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Abstract

Transcription factors (TFs) are crucial for regulating cell differentiation during the develop-

ment of the immune system. However, the key TFs for orchestrating the specification of dis-

tinct immune cells are not fully understood. Here, we integrated the transcriptomic and

epigenomic measurements in 73 mouse and 61 human primary cell types, respectively, that

span the immune cell differentiation pathways. We constructed the cell-type-specific tran-

scriptional regulatory network and assessed the global importance of TFs based on the Taiji

framework, which is a method we have previously developed that can infer the global impact

of TFs using integrated transcriptomic and epigenetic data. Integrative analysis across cell

types revealed putative driver TFs in cell lineage-specific differentiation in both mouse and

human systems. We have also identified TF combinations that play important roles in spe-

cific developmental stages. Furthermore, we validated the functions of predicted novel TFs

in murine CD8+ T cell differentiation and showed the importance of Elf1 and Prdm9 in the

effector versus memory T cell fate specification and Kdm2b and Tet3 in promoting differenti-

ation of CD8+ tissue resident memory (Trm) cells, validating the approach. Thus, we have

developed a bioinformatic approach that provides a global picture of the regulatory mecha-

nisms that govern cellular differentiation in the immune system and aids the discovery of

novel mechanisms in cell fate decisions.

Author summary

The immune system protects the human body from invading pathogens and tumors.

Enormous efforts have been devoted to developing preventative and therapeutic treat-

ments based on exploitation of diverse immune cell types. Recent technological advances

have made it possible to study the regulatory mechanisms at the systems level. However,

the noise in the genomic measurements and the complexity of integrating multiple omics
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assays are still challenging. To tackle the challenges, we constructed the cell-type-specific

transcriptional regulatory network for 73 mouse and 61 human immune cell types and

assessed the global importance of transcription factors (TFs) using a systems biology

approach called Taiji framework. We revealed driver TFs in cell lineage-specific differenti-

ation. Furthermore, we validated the functions of predicted novel TFs in CD8+ T cell dif-

ferentiation and showed the importance of Elf1 and Prdm9 in the effector versus memory

T cell fate specification and Kdm2b and Tet3 in promoting differentiation of CD8+ tissue

resident memory (Trm) cells, validating the approach. Our study provides a comprehen-

sive identification of driver regulators directing immune cell development, provides a

global picture of the regulatory mechanisms that govern cellular differentiation in the

immune system and aids the discovery of novel mechanisms in cell fate decisions.

Introduction

The immune system protects the human body by eliminating invading pathogens as well as

tumors [1,2]. Considerable effort has been devoted to developing preventative and therapeutic

treatments based on exploitation of a diverse set of immune cell types. Establishing immune

cell-based clinical treatments relies on research advances that reveal the fundamental mecha-

nisms regulating the immune system, such as those that direct the differentiation from progen-

itor to mature immune cells and coordinate their response to the presence of various antigens.

Recent technological advances have made it possible to study the regulatory mechanisms at

the systems level and genomic scale [3]. However, the noise in the genomic measurements and

the complexity of integrating multiple omics assays pose a great challenge of fully digesting the

information and extracting the most informative signals from the extensive data.

A critical step towards achieving the goal of studying the regulatory mechanism is to

uncover the key regulators that direct the specification of immune cell states. Transcription

factors (TFs) are essential regulators of cell fates [4,5] and play pivotal roles in immune cell

development [6]. Identification of critical TFs that drive immune cell differentiation can also

provide key mechanistic insights into immune cell functions. However, a complete catalog of

critical TFs in each immune cell population or in each lineage has not been established. There-

fore, dissection of the genetic networks that promote immune cell differentiation and function

and characterization of the genome-wide influences of the key regulators would provide novel

insights into cell specification and potential strategies to impact immune function.

The global influence of a cellular regulator is conveyed through its regulatory effect on tar-

get genes, which is subsequently propagated over the genetic network. A given regulator’s

activity is not only affected by its own expression level but also post-translational modifica-

tions, the presence of collaborative co-factors and its targets’ accessibility. Therefore, the

expression level of a regulator such as a TF is not always correlated with its activity [7]. In light

of this, many methods have been proposed to infer the activity of regulators using statistical or

machine learning approaches. For instance, Schacht et al. [7] developed a statistical model to

estimate the regulatory activity of TFs using their cumulative effects on their target genes.

Arrieta-Ortiz et al. [8] used a linear model to infer the TF activity (TFA) by predicting target

genes’ expression levels. SCENIC [9] developed by Aibar et al. constructs the genetic network

by predicting each gene’s expression using the TF’s expression levels and finding the most pre-

dictive TFs as the key regulators. Maslova et al. introduced AI-TAC [10] to predict ATAC-seq

signals and identified the most enriched motifs when evaluating the TF importance. Although

these methods were able to predict the local activity of a TF, i.e. the expression level of their
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direct target genes, measuring the system-wide influence of a given TF was not their focus. As

genes rarely function alone but usually cross-talk with each other to form complex regulatory

logic, we argue that the global influence of a regulator should, in principle, better predict the

cell state change upon perturbing the regulator than its local influence alone [11,12].

