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Insulin resistance (IR) is a precursor of type 2 diabetes
(T2D), and improved risk prediction and understanding
of the pathogenesis are needed. We used a novel high-
throughput 92-protein assay to identify circulating bio-
markers for HOMA of IR in two cohorts of community
residents without diabetes (n = 1,367) (mean age 736 3.6
years). Adjusted linear regression identified cathepsin D
and confirmed six proteins (leptin, renin, interleukin-1 re-
ceptor antagonist [IL-1ra], hepatocyte growth factor,
fatty acid–binding protein 4, and tissue plasminogen ac-
tivator [t-PA]) as IR biomarkers. Mendelian randomization
analysis indicated a positive causal effect of IR on t-PA
concentrations. Two biomarkers, IL-1ra (hazard ratio
[HR] 1.28, 95% CI 1.03–1.59) and t-PA (HR 1.30, 1.02–
1.65) were associated with incident T2D, and t-PA pre-
dicted 5-year transition to hyperglycemia (odds ratio
1.30, 95% CI 1.02–1.65). Additional adjustment for fast-
ing glucose rendered both coefficients insignificant
and revealed an association between renin and T2D
(HR 0.79, 0.62–0.99). LASSO regression suggested a risk
model including IL-1ra, t-PA, and the Framingham Off-
spring Study T2D score, but prediction improvement
was nonsignificant (difference in C-index 0.02, 95% CI
20.08 to 0.12) over the T2D score only. In conclusion,
proteomic blood profiling indicated cathepsin D as a
new IR biomarker and suggested a causal effect of IR
on t-PA.

Worldwide, diabetes affected over 387 million people and
contributed to more than 4.9 million deaths in 2014. The
prevalence of diabetes is projected to increase to 592

million by 2035 (1). Decreased sensitivity to circulating
insulin (i.e., insulin resistance [IR]) induces compensatory
hyperinsulinemia and leads to the development of type 2
diabetes (T2D) if pancreatic b-cell capacity is insufficient
to maintain glucose homeostasis (2). IR constitutes both a
precursor of and a therapeutic target in hyperglycemia
and was found to be an independent risk factor for car-
diovascular disease (CVD) (3), as well as a major contrib-
utor to vascular morbidity in T2D (4). Recent advances
have made large-scale -omics studies possible that have
pinpointed several tentative novel biomarkers for T2D,
including branched-chain amino acids (5) and circulating
microRNAs (6). Yet, a 2013 systematic review (7) failed to
find evidence of benefit from adding novel circulating
biomarkers and genetic markers to traditional T2D risk
factors. Studies on biomarkers for IR have suggested sev-
eral candidates, including ghrelin (8) and retinol-binding
protein-4 (9). The identification of novel biologic predic-
tors for T2D and IR is crucial for improved risk assess-
ment and may help in understanding causal pathways
beyond established genetic and lifestyle-related factors.

Recently, a new technology, the proximity extension
assay (10), has enabled the simultaneous analysis of large
sets of proteins in small biological sample volumes. We
used such an immunoassay designed to analyze 92 pro-
teins with proposed involvement in inflammation and
CVD to explore potential biomarkers for IR. The objec-
tives of this study were to 1) evaluate the association of
CVD/inflammatory candidate protein biomarkers with prev-
alent IR in two large community cohorts without diabetes,
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2) explore causal associations between biomarkers and IR
in bidirectional Mendelian randomization (MR) analysis,
and 3) assess the association of IR biomarkers with 10-
year incident T2D and 5-year risk of transition to worse
glycemia category, as well as to estimate the predictive
performance of biomarkers for future T2D compared
with an established risk score.

