the entire TCGA 
dataset without cancer type discrimination (Figure 19A and B), 
or calculated within each cancer type (Figure 19C), prior to KM 
analysis. Bootstrapping was performed by repeating the work-
flow (score calculation, quantile ranking, and KM analysis) 
on a set of 248 genes selected at random. To estimate the false  
discovery rate, the bootstrapping procedure was repeated 
1000 times and the number of times the median survival ratio 
for the randomly selected gene set fell below the target set 
(i.e. the ‘Src signature’) was recorded. The KM analysis was  
performed on each gene in the Src signature to identify the most  
prognostic genes (Figure 20A).

siRNA transfection
Cells were transfected with siRNAs using Lipofectamine RNAiMax 
(Life Technology) at 20 nM final siRNA concentration, accord-
ing to manufacturer’s protocol. Cells were either harvested, or 
used for further experiments, 72 h after siRNA transfection. Con-
trol siRNA sequence is: 5’-CAGUCGCGUUUGCGACUGG-3’ 
(MWG). siRNAs utilized pools of four different sequences  
(Thermo Fisher). p150 siRNAs: LU-019938, PHC3 siRNAs:  
LU-015805.

Imaging of cell morphology and wound healing assay
Images of cells were taken under light microscopy, either 48 h 
after 4-OHT treatment, or 72 h after siRNA transfection. For 
wound healing assay, wounds were created using a p10 micropi-
pette tip in confluent cells 72 h after siRNA transfection. Cells were 
washed three times with PBS to remove cell debris and media 
replaced with F12/DMEM media supplemented with 2% horse 
serum, 10 µg/ml insulin, 100 ng/ml cholera toxin, and 0.5 µg/ml 
hydrocortisone. Images of cell wounds were taken under light 
microscopy at 0 and 16 h after wounding. Opened wound sizes 
were measured by using TScratch software (v1.0).

qRT-PCR analysis
Total RNA was extracted with the RNeasy kit (Qiagen).  
Quantification of mRNA was performed with the Light cycler  
450 (Roche), using QuantiFast SYBR Green RT-PCR kit  
(Qiagen) following manufacturer’s protocol. Briefly, the reverse 
transcription took place at 50 °C for 10 min, followed by  
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activation at 95 °C for 5 min, and then 45 cycles of a two-step  
PCR (denaturation for 10 s at 95 °C and annealing/extension for  
30 s at 60 °C). Quantitation was based on the 2-ΔΔCq method. Primers 
used for qPCR - PHC3 forward: 5’-AGCGGGAAAGAGAACGT-
GAG, PHC3 reverse: 5’-CAGGCAAAGAATGGATGAAGG, 
GAPDH forward: 5’CGCATCTTCTTTTGCGTCGCCAG, and  
GAPDH reverse: 5’GGTCAATGAAGGGGTCATTGATGGC.

Cell invasion assay
Either 48 h after 4-OHT treatment, or 72 h after siRNA treat-
ment/lentiviral expression, cells were detached with Accutase 
and counted. Sets of 5x 104 cells were spread onto the top cham-
ber of BDBioCoat growth factor reduced MATRIGEL invasion 
chambers (BD). Assays were performed according to manufac-
turer’s protocol, by using 5% horse serum and 20 ng/ml EGF as 
chemoattractants. Positive invading cells were stained with Dif-
ferential Quik Stain kit (Polysciences) and counted from ten 
independent fields at 20x magnification (Zeiss Axiovert 25).

Expression constructs and lentivirus transduction
Human cDNA for PHC3 was obtained from Thermo Fisher. The 
coding sequence of PHC3 was amplified by PCR from cDNA 
templates and cloned into pcDNA3(+)-HA vector. To generate 
pLVX-HA and pLVX-HA-PHC3, the corresponding sequences 
were amplified by PCR, either from constructs described above, 
or generated by oligonucleotides synthesis and cloned into 
pLVX-puro vector (Clontech). PHC3 mutants were generated from 
pLVX-HA-PHC3 by using a standard mutagenesis protocol. For 
lentivirus production, 293T cells were triple-transfected by calcium 
phosphate with two plasmids, encoding essential genes for len-
tivirus (gifts from Ron Hay, University of Dundee) and either 
pLVX-HA, pLVX-HA-PHC3 or pLVX-HA-mutants. 16 h after 
transfection, media was replaced. 72 h after transfection, super-
natants containing lentiviruses were filtered and concentrated. 
Lentiviruses were used to transduce cells in the presence of  
8 µg/ml polybrene (Millipore).