Recently, we have developed a method, called Taiji, that can successfully infer the global

impact of TFs in the genetic network constructed from integrating epigenomic and gene

expression data [13–15]. Focusing on the global rather than the local importance of transcrip-

tional regulators makes Taiji robust and suitable for integrating multiomics data from noisy

genomic measurements. In fact, Taiji clearly outperforms the motif enrichment analysis and

the TFA approach [13–15]. In addition, several TFs predicted to be critical in regulating the

differentiation of CD8+ T cells following infection were validated experimentally and demon-

strated to have previously unappreciated roles in cell fate specification [14,15].

Here, we performed a comprehensive analysis on the common regulatory code in the mouse

and human immune systems using Taiji. We identified key TFs critical for programming the dif-

ferentiation of nine cell lineages that span diverse cell types of the immune system, thus providing

the first comprehensive catalog of key regulators for a variety of cell lineages during immune sys-

tem development. In addition, we uncovered TF combinations that activate in a spatiotemporal

manner, behaving like transcriptional waves to orchestrate the developmental progress and cell

lineage specification. We show the great predictive performance of Taiji by validating the func-

tions of four novel TFs in murine CD8+ T cell differentiation and memory formation.

Results

Using assay of transposase-accessible chromatin with high-throughput sequencing (ATAC-

seq) and gene expression (RNA-seq) data for 73 mouse immune cell populations generated by

the Immunological Genome Project [16], representing 9 cell types including stem cells, den-

dritic cells (DC), macrophages/neutrophils (MF/GN), monocytes (Mo), B cells, innate lym-

phoid cells (ILC), αβ T cells (abT), γδ T cells (gdT), and activated T cells (Act_T), we

performed an integrated analysis using the Taiji pipeline [13]. Briefly, Taiji integrates gene

expression and epigenetic modification data to build gene regulatory networks. Taiji first

scans putative TF binding sites in each open chromatin region using motifs documented in

the CIS-BP database [17], to identify active regulatory elements, including active promoters or

enhancers. These TFs are then linked to their target genes as predicted by EpiTensor [18]. All

of the regulatory interactions are assembled into a genetic network. Lastly, the personalized

PageRank algorithm is used to assess the global influences of the TFs [19]. In the network, the

node weights were determined by the z scores of gene expression levels, allocating higher

ranks to the TFs that regulate more differentially expressed genes. The edge weights were set to

be proportional to TFs’ expression levels, the binding site peak intensity, and the motif binding

affinity, thus representing the regulatory strength (Fig 1). The details of the weighting scheme

are available in the “Materials and Methods” section. The superior performance of Taiji com-

pared to other methods to identify key regulators have been confirmed using simulated data,

literature evidence and experimental validations [13,15]. We constructed a network in each

mouse cell type. The average number of nodes and edges of the networks were 19,340 and

773,653, respectively, including 815 (4.21%) TF nodes. On average, each TF was predicted to

regulate 3996 genes, and each gene was predicted to regulate 88 TFs (S1 Fig).

PageRank score is a great indicator of cell specificity

To characterize the potential global influences of all the TFs across different cell types, we plot-

ted the PageRank score matrix with the columns sorted by the nine cell lineages (Fig 2). We
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found that different cell lineages show quite distinct TF regulatory patterns, illustrating that

transcriptional regulation takes place in a cell-lineage-specific fashion. The row-wise compari-

son demonstrates that some TFs are specific to one particular cell lineage. For example, Bcl11a
is essential for the survival of early B cells [20,21] and Irf4 has been shown as a key transcrip-

tion factor that directs the development and maturation of B cells including pre-B differentia-

tion and marginal zone B cell development [22–24]. Both Bcl11a and Irf4 have exclusively

higher PageRank scores in B cell lineage compared to the other immune lineages. Another

example is that both Tcf7 and Lef1 have known functions in T cell development and differenti-

ation [25–27] and they display higher PageRank scores across T cells compared to the average.

Identification of putative driver TFs in cell lineage differentiation

We then identified 48 constitutively active TFs whose average PageRank scores across all the

cell types were ranked top 10% with CVs<0.5, indicating their predictive activities across all

lineages (Fig 3A). Similar to their transcriptional activities, the expression levels of these TFs

remained relatively high in immune cells from different tissues and at different stages of devel-

opment (S2 Fig, the circle size represents the expression levels while the color represents the

PageRank scores). Functional analysis revealed that these TFs are enriched in house-keeping

functions, including “biological regulation”, “metabolic process”, and “cellular process”, dem-

onstrating the general roles of active TFs in basic cellular functions across all cell types. Nota-

bly, more than one third of these active TFs are related to the immune system processes, which

is not surprising.