RESEARCH DESIGN AND METHODS

Cohort Characteristics

Uppsala Longitudinal Study of Adult Men
In 1970, all male residents (n = 2,841) of Uppsala county,
Sweden, born between 1920 and 1924 were invited to
participate in the Uppsala Longitudinal Study of Adult
Men (ULSAM) (n = 2,322 [81.7%] enrolled) (11), which
includes regular assessments every 5–10 years. The base-
line of the current study was set to the assessment at age
77 years (839 of 1,398 invited men [59.9%]), including
recent targeted proteomic serum profiling. Diabetes was
defined as fasting plasma glucose$7 mmol/L; HbA1c $6.5%
(48 mmol/mol) at assessment ages 77, 82, and 88 years; use
of antidiabetes medication according to the Swedish Pre-
scribed Drug Register Anatomical Therapeutic Chemical clas-
sification code A10; or diagnosis of T2D according to the
National Patient Register. Incident events of T2D were iden-
tified up to age 88 years. Proteomic profiling was done in
770 samples of which 8 were excluded during quality control.
We excluded 156 individuals with prevalent diabetes and 66
with insufficient data for confounders, leaving 540 persons
for inclusion in the current study. The regional ethics review
board at Uppsala University approved the study, and all
participants provided written informed consent.

Prospective Investigation of the Vasculature in Uppsala
Seniors
In 2001, the Prospective Investigation of the Vasculature in
Uppsala Seniors (PIVUS) study group invited an unselected
sample of 70-year-old residents of Uppsala community
(1,016 of 2,025 invited persons [50.2%] were enrolled; 50%
female) primarily to validate measures of endothelial func-
tion (12). Baseline assessment, including recent proteomic
profiling of blood plasma, was done at age 70 years. Di-
abetes was defined as plasma glucose concentration
$7 mmol/L at ages 70, 75, and 80 years; use of antidiabetes
medication; or diagnosis of T2D according to validated hos-
pital records. Incident T2D events were identified up to age
80 years. Among 1,003 subjects undergoing proteomic pro-
filing, 12 were removed during quality control. We further
excluded 116 individuals with prevalent diabetes and 48
with insufficient data for confounders, leaving 827 persons
to be included in the current study. The regional ethics
review board at Uppsala University approved the study,
and all participants provided written informed consent.

Measurement of IR
The HOMA of IR index (HOMA-IR) was calculated
according to the method proposed by Matthews et al.
(13) with glucose in millimoles per liter and insulin in

milliunits per liter (Eq. 1). Plasma insulin was measured
by an ELISA in PIVUS (Boehringer, Mannheim, Germany)
and ULSAM (Mercodia, Uppsala, Sweden). Glucose con-
centrations were quantified by the glucose dehydrogenase
method (Gluc-DH by Merck, Darmstadt, Germany) in
plasma from ULSAM and with similar methods (HemoCue,
Ängelholm, Sweden) in whole blood from PIVUS (con-
verted to plasma values by adding 11%).

HOMA-IR ¼ ½ fasting glucose�plasma3½ fasting insulin�plasma

22:5
Eq: 1:

Proteomic Profiling
The Olink Proseek Multiplex CVD 96396 proximity ex-
tension assay (10) uses two highly specific antibodies for
each protein, which allows the formation of a PCR re-
porter sequence from attached oligonucleotide strands
when both antibodies are bound to the target protein’s
surface. The assay requires ,10 mL sample volume and
measures 92 proteins associated with CVD or inflamma-
tion and four internal control samples. Normalized pro-
tein expression (NPX) values were generated from
quantitative PCR quantification cycle (Cq) values, where
higher Cq corresponds to lower protein abundance. Cq
values (log2 scale) were corrected for technical variation
by an interplate control, and lower limits of detection
(LOD) were determined through a negative control
[NPX = Olink negative control 2 (DCqsample 2Dinterplate
control)]. The validation study of the assay, which in-
cluded 90 proteins and seven samples analyzed in nine
separate runs, found the mean intra-assay coefficient of
variation to be 8% (range 4–13) and the interassay co-
efficient of variation to be 15% (range 11–39). Values
below LOD were imputed as LOD/2, normalized for plate
and storage time (based on the observed and predicted
values obtained from a spline model) and rescaled to a
distribution with a mean of 0 and an SD of 1. Quality
control included removal of proteins with .15% samples
below the LOD, and subjects with tail distribution (i.e.,
outlying) missingness as judged by histogram (.5% miss-
ing in PIVUS and .2% missing in ULSAM) were
excluded. The final data set included 80 proteins. Pro-
teins excluded from the statistical analyses were inter-
leukin-4, melusin, natriuretic peptide B, b-nerve growth
factor, SIR2-like protein, NF-kB essential modulator,
pentraxin-related protein 3, N-terminal probrain natri-
uretic peptide, matrix metalloproteinase 7, membrane-
bound aminopeptidase P, heat shock 27 kDa proteins,
and cathepsin B.