siCAF1 proteomic experiments
Cells were detached with enzyme-free cell dissociation buffer 
(Life Technologies) and counted using an automated image-based 
cell counter (Countess, Life Technologies). Equal number of 
cells were mixed and lysed. Whole cell lysates were reduced and 
alkylated with 50 mM DTT and 55 mM IAA, respectively, followed 
by methanol/chloroform precipitation. Samples were then proc-
essed as described above for hSAX fractionation and LC-MS/MS 
analysis.

Immunoblot analysis
Lysates for SDS-PAGE analysis were prepared in lithium dodecyl-
sulfate sample buffer (Life Technologies) and 25 mM TCEP. 
Samples were heated to 65 °C for 5 min and then loaded onto a 
NuPage BisTris 4–12% gradient gel (Life Technologies), in either 
MOPS, or MES buffer. Proteins were electrophoresed and then 
wet-transferred to nitrocellulose membranes at 35 V for 1.5–2 h. 
Membranes were then blocked in 5% BSA in immunoblot wash 
buffer (TBS + 0.1% Tween-20) for 1 h at room temperature. Mem-
branes were then probed with primary antibody overnight at 4°C, 
washed and then re-probed with IRdye-conjugated secondary 
antibodies. All antibodies are listed in Table 1.

Immunocytochemistry
Cells were fixed with 4% paraformaldehyde in PBS at RT for 
10 min, permeabilized with 0.2% Triton X-100 in PBS at RT for 
5 min, and incubated with 5% FBS and 0.1% Tween in PBS on 
ice for 1 h. After blocking, cells were stained with anti-RING1A 
(Cell Signaling Technology), and anti-HA (Cell Signaling Technol-
ogy) antibodies at RT for 1 h. After incubation with primary anti-
bodies, cells were stained with either Alexa Fluor 594-conjugated 
anti-rabbit IgG antibody (Life Technology), or Alexa Fluor 
488-conjugated anti-mouse IgG antibody. To stain nuclei, cells 
were incubated with DAPI (Sigma) at RT for 10 min after incu-
bation with secondary antibody. Images were captured with a 
DeltaVision Core Restoration microscope (Applied Precision).

Table 1. Table of primary antibodies used in immunoblots.

Antibody Name Supplier Cataloge Number Clonality Species

anti-SerpinB3 Iowa DSHB CPTC-SERPINB3–2 Monoclonal Mouse

anti-phospho-Src Family (Tyr416) Cell Signaling Technology 2101 Polyclonal Rabbit

anti-Histone H3 Cell Signaling Technology 4499 Monoclonal Rabbit

anti-PHC3 Bethyl Laboratories A301-570A Polyclonal Rabbit

anti-CHAF1A (p150) Cell Signaling Technology 5480 Monoclonal Rabbit

anti-H2AK119ub Cell Signaling Technology 8240 Monoclonal Rabbit

anti-Rabbit IgG-IRDye 800CW Licor 925-32213 -- Donkey

anti-Mouse IgG-IRDye 680RD Licor 925-68072 -- Donkey
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Data availability
Open access for interactive exploration of all of these proteomic 
data is provided via the Encyclopaedia of Proteome Dynamics 
database (www.peptracker.com/epd).

All MS files are freely available via the ProteomeXchange 
PRIDE repository using accession PXD009270.

Raw immunoblot images, raw fluorescence microscopy images, 
raw wound healing images, Ct values from RT-PCRs and cell 
counts from invasion assays are available at Open Science Foun-
dation. Dataset 1: Proteome-wide analysis of protein abundance 
and turnover remodelling during oncogenic transformation of 
human breast epithelial cells. http://dx.doi.org/10.17605/OSF.IO/
FWMTN (Ly, 2018)
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Salk Institute Cancer Center, Salk Institute for Biological Studies, La Jolla, CA, USA