Furthermore, we identified potential important TFs in 73 cell types from 9 cell lineages by

comparing their PageRank scores between a specific lineage and the background (see

Fig 1. The workflow of study and Taiji pipeline. Matched RNA-seq and ATAC-seq data were used as input for the Taiji framework to construct a regulatory

network and generate PageRank scores matrix as output (column colors code for different cell lineages, see Fig 2 for the color annotation). Downstream

analyses included clustering samples to distinct cell lineages, identification of cell lineage-specific TFs, and construction of temporal transcriptional waves.

https://doi.org/10.1371/journal.pcbi.1010116.g001
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Fig 2. PageRank score is a great indicator of cell specificity. PageRank scores heatmap of 59 cell-specific TFs across 73 cell types. TFs in rows (z-normalized),

cell types in columns, and color of the cell in the matrix indicates the normalized PageRank scores with red displaying high scores. Selected gene names are

colored based on their cell specificity. abT, αβ T cells; Act_T, activated T cells; B, B cells; DC, dendritic cells; gdT, γδ T cells; ILC, innate lymphoid cells; MF,

macrophages; GN, neutrophils; Mo, monocytes; stem, stem cells.

https://doi.org/10.1371/journal.pcbi.1010116.g002

PLOS COMPUTATIONAL BIOLOGY Identification of key TFs in immune cell specification

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010116 September 26, 2022 5 / 30

https://doi.org/10.1371/journal.pcbi.1010116.g002
https://doi.org/10.1371/journal.pcbi.1010116


PLOS COMPUTATIONAL BIOLOGY Identification of key TFs in immune cell specification

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010116 September 26, 2022 6 / 30

https://doi.org/10.1371/journal.pcbi.1010116


“Methods” for details). To our knowledge, this is the first systematic mapping of the complex

transcriptional regulation that occurs during mouse immune system development (S3 Fig).

The identified putative driver TFs include many well-known key regulators. For instance, 11

of 13 identified T cell-specific TFs have been previously reported to play a pivotal role during

the T cell development and differentiation in the mouse immune system [28–30] (Fig 3B),

such as Lef1 and Tcf7 that are critical for CD8+ T cell memory formation and CD4+ T cell dif-

ferentiation [31–35], and Bcl11b, an essential TF for the development of αβ T cells and most γδ
T cells [36].

To systematically validate the predictions of these analyses, we performed literature search

in 5 lymphoid hematopoietic lineages that have been extensively studied, including the αβT

cells, Act_T cells, B cells, γδT cells, and ILC. Forty-two of 50 (84%) TFs identified by our

method are shown to be associated with regulation of development or normal functions of

these cell lineages (S2 Table). For example, Tcf4 is a well-known transcriptional activator in B

cell differentiation and regulates the expression of genes critical for germinal center (GC) B

cell development [37–40].

The lineage specificity was decided by assessing whether the TF PageRank scores are statis-

tically significantly higher in one lineage than the other lineages, i.e. the p-value smaller than

0.001 and the log2 fold change larger than 1. It is possible that some TFs are important in sev-

eral cell lineages. Take Bcl11a as an example, it exhibits high PageRank scores in several cell

lineages: stem, DC cells and B cells, and its role in all these three lineages have been previously

described [20,21,41–43]. We found that several putative driver TFs are highly conserved in

three T cell subsets. Lef1, Gata3, and Bcl11b were ranked top 10 in all 3 T cell sub-lineages,

demonstrating that interplay and co-expression of these regulators are essential for the devel-

opment and differentiation of several T cell subsets including CD4+ and CD8+ T cells.

We have also identified TFs with previously undefined functions in immune cell differenti-

ation. For example, Pbx4, identified as a key regulator for T cell development, has not yet been

studied. We predicted that Pbx4 regulates a number of high-rank TFs, including several afore-

mentioned constitutively active TFs, i.e., Sp4, Elf1, and Zfp281 (Fig 3C). The functional enrich-

ment analysis of Pbx4’s regulatees suggests that they participate in T cell receptor signaling

pathway, T cell activation, and αβ T cell differentiation (Fig 3C).

During development, hematopoietic stem cells (HSCs) differentiate into two different types

of immune cells—myeloid and lymphoid lineages. Myeloid cells include Mo, DC, neutrophil,

GN, and MF while lymphocytes include ILC, T and B lineages. T cell lineage can be further

divided into abT, gdT, and Act_T. To identify TFs that are specific to each cell lineage, we first

grouped and compared samples originated from myeloid lineage against samples from lym-

phoid lineage. The student t tests with a P value cutoff of 0.005 and log2 fold change cutoff of

0.5 were used to identify TFs whose ranks change significantly in myeloid lineage compared

with lymphoid lineage and vice versa, thus obtaining a list of myeloid-specific TFs and lym-

phoid-specific TFs (Fig 4). The functional relevance of the predicted specific TFs is supported

by previous studies. For example, we have identified Hhex and Spi1 as putative specific regula-

tors for myeloid cells, which are known to be associated with myeloid leukocyte differentiation

[44,45]. The enriched Gene Ontology (GO) terms showed that the identified lymphoid-specific

Fig 3. Identification of putative driver TFs in cell lineage specification during mouse immune system development. (A) Functional classification of 48

constitutively active TFs reveals their functions in essential biological processes. (B) Identified putative driver TFs in T cell lineage, including eleven TFs

known to be related to T cell development, and two TFs with unknown functions. Circle size represents the logarithm of gene expression, and the color

represents the normalized PageRank score. (C) The network for Pbx4, a previously unknown putative driver TF in T cell lineage, and its regulatees in the T8.