Genetic Data
For MR analyses, we used the nonweighted genetic IR
score composed of 10 single nucleotide polymorphisms
(SNPs) validated in up to 18,565 subjects by Scott et al.
(14) as an instrumental variable (IV) for HOMA-IR (Sup-
plementary Table 1). We further identified suitable IVs for
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three biomarkers from a literature search (15–17). We
then performed a genome-wide association study (GWAS)
using the software SNPTEST v2.4 in the PIVUS and ULSAM
studies for the remaining four biomarkers based on geno-
typing with the Illumina OmniExpress/Omni2.5 array com-
bined with the Illumina Cardio-MetaboChip array, which
was further imputed up to the 1000G March 2012 release
using IMPUTE2 (18). The association of biomarker IVs
with lnHOMA-IR was tested in the MAGIC (Meta-Analyses
of Glucose and Insulin-related traits Consortium) cohort
using publicly available data (19), and for the genetic IR
score with biomarkers, we used PIVUS and ULSAM. For
SNPs not reported in the MAGIC data, we selected a proxy
variant in strong linkage disequilibrium (r2 . 0.8) via
SNAP (http://www.broadinstitute.org/mpg/snap/ldsearch
.php) and ascertained allele alignment with reference to
the International HapMap Project CEU reference popula-
tion (http://hapmap.ncbi.nlm.nih.gov).

Statistical Analysis

Association of Biomarkers with IR and Incident
Diabetes Traits
All statistical analyses were carried out in R, version 3.1.1.
Preliminary models indicated nonnormal distribution of
model residuals, and C-reactive protein (CRP) concentra-
tions and HOMA-IR were transformed to natural loga-
rithmic scale to alleviate nonnormality. Separate linear
regression models were assessed for each biomarker with
lnHOMA-IR as the dependent variable and BMI, waist
circumference, lnCRP, age, comorbidity, storage time, and
sex as independent variables. Comorbidity was dummy
coded based on a Charlson Comorbidity Index (20) of 0 or
$1. The choice of the independent variables was based on
a hypothetical causal diagram assisted by the DAGitty,
version 2.2, software (www.dagitty.net) (21) (Supplemen-
tary Fig. 1). We first analyzed association in the PIVUS
discovery sample, and those biomarkers passing the 5%
false discovery rate (FDR) (22) were taken forward for
replication in ULSAM. In the replication stage, 5% FDR
was used again for determining significance. For all bio-
markers, model assumptions of homoscedasticity and
normality and the impact of potential outliers were ex-
amined in plots of residuals against normal quantiles
(QQ-plot), fitted values, and leverage, respectively.

Thereafter, we assessed biomarkers related to IR for
associations with 10-year incident T2D using Cox re-
gression in ULSAM and PIVUS combined, with adjust-
ment for BMI, waist, lnCRP, age, comorbidity, storage
time, cohort, and sex. We additionally included fasting
glucose levels in separate models. As the date of incident
diabetes, the first recorded event fulfilling the definition of
diabetes as specified above was used (i.e., date of diagno-
sis, antidiabetes medication prescription, or blood glucose
thresholds at 5- and 10-year follow-ups). Individuals without
an event were censored at the last assessment date or at
date of death. The proportional hazards assumption was
assessed using scaled Schoenfeld residual plots with formal

significance testing for neutral slopes. Logistic regression
analysis was used to predict 5-year risk of worsening fasting
glycemia category (,5.6 mmol/L, 5.6–6.9 mmol/L, and
$7 mmol/L or established T2D) in ULSAM from ages 77
to 82 years and in PIVUS from ages 70 to 75 years.