Here the authors have used deep SILAC-based quantitative proteomic analysis and protein half-life
determination to define which proteins change in abundance when MCF10A human breast epithelial cells
stably expressing a v-Src-ER HBD fusion protein are treated with 4-OHT to activate the v-Src tyrosine
kinase activity for different times (1, 3, 6, 12, 24, 48 and 72 hr). They found that v-Src-induced
transformation changed the expression and/or turnover of ~3% of the >12,000 identified proteins in
MCF10A cells, which included 330 protein kinases. They also found that v-Src activation increased the
average rate of protein turnover of 9,013 measured proteins ~20%, with median protein half-life
decreasing from 14.2 to 11.6 hours. A number of v-Src-regulated proteins were found to be present at low
abundance and regulated post-transcriptionally. A signature consisting of 248 Src-responsive proteins
was found to be predictive of poor patient survival across multiple cancer types when compared to
changes in RNA expression level reported in the TCGA database for tumor versus normal. In addition,
they showed that protein subunits of the PRC1 chromatin repressor complex, including PHC3 and CBX6,
were reduced upon activation of v-Src, and by using siRNA treatment of parental MCF10A cells, they
showed that PHC3 depletion was sufficient to elicit increased cell motility and invasiveness.
 
These studies represent a huge amount of work, and this dataset and the accompanying analysis provide
new insights into the mechanisms underlying malignant transformation of epithelial cells by activated
tyrosine kinases, such as v-Src. These results will certainly be useful to the cancer research community,
but they would be significantly more valuable if the authors had been able to correlate them with
v-Src-induced changes in phosphorylation events and signaling pathways activated downstream of v-Src
and also v-Src-induced changes in mRNA levels. Although such additional analyses are beyond the
scope of the present paper, it is recommended that the authors carry out such studies in the future, and
integrate and correlate the three datasets.
 
General points:

It would have strengthened their analysis of proteome-wide protein abundance in the treated and
untreated MCF10A v-Src-ER cells if they had carried out a parallel RNA-seq analysis to determine
whether any of the changes in protein levels were due to changes in RNA levels, and overall how
good the correlations between RNA and protein are in this cell system and in response to v-Src
activation. For the prognostic analysis, they compared their MCF10A proteome data to an
RNA-seq/proteome data set from the human epidermoid carcinoma A431 cell line, but A431 cells
and MCF10A cells come from different epithelia and one is also transformed, and therefore it is not
clear how useful this comparison is. 
 
The authors indicate that they plan to carry out a parallel phosphoproteomic analysis following
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The authors indicate that they plan to carry out a parallel phosphoproteomic analysis following
v-Src activation, to define direct v-Src substrates as well as all the ensuing downstream Ser/Thr
phosphorylation events. Changes in phosphorylation could also be correlated with changes in
protein turnover rates, since many proteins are inducibly degraded in response to phosphorylation,
which can create phosphodegrons. This will take a significant amount of time, but It would
obviously have been ideal if they had been able to combine the proteomic and phosphoproteomic
studies..
 
Although it seems likely that most of the observed proteome changes are due to increased v-Src
kinase activity, no control was included to rule out the possibility that some of the changes might be
due to a noncatalytic function of overexpressed v-Src. While it would be beyond the scope of the
present paper to generate an MCF10A cell line that expresses a kinase-dead -v-Src-ER fusion, the
authors could use a selective Src inhibitor on the 4OHT-treated cells, e.g. sacrcatinib/AZD0530,
and determine whether there are any protein changes observe in response to 4OHT. In this regard,
dasatinib will not be useful, because it is a very nonspecific kinase inhibitor, and inhibits many Tyr
kinases, including  SFKs, Abl and Arg as well as a number of Ser/Thr kinases. In the same vein, it
would be reassuring to have a control in which parental MCF10A cells were treated with 4OHT to
ensure that all the observed proteomic changes were due to activation of v-Src-ER.
 
Activation of v-Src not only induces changes in transcription and translation, but also causes
dramatic changes in cell morphology leading to transformation, and it is unclear how many of the
changes in protein levels observed were due to v-Src induced changes in cell morphology, e.g. cell
rounding, partial detachment and disruption of cell-cell contacts, which can induce many changes
by altering signaling interactions of integrins, cadherins, etc., independent of any direct effects of
v-Src-mediated Tyr phosphorylation. v-Src-induced transformation of epithelial cells is akin to EMT
– were proteomic changes noted in proteins known to be causal in this process?
 