IEL.LCMV.d7.SI. Each node represents one regulatee of Pbx4 with TF highlighted in blue. Larger node size represents a higher PageRank score in the

network. The bottom box shows the four enriched Gene Ontology (GO) terms and KEGG pathway for Pbx4’s regulatees.

https://doi.org/10.1371/journal.pcbi.1010116.g003
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TFs are involved in T cell receptor V(D) J recombination, B cell lineage commitment, and cel-

lular response to interleukin-4.

To analyze the finer cell lineage specificity of the predicted putative driver TFs, we further

compared each sub-cell lineage with other cell lineages originated from the same progenitors

and used the student t tests with a P value cutoff of 0.005 and log2 fold change cutoff of 0.5 to

identify cell lineage-specific putative driver TFs. In total, 241 cell lineage-specific putative

driver TFs were found and the top 10 TFs are shown in Fig 4. GO terms and pathway enrich-

ment analysis is performed for each group of cell lineage-specific putative driver TFs (S4

Table). Many well-known cell lineage-specific markers appeared in the list, e.g., Fosl2 [46] and

Runx3 [47,48] for NK cells and Bcl11a [43] for DC. In addition, a number of novel TFs were

also found from our analysis, such as Zfp296 for B cell, Jdp2 for NK cell and Ar for Act T cells.

Taken together, these results provide a comprehensive map for the future mechanistic study of

mouse immune system development.

Transcriptional waves during immune cell development

In addition to the tissue specificity, we have also analyzed the dynamic activity of TFs during

immune cell development. To identify the TFs which show similar temporal activity patterns,

we clustered the TFs based on the normalized PageRank scores across samples. First of all, we

performed the principal component analysis (PCA) for dimension reduction of the TF score

matrix. We retained the first 30 principal components for further clustering analysis, which

explained 75% variance (S4 Fig). We used the k-means algorithm for clustering analysis. To

find the optimal number of clusters and similarity metric, we performed the Silhouette analysis

to evaluate the clustering quality using five distance metrics: Euclidean distance, Manhattan

distance, Kendall correlation, Pearson correlation, and Spearman correlation (S5 Fig). Pearson

correlation was the most appropriate distance metric since the average Silhouette width was

the highest among the five distance metrics. Based on these analyses, we identified 40 distinct

dynamic patterns of TF activity during immune cell development (S6 Fig).

The 40 clusters represent transcriptional waves that orchestrate tissue differentiation. Some

TFs are predicted to be active throughout many developmental stages, represented by cluster

C21 and C29 (Fig 5A and 5B). In both clusters, TFs exhibit relatively high PageRank scores

and show active activity across almost all stages. Example TFs include constitutively active

genes identified earlier, such as Sp1 [49], Zfx [50], and E2f4 [51], which are essential for

immune system development and maintenance of normal functions of various immune cells.

We also found clusters that include genes responsible for the differentiation of specific cell

lineages. For example, C7 (Fig 5C) is particularly active in DC samples, suggesting its critical

role in DC cell differentiation. Many TFs that are crucial for DC cell development were recov-

ered in C7, such as Stat1 [52], Irf7 [53], and Batf [54]. Another instance of cell lineage-specific

clusters is C27 (Fig 5D), C27 is exclusively active in stem cells, particularly in 3 HSCs

(LTHSC.34-.BM, LTHSC.34+.BM, STHSC.150-.BM,). TFs in this cluster are associated with

functions specific to early development of HSC including ten Hox [55] family TFs and two Sox
[56] family TFs.

In addition to cell lineage–specific transcriptional waves, there are also developmental

stage-specific transcriptional programs that appear to drive the differentiation of individual

stages. We highlighted 4 clusters as examples, C15, C38, C10, and C12, which are potentially

responsible for the B.FrE.BM, preT.DN3.Th, T8.Tem.LCMV.d180.Sp, and ILC2.SI develop-

ment, respectively (Fig 5E–5H). TFs in these clusters exhibit transient transcriptional spikes,

likely related to their stage-specific functions, thus activating at different stages in immune sys-

tem development. C38 includes three Duxbl family members (Duxbl1, Duxbl2, and Duxbl3),
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Fig 4. Cell lineage-specific putative driver TFs in the mouse immune system. A P-value of 0.005 and log2 fold change of 0.5 were

used to call the putative driver TFs in each cell lineage. The bubble plots show the top 10 putative driver TFs and for “Lymphoid” and

“T” lineage, only “Act_T” samples are shown as example due to limited space. The GO term enrichment analysis for stem cells is shown

as an example.