Predictive Performance and Comparison With
Established Risk Factors
To assess predictive performance of biomarkers for 10-
year T2D risk, we randomly split the combined cohorts of
participants with sufficient data into a two-thirds learning
(n = 911) and one-third internal validation sample (n =
456). The Framingham Offspring Study risk score for T2D
(FORS, composed of sex, BMI, age, family history of di-
abetes, blood pressure, HDL cholesterol, triglycerides, and
fasting glucose) (23) was calculated for each individual
and used as a baseline model to assess the incremental
improvement of adding biomarkers. Predictor selection
was carried out in LASSO penalized Cox regression with
10-fold internal cross-validation in the learning sample
and implemented with the glmnet package in R. In storage
time– and cohort-adjusted models forced to include the
FORS score, we allowed predictor choice among the vali-
dated IR biomarkers and used l minimum to select the
optimum model, which was then evaluated in the valida-
tion sample. We assessed discrimination (future case and
noncase differentiation) with the receiver operating char-
acteristic curve-based C-index (24) and compared models
via likelihood ratio test. Calibration (the consistency be-
tween observed and predicted risks) was assessed by
Grønnesby-Borgan test according to the methodology of
May and Hosmer (25). This test is based on grouping
subjects according to their risk estimates and comparing
the sum of Cox model martingale residuals between
groups, which assumes zero under the null hypothesis
of perfect agreement between predicted and observed
risks.

IV Analysis
Mendelian randomization techniques based on IV analysis
were used to assess potential causal associations between
biomarkers and IR in both directions (26).

Causal Effect of IR on Protein Concentrations
We evaluated the association of the genetic IR score with
lnHOMA-IR using the summary statistics for 46,186
individuals without diabetes in the MAGIC cohort based
on the method described by Dastani et al. (27) and imple-
mented via gtx in R. The association of the genetic IR
score with biomarkers was assessed in PIVUS and ULSAM
separately in age- and sex-adjusted linear regression mod-
els and meta-analyzed using a fixed effect, SE-weighted
model via metafor in R (Supplementary Table 2). The IV esti-
mator bIV was calculated as the ratio of two regression coeffi-
cients based on the Wald ratio (bSNP-biomarker / bSNP–HOMA-IR).
SEs were calculated using the D method, which we pre-
viously validated for use in a similar setting (28), as
follows: abs (bIV) [(seSNP-intermediate / bSNP-intermediate)

2
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+ (seSNP-outcome / bSNP-outcome)
2]0.5. Causal estimators were

tested at a nominal significance threshold of P , 0.05.
Sensitivity analysis to exclude pleiotropy of the IV was per-
formed by comparing IV estimates for individual SNPs in
forest plots (Supplementary Fig. 2).

Causal Effect of Protein Concentrations on IR
We assessed the association of each biomarker IV with
lnHOMA-IR in the MAGIC cohort (Supplementary Table
3). The association of each biomarker IV with biomarker
concentration was derived from either published GWAS
or ULSAM and PIVUS. The IV estimator bIV was calcu-
lated as bSNP–HOMA-IR / bSNP-biomarker, and SEs were calcu-
lated using the D method.

RESULTS

Biomarkers for IR
Table 1 shows baseline cohort characteristics. The design
of the study is visualized in Fig. 1. We found 32 bio-
markers associated with lnHOMA-IR in the PIVUS study
(n = 827, 48.9% male, mean age 70.2 6 0.2 years). Seven
of these 32 biomarkers were replicated at a 5% FDR level
in a sample of 540 men from the ULSAM cohort (mean
age 77.6 6 0.8 years). All subjects provided complete data
for confounders. The seven identified biomarkers (leptin,
tissue plasminogen activator [t-PA], renin, interleukin-1
receptor antagonist [IL-1ra], hepatocyte growth factor
[HGF], cathepsin D, and fatty acid–binding protein 4
[FABP-4]) were all positively associated with IR (Table
2). Of these, leptin showed the strongest association (b
0.27, 95% CI 0.22–0.33 in PIVUS, and b 0.10, 95% CI
0.07–0.13 in ULSAM, where the coefficients represent the
change in lnHOMA-IR associated with an SD-unit in-
crease in NPX value).