Growing MCF10A cells on plastic is a poor recapitulation of how epithelial cells grow in the body,
and it would have been better to carry out these experiments with MCF10A cells grown in 3D
Matrigel culture, where they form spheroid structures with cell-cell junctions. Moreover, it would be
more physiological to grow the cells at 7-8% oxygen, instead of supraphysiological ambient
oxygen levels. 
 
The global change in proteome half life in response to v-Src activation is intriguing, but there are no
mechanistic insights, i.e. are there changes in the levels of pleiotropic E3 Ub ligases, or changes in
global ubiquitylation levels - here a global ubiquitome analysis might be informative.

 
Other points: 

It is not clear what the half-life of a secreted protein means! Apparently, the authors are measuring
the kinetics of secretion and not real protein turnover. It seems likely that many of these secreted
proteins have long half lives in the ECM, and therefore it is somewhat misleading to say that that
they have short half lives, even it this is qualified as an “intracellular” half life.
 
Page 4: It is not clear whether the pY416 Src RPPA signal the authors are referring to specifically
measures pY419 c-Src levels or is a combined signal for pY416 Src, pY426 Yes and pY420 Fyn,
which share the same autphosphorylation site. In this regard, since the authors have carried out
quantitative proteomics analysis, it would be informative to know the relative abundance of the
c-Src, Fyn and Yes proteins, and also that of any other SFKs expressed by these cells.
 

Page 9: Proteins present at ≤500 molecules per cell or less, may not represent a truly functional
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Page 9: Proteins present at ≤500 molecules per cell or less, may not represent a truly functional
protein population. Depending on RNA and protein half lives, ≤500 protein molecules/cell would
probably correspond to fewer than 10 mRNA molecules per cell, and such proteins might be
expressed stochastically at the “noise” level. While there may be proteins where only a few
hundred per cell are functional (e.g. some surface receptors), for cytoplasmic or even nuclear
proteins it has been estimated that a few thousand may be required.
 
It has been reported that c-Myc is overexpressed in MCF10A cells and that Crumbs3, a tight
junction protein, is not expressed, which is why MCF10A cells do not form tight junctions . Did the
authors observe high c-Myc and low Crumbs3 protein levels compared to other normal human
epithelial cells in their proteomic data?
 
The decreased level of PHC3 induced on v-Src activation and its role in preventing v-Src-induced
cell migration is of some interest, but despite the speculation about changes in target gene
silencing, there is no evidence that this is in fact the mechanism (would RNA-seq help, or a
genome wide methylation analysis?). In this regard, did the authors note changes in the level of
proteins involved in EMT, under these conditions.
 
Page 31: The increase in EphA2 RTK levels in response to v-Src activation is interesting, because
EphA2 has been implicated as a driver in breast cancer due to its overexpression, but in other
cancer types it has been reported to be a tumor suppressor (e.g. Yeddula et al. PNAS 112: E647,
2015).
 
Page 17: Although CDC25C phosphatase activity can be regulated by phosphorylation, since its
levels were elevated upon v-Src activation, it would be interesting to know if there a corresponding
decrease in pT14/pY15 levels in CDK2 and CDK1 (despite the absence of any alterations in cell
cycle phase distribution).
 
Page 3: Eckhart et al. (1979) is not the correct reference for v-Src tyrosine kinase activity - it is
Hunter and Sefton, PNAS 77:1311 (1980).

References
1. Fogg VC, Liu CJ, Margolis B: Multiple regions of Crumbs3 are required for tight junction formation in
MCF10A cells. . 2005;   (Pt 13): 2859-69   |   J Cell Sci 118 PubMed Abstract Publisher Full Text
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Denmark