https://doi.org/10.1371/journal.pcbi.1010116.g004
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Fig 5. Transcriptional waves regulate the development of the mouse immune system. (A,B) Two transcriptional waves C21 and C29,

which are active in all developmental stages. (C,D) Two cell lineage-specific transcriptional waves. C7 is active in DC lineage and C27 is

active in stem cells. (E-H) Four examples of stage-specific waves in immune cell development. C15 is active in B.FrE.BM; C38 is active in

preT.DN3.Th; C10 is active in T8.Tem.LCMV.d180.Sp; C12 is active in ILC2.SI. Circles in each panel represent specific cells in the

developmental stages. Color indicates normalized PageRank scores with red displaying high values (color bar is the same as Fig 4). TF

members of the cluster are shown on the bottom right of the panel.

https://doi.org/10.1371/journal.pcbi.1010116.g005
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which mediate elimination of pre-T cells that fail β-selection [57]. SeveralHox family TFs (Hoxd4,

Hoxb1,Hoxd3) in C10 show significantly higher Pagerank score in CD8+ effector memory T cell

(TEM) than that in others, suggesting their putative role in regulating TEM development. Although

previous evidence shows thatHoxb4 overexpression can increase the central memory population

in CD4+ T cell [58], the mechanism ofHox family TFs in CD8+ T cell has not been thoroughly

explored. As the mechanism of immune system development remains to be completely defined,

our discovery, therefore, provides an invaluable resource for future studies.

Taiji identifies key TFs important for differentiation of effector and

memory CD8+ T cell populations

Memory cells that mount a rapid and protective response upon reinfection are the fundamen-

tal basis for vaccines, long-term immunity and health [59]. To examine key regulators of mem-

ory formation, we further investigated TFs that are important for directing differentiation of

short-lived effector versus long-lived memory cells. We identified putative driver TFs in 3

memory cell populations (B.mem.Sp, T8.Tcm.LCMV.d180.Sp, T8.Tem.LCMV.d180.Sp) with

all other cells as background following the similar procedure to the identification of cell line-

age-specific TFs (see Methods). We then performed literature search on the top 10 putative

driver TFs (S3 Table) and found that half of them are well-known regulators of the differentia-

tion and maintenance of normal functions of memory T cells and B cells, such as Foxo1 [60–

67], Ikzf3 [68,69], and Ets1 [70], while others remain unknown and warrant a more thorough

investigation, such as Cphx1, Pou4f1, and Osr2.

We selected 2 TFs predicted by Taiji to regulate CD8+ T cell differentiation with previously

unknown functions in CD8+ T cell differentiation and memory formation–Elf1 and Prdm9—
to further validate our analysis. Congenically distinct P14 T cells (expressing a TCR specific for

the LCMV glycoprotein gp33) were transduced with retroviral vector encoding hairpin RNAs

(shRNAs) targeting our gene of interest (Elf1 or Prdm9) or a negative control (Cd19), mixed at

a 1:1 ratio then transferred into recipients that were subsequently infected with LCMV-Arm-

strong (Figs 6A and S7A). On day 7 of infection, the effector P14 T cell populations in the

spleen that were deficient for Elf1 or Prdm9 displayed an increased frequency of memory pre-

cursor (KLRG1-CD127+) cells compared to the control population (Fig 6B and 6C). Further-

more, at day 21 of infection, the memory T cell population was comprised of an increased

proportion of TEM (CD62L-CD127+) when Elf1 expression was knocked down and an

increased frequency TCM (CD62L+CD127+) and a decreased frequency of t-TEM

(CD62L-CD127-) when Prdm9 was knocked down (Fig 6B and 6C). These data validate the

functions of Elf1 and Prdm9 in CD8+ T cell differentiation and suggest a role for these TFs in

promoting terminal differentiation.

Tissue-resident lymphocytes are a diverse population of non-recirculating lymphocytes

lodged in tissues that provide localized protective immunity and immunosurveillance [71]. As

the importance of this population to host protection is clear, we next sought to define regula-

tors important for tissue residence. To identify putative tissue-residency-specific TFs, we

focused on 6 lymphocyte populations originating from the small intestine (ILC3.NKp46+.SI,

ILC3.NKp46-CCR6-.SI, ILC3.CCR+.SI, ILC2.SI, Treg.4.FP3+.Nrplo.Co, T8.IEL.LCMV.d7.SI)

with 8 similar cells in the circulation as background (T8.Tcm.LCMV.d180.Sp, T8.Tem.LCMV.

d180.Sp, T8.MP.LCMV.d7.Sp, T8.TE.LCMV.d7.Sp, Treg.4.25hi.Sp, NK.27+11b-.Sp, NK.27

+11b+.Sp, NK.27-11b+.Sp). More than 60% of the identified TFs have been identified as regu-

lators within the tissue-resident lymphocyte populations by previous studies (S3 Table). For

instance, Hic1 is critical for establishing and maintaining TRM cells in the gut [72–74], and Ahr
is required for long term persistence of TRM in the epidermis [75].
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Using this approach, we also identified several genes with undefined function in tissue resi-

dency. We validated the role of 2 of these genes, Kdm2b and Tet3, in promoting differentiation

of CD8+ TRM. Kdm2b and Tet3 were both documented in the CIS-BP database to recognize

specific DNA motifs and were thus included in our study. We selected these two chromatin