Bivariate Pearson correlations indicated positive asso-
ciations (P , 0.05) between all seven biomarkers except

for leptin and renin (r = 0.05, P = 0.058) in the low to
moderate range (0.15–0.69).

Association With Incident Diabetes and Worsening
Hyperglycemia
During follow-up (mean 9.7 6 0.5 years), there were 73
and 38 incident cases of T2D in PIVUS and ULSAM, re-
spectively, among 1,367 participants. In separate models
adjusted for cohort and confounders, two biomarkers
were associated with increased T2D risk (Table 3): IL-
1ra (HR 1.28, 95% CI 1.03–1.59) and t-PA (HR 1.30,
95% CI 1.03–1.65). Additional adjustment for fasting glu-
cose rendered both associations nonsignificant (t-PA HR
1.14, 95% CI 0.91–1.44; IL-1ra HR 1.19, 95% CI 0.94–
1.50) and revealed a negative association with renin levels
(HR 0.79, 95% CI 0.62–0.99).

At the 5-year follow-up assessment, there were 115
and 88 cases of worse glycemic state compared with
baseline in PIVUS and ULSAM, respectively. In ad-
justed logistic regression analysis, increased concen-
trations of t-PA (odds ratio 1.23, 95% CI 1.02–1.48)
predicted worse glycemic status at 5-year follow-up
(Table 3).

Comparison with Established Risk Factors for T2D
In LASSO Cox regression based on the learning sample,
10-year diabetes risk was predicted by a model that
included the FORS score and the two biomarkers associ-
ated with T2D (t-PA and IL-1ra). In the internal vali-
dation set using the proposed b-coefficients, this new
model improved the C-index compared with the FORS
score–only model by 0.022, from C = 0.801 (95% CI
0.701–0.991) to C = 0.823 (95% CI 0.723–0.923). There
was no significant difference in model fit (x2 = 5.258, P =
0.07), with the biomarker model explaining 12.7% of the
variance compared with 11.4% by the FORS score–only
model. Both models demonstrated adequate calibration;

Table 1—Baseline cohort characteristics of participants without diabetes in PIVUS-70 and ULSAM-77

PIVUS N ULSAM N

Women 423 (51.1) 827 0 540

Age (years) 70.2 6 0.2 827 77.6 6 0.8 540

BMI (kg/m2) 26.7 6 4.1 827 26.0 6 3.4 540

CRP (mg/L) (ln transformed) 0.62 6 0.9 827 0.67 6 1.0 540

Waist circumference (cm) 90.0 6 11.0 827 94.6 6 9.6 540

Fasting glucose (mmol/L) 5.5 6 0.6 827 5.5 6 0.6 540

Fasting insulin (mU/L) 8.3 6 5.0 827 9.1 6 8.0 540

HOMA-IR 2.1 6 1.3 827 2.3 6 2.1 540

Systolic blood pressure (mmHg)* 148.9 6 22.5 823 150.3 6 20.0 532

Diastolic blood pressure (mmHg)* 78.4 6 10.0 823 81.1 6 9.8 532

Triglycerides (mmol/L) (ln transformed) 0.1 6 0.4 824 0.2 6 0.4 539

Subjects with comorbidities 160 (19.3) 827 208 (38.5) 540

Subjects with a 1st-degree relative with T2D 115 (13.9) 827 100 (18.5) 540

Length of follow-up (years) 10.05 6 0.17 827 9.13 6 0.63 540

Data are mean 6 SD or n (%) for categorical variables. *Assessed in either arm at rest using the routine sphygmomanometer technique.
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Grønnesby-Borgan x2 = 5.378, P = 0.25, for baseline and
x2 = 2.399, P = 0.66, for the full model.