In this work Ly et al. used mass spectrometry-based quantitative proteomics to quantify proteome
remodeling during v-Src-induced oncogenic transformation of the human breast epithelial cell line
MCF10A. They first characterized the reference proteome of MCF10A cells through in-depth analysis of
protein expression as well as by quantifying protein turnover rates in this cell line. Next, they compared
the relative changes in proteome expression and turnover rates in control MCF10A cells with v-Src
transformed MCF10A cells. These deep proteome analyses, combined with protein turnover rates,
allowed the authors to draw several broad, fundamental conclusions, including that v-Src-induced
oncogenic transformation requires remodeling of a limited subset of low abundant proteins. Furthermore,
the authors show that v-Src significantly increased protein turnover rates in the transformed cells. The
oncogene regulated proteins are involved in specific biological processes, such as cell motility and
extracellular matrix-interaction. The authors also confirm their previous finding that CAF1 expression is
decreased in v-Src transformed cells, and showed that activation of v-Src reduces the expression of
PRC1 subunits PHC3 and CBX6. They show that expression of PHC3 is reduced both by activation of
v-Src and depletion of CAF1, through a posttranscriptional mechanism. They further show that PHC3
inhibits cell migration; and downregulation of PHC3 is important for v-Src induced cell motility because
ectopic expression of PHC3 inhibited v-Src-induced cell migration. By using various deletion mutants,
they show that the SAM domain in PHC3 is required for suppressing cell motility. Finally, they show that
the “Src signature” proteome, discovered from these systems analyses in MCF10A cell model, is a useful
predictive marker for predicting survival of cancer patients. This is despite the fact that the authors used
the corresponding mRNA expression profiles for “Src signature” proteins, which likely underestimates the
true prognostic value as changes in protein expression is not always accurately reflected in changes in
their mRNA expression.

This tour-de-force study provides a most detailed view of dynamic proteome remodeling in response to
oncogenic transformation of human cells, providing several interesting insights in this process. A salient
feature of the work is that all the data are made available through a nice web-based resource, which will
allow other researchers in convenient mining of the dataset. The dataset will serve as a valuable
reference for future studies investigating other aspects of the transformation process, such as
v-Src-induced changes in protein phosphorylation or other PTMs.
 
Comments:
For Fig. 2F, it may be helpful to mention in the text that UniProt keywords include annotation from all cell
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For Fig. 2F, it may be helpful to mention in the text that UniProt keywords include annotation from all cell
types in the human proteome. Many of these keywords are related to cell-type-specific processes that are
not expected to be covered in the MCF10A proteome. This may help in understanding that 60% coverage
of UniProt does not indicate a poor coverage of the MCF10A proteome; rather most of missing terms are
likely related to cell-type-specific processes that are not expected to be covered in this cell type.

Figure 7 should be enlarged so that the text is clearly legible in print.

Figure 9 (and other figures mentioning fold-change between different conditions), it would be useful to
define the conditions that are compared so that it is clearer which conditions are compared. For example:
“Log2 fold change protein abundance (4OHT/Ctrl.)”

For the text related to Fig. 11B, the authors may consider mentioning that v-Src-dependent induction of
proteins involved in inflammatory response is consistent with previous work and cite the relevant
reference.
In addition to the global temporal profiles shown in Fig 11, it may be informative to show representative
examples of selected proteins from the different clusters (similar to that of Serpins in Fig. 11F).

The authors show that activation of v-Src reduces protein half-life. It would be useful to show (or at least
comment) on the relative proliferation rates of wild-type MCF10A and v-Src transformed MCF10A and
whether this has an impact on the calculation of protein half-lives.

In the text (p 24, second paragraph), the abbreviation KM (Kaplan–Meier) is not defined.

Figure 19, the text indicating red and green is well-defined and should be explained in the figure legend.
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In this study, Ly and colleagues investigate proteome changes that underlie malignant transformation. As
a model they use an established MCF10A Src-ER model, where SRC kinase activity can be induced with
4-OHT, initiating a cascade of events leading to cellular transformation within 72h. The authors performed
protein expression and protein turnover experiments in a time-course manner to characterise proteome
changes during this process. Benefiting from deep proteome coverage, they identified distinct proteome
profiles that characterise the different phases of transformation, and provide evidence that protein
abundance and turnover are distinct and complementary proteomic entities that do not necessarily
correlate. In addition, they identify a ‘Src-signature’ that can also be recognized in gene expression
profiles of cancer patients.

This is a well-designed study containing a wealth of  high-quality data that should be of interest both to the
proteomics and cancer biology community. In particular, it contains a number of interesting
proteins/observations that call for further functional exploration beyond the ones followed-up on in the
manuscript. In addition, it shows some intriguing data where protein turnover and overall expression
changes seem to be decoupled (e.g. increased turnover AND expression of Serpin 3/4).
 