Fig 6. Validation of novel TFs’ roles in CD8+ T cell differentiation. (A) Experimental schematic in which congenically distinct P14 were transduced with

gene-specific (knock-down, KD) or Cd19 control shRNA encoding retroviruses, mixed 1:1 then transferred into recipient mice subsequently infected with

LCMV. (B) The ratio of TE (KLRG1hiCD127lo) or MP (KLRG1loCD127hi) and TCM (CD62LhiCD127hi), TEM (CD62LloCD127hi) or t-TEM (CD62LloCD127lo)

(gating strategy, left) within the Elf1 KD and control P14 population recovered from the spleen on day 7 (middle) or day 21–27 (right) of infection. (C)

Representative flow cytometry staining (left) and quantification of the ratio of TE and MP and TCM, TEM or t-TEM (right) within the Prdm9 KD and control

P14 population recovered from the spleen on day 7 or day 21. (D) The ratio of recovered Kdm2b KD and control P14 cells in indicated tissues on day 7 (top)

and 21 (bottom) of infection. (E) The ratio of recovered Tet3 KD and control P14 cells in indicated tissues on day 7 (top) and 21 (bottom) of infection. Data are

cumulative of 2–3 experiments with n = 3–5 per group. Graphs show mean ± SEM. A one-sample two-tailed t-test, two-tailed ratio paired t-test (B,C) or a one-

way paired ANOVA test (D,E) was used to determine statistical significance; �p< 0.05, ��p< 0.01, ���p< 0.001, ����< p< 0.0001.

https://doi.org/10.1371/journal.pcbi.1010116.g006
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remodeling factors because epigenetic modification plays important roles in cell differentiation

and they have not been reported to function in CD8+ T cell differentiation. Their available

motifs and identified importance from the Taiji analysis gave us an opportunity to study their

importance in CD8+ T cell differentiation for the first time. As above, congenically distinct

P14 T cells expressing shRNAs for our gene of interest (Kdm2b or Tet3) or for a negative

control (Cd19) were mixed 1:1 and transferred into recipients that were infected with

LCMV-Armstrong (Figs 6A and S7A). Circulating T cell populations of the spleen were com-

pared to TRM the salivary gland (SG), kidney (Kid), and small intestine intraepithelial layer

(IEL) or lamina propria (LP) on day 7 and 21 of infection. By day 21, T cells lacking Kdm2b
resided at a reduced frequency in all tissues examined compared to control cells (Fig 6D). Fur-

thermore, the proportion of T cells in the gut expressing the canonical TRM markers CD69 and

CD103 was reduced with decreased Kdm2b expression compared to control cells (S4B Fig).

Tet3-deficient T cells were also impaired in their ability to populate the SG and LP (Fig 6E) at

day 21 and showed an early defect in differentiation with reduced CD69 and CD103 expres-

sion on day 7 of infection compared to control IEL and LP T cells. Thus, the TFs, Kdm2b and

Tet3, function to promote generation of CD8+ TRM populations and represent newly identified

regulators of TRM identified regulators of this important T cell memory population, further

supporting the tremendous predictive value of Taiji.

Based on the regulatory network Taiji generated, we were able to extract regulatees of

selected TFs in the corresponding cell states and performed functional analysis of the regula-

tees. The regulatees of all four selected TFs (Elf1, Prdm9, Kdm2b, Tet3) are related to T cell dif-

ferentiation based on the enriched GO terms including alpha-beta T cell activation, T cell

receptor signaling pathway, Th17 cell differentiation. The regulatees of the four novel TFs have

functional overlap with the regulatees of known TFs (we selected Foxo1, Ikzf3, Hic1, Ahr as

examples). The regulatees of the known TFs are also enriched with T cell-related functional

terms like CD4-positive and alpha-beta T cell differentiation and activation, T cell receptor sig-

naling pathway, and positive regulation of cytokine production. The results are summarized in

S7 Table.

Systematic comparison between human and mouse immune cells reveals

conserved regulatory code

To systematically compare the regulatory code, we used Taiji to construct regulatory networks

in human immune cell populations [76,77] similar to those we generated in the mouse

immune system and obtained a PageRank matrix. Twenty-four human samples were paired

with 29 mouse samples. These 53 samples spanning 8 immune cell lineages were used for all

the downstream analysis in Fig 7.

The hierarchical clustering based on PageRank scores of 733 common TFs showed diverse

driving forces in clustering across cell lineages (Fig 7A). Some samples with similar cell iden-

tity are more likely to be clustered together regardless of the species they come from. For

instance, most B cells from both mouse and human are clustered; DCs and monocytes also

show proximity within the same cell lineage. Other cell lineages including several T cell line-

ages are more inclined to be clustered by species.