Causal Associations Between IR and Biomarkers
In a literature search, we identified suitable IVs for IL-
1ra (rs4251961 and rs6759676) (15), HGF (rs5745687)
(16), and t-PA (rs9399599, rs3136739, and rs7301826)
(17). In a GWAS for the remaining four biomarkers using
the conventional threshold for genome-wide significance
(P , 5 3 1028), we found a suitable genetic IV for
cathepsin D only (rs55861089) (Supplementary Table 3).

We found evidence of a causal effect of HOMA-IR on
t-PA concentrations (bIV 3.21, 95% CI 0.72–5.70, P = 0.012).
No evidence of a causal effect of IR on any of the other

biomarkers was found (Supplementary Table 2). Sensitivity
analysis for the genetic instrument did not indicate pleio-
tropic effects (Supplementary Fig. 2).

For the causal effect of biomarker on HOMA-IR, we
identified suitable genetic IVs for IL-1ra, t-PA, HGF, and
cathepsin D. The results of IV analysis in MAGIC did not
show evidence of a causal effect of any of these biomarkers
on IR (Supplementary Table 3).

DISCUSSION

In two prospective community samples of 1,367 elderly
individuals without diabetes, we identified seven proteins
positively associated with prevalent IR, and one of these,

Figure 1—Flowchart illustrating the design of the study. P values were assessed at the 5% FDR. SNP genetic variants were used as IV.

Table 2—Linear regression analysis results for biomarker associations with lnHOMA-IR, adjusted for age, sex, BMI, waist
circumference, lnCRP, comorbidity, and storage time

PIVUS (n = 827) ULSAM (n = 540)

Biomarker b (95% CI) P b (95% CI) P

Leptin 0.27 (0.22, 0.33) 1.66 3 10221 0.10 (0.07, 0.13) 7.71 3 10210

t-PA 0.11 (0.07, 0.14) 5.97 3 1029 0.06 (0.04, 0.09) 2.54 3 1027

Renin 0.12 (0.08, 0.15) 4.22 3 10211 0.05 (0.03, 0.07) 6.30 3 1025

IL-1ra 0.12 (0.08, 0.16) 1.09 3 1029 0.04 (0.02, 0.07) 3.48 3 1024

HGF 0.15 (0.12, 0.19) 2.28 3 10217 0.04 (0.02, 0.07) 5.11 3 1024

Cathepsin D 0.15 (0.11, 0.18) 1.41 3 10216 0.04 (0.02, 0.06) 5.59 3 1024

FABP-4 0.16 (0.08, 0.17) 2.20 3 1028 0.04 (0.01, 0.06) 7.67 3 1023

b-Coefficients (95% CI) express the change in lnHOMA-IR associated with an SD-unit increase in NPX value. Raw P values are given for
each association, and all proteins shown in this table are significant at the 5% FDR. Proteins with between 1 and 15% values
below LOD in PIVUS were protein S100-A12 (13%), CD40 ligand (12%), TNF-related apoptosis-inducing ligand (9%), P-selectin
glycoprotein ligand 1 (5%), caspase 8 (4%), leptin (4%), TNF-related activation-induced cytokine (3%), matrix metalloproteinase 3 (2%),
pappalysin-1 (2%), FABP-4 (1%), and TNF ligand superfamily member 14 (1%); in ULSAM, the only protein was leptin (5%).
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cathepsin D, has not previously been reported as associated
with IR. The correlations between the protein concentra-
tions were weak to moderate. These correlations either could
be explained by biomarkers being implicated in the same
biological pathways or could represent different biolog-
ical cascades related to IR and cardiovascular risk. We
therefore carried all seven biomarkers forward for
further analysis, where we found evidence for a causal effect
of IR on t-PA concentrations suggesting an effect of IR on
blood coagulation and extracellular matrix modeling—im-
portant components of atherosclerosis. We also found
that higher baseline concentrations of t-PA and IL-1ra
were associated with 10-year diabetes risk, and t-PA
predicted worse 5-year fasting glucose levels. Com-
pared with an established diabetes risk score, the ad-
dition of biomarkers did not improve discrimination
significantly.