Remarks:

The authors perform deep proteome profiling of MCF10A cells, and then aim to assess ‘how
comprehensively our present data set describes the human epithelial cell proteome’. They do so
by looking at their data from different angles (sequence coverage, representation of biological
functions, etc). Although interesting, it is not hugely insightful, especially since it does not get to the
essence in answering the posed question. First, and almost philosophically, it is hard to know how
complete the data are without knowing the unknown (i.e. the invisible proteome). Second, beyond
ascertaining that most protein classes/functionalities are well-represented in the data, it will be
more interesting to explore what biological insights can be gained. For instance, the authors refer
to their data as ‘the epithelial cell proteome’, however it remains unclear if/how this contains an
‘epithelial signature’. This is somewhat of a missed opportunity where the authors could have taken
advantage of other large proteomics data sets charting proteomes of other (including
non-epithelial) cell lines (references in the manuscript). Another suggestion is to compare their
data before and after transformation, and observe changes in protein ranking (e.g. S100 proteins?)
as a consequence of the loss of epithelial character.
 
Figure 2F is intriguing. First, what is the biological meaning of the fact that a linear fit can be made?
After all, it does not intuitively follow (at least for me) that all cellular functionalities should be
represented to the same extent, as they may be dictated by the cellular functions that need to be
sustained. There will be no cell pushing this to 100%, i.e. expressing proteins that represent all
functionalities, so in that sense it is no surprise that the 60% roughly scales with the overall
proteome depth. To derive some biological insight from this figure, the authors may look which

keywords are off the diagonal, which should reflect functionalities that are under- or
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2.  

3.  

4.  

5.  

6.  

7.  

8.  

keywords are off the diagonal, which should reflect functionalities that are under- or
over-represented in MCF10A cells.
 
In the original paper describing Src-induced oncogenic transformation using the MCF10A model,
Iliopoulos et al (2009) show an inflammatory response as one of the key events, further
corroborated in a series of follow-up papers. Do the author see such a response reflected here at
the protein level? If not, how may this be explained?
 
Oncogenic transformation is a multi-step process taking several days to complete. The authors do
not fully exploit their data to identify and name the order of events happening over time, and
possibly connect known phenotypic/morphologic events (e.g. PMID:12132573) to molecular
(proteomic) profiles. Figs 7 and 12 are steps in this direction, however the implication for the
temporal aspect of malignant transformation is not explicitly made. Looking into this will be of great
biological interest, and may lead to an analogous model to step-wise transcriptome/proteome
changes as observed during cellular reprogramming to iPS cells (PMID 23260147; 23260666). As
an extension, it will be interesting to see discussed how failure to complete these steps may be
barriers to transformation, or how this may be pharmacologically targeted.
 
This manuscript is not the first to use MCF10A cells to study malignant transformation. In fact it has
been used for profiling isogenic cell lines at various molecular levels, although not necessarily after
induction of SRC. Beyond recognizing this related work (e.g. PMID 27512948 and references
therein), it will be useful if the authors look at some of these data, with the specific question if the
claimed ‘SRC signature’ is really SRC-specific, or rather if it (partly) represents a profile for
transformation in general by showing an overlap with signature genes/proteins emerging after
Src-independent induction of transformation. If so, this may even expand the scope of the findings
presented in this study when comparing this to gene expression profiles of cancer patients.
 
On a similar note, malignant transformation has been studied in other model systems, where the
four-stage model based on BJ fibroblasts may be the most relevant, studied at the transcriptome
(PMID 23569271) and proteome level (PMID 22313033). Analogous to the point above,
comparison with these data may help to refine the ‘Src signature’ or distinguish it from the more
general (but equally useful) ‘transformation’ signature.
 
When comparing the proteome data to transcriptome (Fig 20), why did the authors use the
Lundberg data? This does not include MCF10A cells, nor does it have a relation to Src. There must
be other data (from MCF10A cells) that would better serve the purpose.
 
With regard to the simultaneous increase in turnover AND expression of Serpin 3/4, the authors
speculate how this may be achieved mechanistically (essentially assuming that degradation
cannot keep up with synthesis), however it remains unclear why this would be the case specifically
for Serpinb 3/4, and (thus) if this it serves a function. For instance, and in line with its immediate
increase at early time points, the increased turnover/abundance profile may indicate an ‘alarm’
signature reflecting the immediate need for the protein in the face of Src induction, where rapid
degradation may ascertain continuous replenishment of the protein pool that may be
damaged/modified when executing their function. Since this represents some of the more salient
observations in the study, it will be interesting to hear the authors’ view on some of these aspects,
with the further notion that SERPINB3 also acts as an inhibitor of JNK1.
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