CD4+ and CD8+ T cells show more complex patterns indicative of the cell lineage heteroge-

neity both within and across the source organisms. The cell-lineage specific TFs for human

and mouse are identified following the same method described previously in “Materials and

Methods: Identification of putative driver TFs in cell lineage specification”. The comparison of

specific TFs between human and mouse revealed similar TF regulatory profiles across species

(Fig 7C). Twenty-four percent of total B cell-specific TFs are shared between the two
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Fig 7. Comparison between human and mouse immune system. (A) Hierarchical clustering of 53 cell types from both human and

mouse systems based on row-wise normalized PageRank scores of 733 TFs. TFs in rows, cell types in columns, and color of the cell in

the matrix indicate the normalized PageRank scores with red displaying high scores. (B) PageRank scores heatmap of top10 cell lineage-

specific TFs. Selected gene names are colored based on their cell lineage specificity. Legends and columns are the same as in (A). (C)

Comparison of active TFs and 3 comparisons of specific TFs between human and mouse systems. “Active” means the constitutively
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organisms including Tcf4 [37–40], Pax5 [78–80], Bhlhe41 [81–83], and several Irf family TFs

(Irf4, Irf5, Irf8, [23,84,85]. This relatively large overlapping percentage is consistent with the

clustering of B cells across species shown in Fig 7A. Similarly, the overlapping percent of con-

stitutively active TFs is relatively high (24%), showing that these house-keeping genes are

required for fundamental biological functions across a variety of cell types and species. On the

other hand, the overlap percentages for CD4+ and CD8+ T cells are relatively small, 11% and

14%, respectively. The conserved TFs like Eomes [86–88], Bcl11b [89–91], Lef1 and Tcf7
[26,92,93] are well-known for their important roles in T cell differentiation in both systems.

We also identified species-specific TFs including Msc, Maz, Klf5 and Snai3, Sp4, and Foxo4 in

human and mouse CD8+ T cells, respectively.

We performed Fisher’s exact test to check if the intersection list of human and mouse spe-

cific TFs is significant. All 9 comparisons including 8 cell lineage-specific TFs and active TFs

passed the test with p-value as 0.05 except the stem-specific TFs (p-value as 0.2). It’s possibly

due to the relatively large identity differences between human and mouse stem cells, which is

consistent with our clustering result in Fig 7A where the human and mouse stem cells are not

clustered together. As for the experimentally validated TFs, we were unable to perform similar

identification of tissue-resident-specific TFs in the human system as the data is unavailable-

the human dataset does not include Trm samples. We can identify the memory-specific TFs in

the human system and the intersection list includes 3 TFs (Ikzf3, Klf2, Snai3) with p-value of

0.04. The full test results along with the specific TF lists are summarized in S9 Table.

The heatmap in Fig 7B displays the PageRank scores of cell-lineage specific TFs shared

between mouse and human. Some of them are well-known in both organisms, like Cebpd,

Cebpa as monocytes-specific TFs [94,95]; Erg [96,97], several Hoxa [98–100] family TFs as

stem cell-specific TFs. Some of these specific TFs can be very important in several cell lineages

in both mouse and human systems, like Tcf7, Lef1, Bcl11b, Gata3 shown in Fig 7D, suggesting

the potential sophisticated regulatory roles in closely related cell lineages like CD4+ and CD8+

T cells. The functional analysis of TFs shows strong connection with regulation of T cell differ-

entiation (Fig 7E). This comparative analysis between human and mouse reveals some com-

mon regulatory code across species, which would be very valuable for elucidating the

functions of unknown TFs in the human immune system.

Discussion

The mouse immune system provides an ideal setting for implementing system-level analyses

of cellular differentiation as well-defined cell states have been established and the differentia-

tion stages from progenitor to mature cells have been thoroughly characterized [101]. Consid-

erable efforts have been made in mapping the regulatory networks driving immune cell

differentiation, yet identification of the critical TFs that regulate cell fate decisions at key differ-

entiation branch points has remained a challenge. Here, we have systematically identified key

TFs in 9 immune cell lineages that encompass a range of key lineages in the mouse and human

immune systems based on the Taiji framework. Taiji integrates gene expression and epige-

nomic information (ATAC-seq or histone modification) to construct regulatory networks,

thus better delineating the cell identity than single-omics data. Furthermore, Taiji calculates

PageRank scores for each regulator by considering the impacts of its upstream regulators and

active TFs, whose average PageRank scores across all the cell types were ranked top 10% with CVs<0.5. (D) Twelve TFs important in

several cell lineages in both mouse and human. Circle size represents the logarithm of gene expression, and the color represents the

normalized PageRank score. Column order is the same as (B). (E) Enriched KEGG pathways and GO terms of 12 putative driver TFs

identified in (D).

https://doi.org/10.1371/journal.pcbi.1010116.g007
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downstream regulatees including the feedback from its regulatees. Importantly, Taiji considers

not only the expression levels of a gene’s regulators and regulatees but also the strength of each

regulatory interaction indicated by the extent of open chromatin, motif match, and expression

of the TF itself. Therefore, the PageRank score of a gene in Taiji represents its predicted global

importance in the genetic network. The “master regulators” would have the highest PageRank

scores as they regulate many TFs that in turn regulate highly expressed genes. Note that the

majority of the TFs have PageRank scores well correlated with their expression levels but there

are a substantial portion that show weak or no correlation. These TFs have moderate expres-

sion themselves but regulate many highly expressed genes and their regulatory activities are

thus better characterized by PageRank scores, which is a particularly powerful benefit of this

approach: Taiji assesses functional regulation of target genes rather than TF expression

dynamics.