Causal Effect of IR on t-PA
MR analysis offers a statistical approach to inferring
causality in observational studies. As variants of genetic
alleles are randomly inherited at conception, their
distributions are free from confounding influences and
reverse causation. In MR analysis, a genetic variant or
combination of variants known to be associated with an
intermediate phenotype is used as the IV to assess the
possible causal effect of the intermediate on the outcome
variable (26).

Using MR analysis, we found evidence for a positive
causal effect of IR on t-PA antigen levels, which has not
previously been reported, although their correlation is
well established (29). t-PA is expressed by endothelial cells
and acts mainly by converting plasminogen to plasmin,
thus contributing to fibrinolysis and extracellular matrix
remodeling. It also acts as a proinflammatory cytokine
(30). Circulating t-PA activity is regulated through complex
formation with its main inhibitor, plasminogen activator
inhibitor 1 (PAI-1), a major source of which is adipose
tissue (31). Elevated PAI-1 activity and concentration are
both associated with raised t-PA levels (32), and the
observed causal effect of IR on t-PA antigen could be

influenced by PAI-1 expression. Since we did not measure
PAI-1 concentration or t-PA activity or differentiate be-
tween total and inhibitor-bound t-PA, we were not able to
characterize the mechanisms in detail. Although recombi-
nant t-PA is commonly used as a fibrinolytic drug, raised
circulating t-PA levels are also a marker of future cardio-
vascular risk (33). The causal effect of IR on t-PA antigen
suggested by our findings may contribute to the excess
CVD risk in individuals with diabetes and requires valida-
tion in future studies.

Our study confirmed previous reports (32) of raised
t-PA concentrations being associated with elevated T2D
risk and extends these reports to an association with wors-
ening 5-year fasting glycemia. Taken together, the current
study confirms the role of t-PA in IR and T2D and points to
a possible causal pathway from IR to t-PA concentrations.

A Novel Association Between Cathepsin D and IR
For six of the identified protein markers, we confirm
previously reported associations with IR in humans
(29,34–38). However, the seventh protein, cathepsin D,
has to our knowledge not previously been linked to IR.

The lysosomal endopeptidase cathepsin D is expressed
ubiquitously, and its main effects include intracellular
protein turnover and extracellular matrix breakdown.
Altered expression of the protein has been implicated
in, for example, Alzheimer disease, atherosclerosis, and
breast cancer (39).

Raised free fatty acid levels and advanced glycation end
products found in prediabetes states have recently been
shown to enhance cathepsin D release (40–43). This may
contribute to IR through mitochondrial dysfunction (42),
impaired detoxification of advanced glycation end prod-
ucts (43), and the induction of proapoptotic proteins (44).

As weight gain was shown to stimulate its activity
leading to adipocyte apoptosis, cathepsin D was suggested
as a potential mediator between obesity and chronic
adipose tissue inflammation (44), an important contrib-
utor to IR (2). The observed strong association between
cathepsin D and IR in the current study may be the re-
sult of the deranged intracellular homeostasis resulting

Table 3—Cox regression results for 10-year incident T2D and logistic regression results for 5-year risk of worse glycemia

10-year T2D risk
(111 incident events)

5-year worse
glycemia risk

(203 incident events)

Biomarker HR (95% CI) P OR (95% CI) P

Leptin 1.39 (1.00, 1.95) 0.054 1.02 (0.78, 1.33) 0.909

t-PA 1.30 (1.03, 1.65) 0.029 1.23 (1.02, 1.48) 0.030

Renin 0.86 (0.68, 1.08) 0.193 0.90 (0.75, 1.08) 0.252

IL-1ra 1.28 (1.03, 1.59) 0.025 1.04 (0.86, 1.25) 0.681

HGF 1.21 (0.98, 1.51) 0.082 0.98 (0.81, 1.18) 0.828

Cathepsin D 1.23 (0.99, 1.53) 0.058 0.99 (0.83, 1.19) 0.936

FABP-4 1.32 (0.99, 1.76) 0.057 0.94 (0.75, 1.17) 0.553

Adjusted HRs (adjusted for age, sex, BMI, waist circumference, lnCRP, storage time, and cohort) and odds ratios (OR) associated with
an SD-unit increase in NPX value.
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from lipotoxicity and inflammation in insulin-resistant
states. Our MR study did not support a causal effect in
any of the two directions, and we cannot exclude that
the association we identified could be due to unmeasured
confounding.

Cathepsin D as a possible mediator between overweight,
inflammation, and metabolic disease may be amenable to
drug targeting, and recent advances have been made in the
field of cancer (45). Although we found a strong link be-
tween cathepsin D and prevalent IR, we failed to detect an
association with 10-year diabetes risk or with 5-year wors-
ening hyperglycemia. Future studies on the implication of
cathepsin D in diabetes are needed.

Protein Biomarkers for Future Diabetes and
Hyperglycemia
We confirmed the previously reported association of IL-
1ra concentrations with T2D risk. IL-1ra competitively
inhibits IL-1 from binding to its receptor, thereby
suppressing its proinflammatory effects. In a retrospec-
tive analysis unadjusted for baseline glucose levels, IL-
1ra was elevated up to 13 years prior to T2D diagnosis
(46), which is in agreement with the association with
10-year incidence of T2D. Adjustment for fasting glu-
cose resulted in a positive but insignificant association in
the current study. Carstensen et al. (46) argued against
adjusting for fasting glucose on the basis of it forming
part of the definition of incident T2D. Although ini-
tially, recombinant IL-1ra agonists improved glycemic
and inflammatory measures in T2D patients (47), long-
term benefits have yet to be demonstrated, and concerns
about cardiovascular side effects from increased IL-1ra
levels have been raised (48).

Clinical Implications
The addition of IR biomarkers to the FORS score did not
improve prediction. However, the number of events in
our study was moderate, and larger studies are needed
for more precise estimates. The observed associations
with IR support the prospective validation of the assay
for translating targeted proteomics into the diabetes
care practice, but no direct clinical implications in the
short term should arise from our findings. However, the
identification of cathepsin D as an IR risk protein in this
proteomics study in large community samples suggests
potential benefits of applying this technology to biomarker
discovery in the clinical setting and for other pathologies.

Limitations
Both cohorts are demographically homogeneous and
consist of elderly persons, thus limiting generalizability
to other ethnic and age groups. A fasting blood sample–
based proxy measure (HOMA-IR) was used in this study,
which does not provide a perfect reflection of the phys-
iology of IR. The scale of the proteomics assay is not
readily convertible to absolute concentrations for com-
parisons with previous studies. While we attempted to
reduce bias in MR modeling by, e.g., sensitivity analysis

for pleiotropy of the genetic IR score, our findings are
limited by the lack of statistical power for the IR-
biomarker section. Since for cathepsin D and HGF, the
genetic variant used as IV maps to the biomarker’s cod-
ing region, possible false signals due to interference
with assay antibody binding that could have resulted
in an invalid instrument cannot be excluded. Finally,
the assay used focused on proteins associated with CVD
and/or inflammation and was not specifically targeted to-
ward metabolism. An assay targeted directly toward di-
abetes candidate proteins may have revealed additional
findings.

Conclusion
We found evidence of a causal effect of IR on t-PA anti-
gen concentrations, which could be part of the explana-
tion of the excess risk of CVD in the population with
diabetes. We further identified cathepsin D as a novel
potential biomarker for IR and demonstrated the appli-
cation of high-efficiency targeted proteomics for diabetes
risk assessment.
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