Other similar methods that identify important TFs have been reported before. Specifically,

SCENIC developed by Aibar et al 2017 [9] aims to analyze single cell RNA-seq data without

considering ATAC-seq. This method only uses gene expression data and constructs the genetic

network by predicting each gene’s expression using the TFs’ expression levels and finding the

most predictive TFs as the regulators. SCENIC cannot be applied to the bulk mouse immune

data [16] as Taiji did and does not have enough samples to select the regulator TFs. Further-

more, the motif analysis in SCENIC only considers sequences around TSS while Taiji includes

both promoters and enhancers.

Importantly, Taiji integrates RNA-seq and ATAC-seq data to construct a genetic network

so it can capture the global impact of TFs in the genetic network. Taiji considers not only the

effect on TF’s direct target genes, but also all the descendants in the whole network. Due to the

iterative calculation of PageRank scores, Taiji takes into account the impact of its upstream

regulators and downstream regulatees including the feedback from its regulatees, which makes

Taiji capable of assessing the global influence for individual TFs. This global view is what dis-

tinguishes Taiji from other methods. It is worth noting that we have previously shown that

Taiji is very robust and resistant to noise [13] (Fig 2 in Zhang et al., 2019). The PageRank

scores can correctly predict TF’s importance even when 80% of the edges in the network are

disturbed.

As for the comparison with the Maslova et al. 2020 [10] analysis, Taiji integrates RNA-seq

and ATAC-seq to construct a genetic network and assess the global importance of TFs while

AI-TAC focuses exclusively on predicting ATAC-seq signals using sequences and extracting

the motifs predictive of cell type specification. Maslova et al. did not use gene expression infor-

mation in their analysis and did not build a genetic network. Identifying enriched motifs in

specific cell types is equivalent to considering the direct targets of TFs when evaluating the TF

importance. While such an approach is useful, we have demonstrated in our previous work

[13,14] that the PageRank scores performed better by considering not only the direct target

genes of TFs but also their own regulators and the descendant genes of their direct targets. In

this sense, our study is the first systems biology approach that integrates RNA-seq and ATAC-

seq to systematically identify the key regulators during mouse immune system development.

Furthermore, if a motif is weak, the PageRank score of the TF is decided by whether these

motifs occur in the open chromatin regions (measured by the peak intensity of the ATAC-seq

data), the TF expression and its target expression levels. We also compare TFs between differ-

ent cell types to identify cell-type/lineage specific regulators. The relative difference between

the PageRank scores of TFs also helps to uncover important TFs with weak motifs. As such,

our method identifies Gata3 as an important TF in several T cell subsets (see S2 Table), which

is a CD4+ T cell master regulator with weakly defined sites. Therefore, integration of motif

strength with open chromatin strength, expressions of TF and its target genes is superior to
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only considering motifs that are present or absent in open chromatin as in Maslova et al.

study.

Another advantage of Taiji is its capability to construct genetic networks in individual cell

types and thus allows identifying cell-type specific regulators. By comparing PageRank scores

of TFs across cell types, we have successfully identified cell lineage-specific putative driver TFs,

thus constructing a comprehensive catalog of key regulators in various immune cell types. In

addition to identifying dozens of known regulators, for instance, Tcf7 [31–35], Lef1 [26,32,33],

Stat4 [102], Gata3 [5,103] as T cell-specific TFs; Bcl11a [20,21], Tcf4 [37–40], Ebf1
[79,104,105], Pax5 [78–80] etc. as B cell-specific TFs, we have also found several TFs with pre-

viously undefined roles in regulation of immune cell lineage differentiation and development,

for instance, Pbx4 may have important role in T cell development; Meis1, Jdp2 may be critical

regulators in ILC lineage development. Overall, the identified novel cell type-specific TFs pro-

vide insights for the future experimental validation to fully reveal the underlying regulatory

mechanisms.

We also provided here a comprehensive temporal transcriptomic and epigenomic dynam-

ics in a diverse set of cell types, revealing “transcriptional waves” in which combinations of

TFs are particularly active in specific cell types during specific developmental stages. The

observed transcriptional waves patterns suggest the possible mechanisms of how the TF activi-

ties are coordinated to orchestrate the cell type differentiation. We found different types of

transcriptional waves: constitutively active waves (Fig 5A and 5B), cell lineage-specific waves

(Fig 5C and 5D), and stage-specific waves (Fig 5E–5H). The cell lineage-specific waves are

composed of coordinately highly ranked TFs across multiple cell types in the same cell lineage.

This indicates that certain TFs are “multi-taskers” [106] which play critical roles in multiple or

successive developmental stages along one lineage. The stage-specific waves, on the other

hand, show TF combinations having exclusively important roles during a very specific devel-

opmental stage. For example, three Duxbl family members display high rank in preT.DN3.Th

(Fig 5F), consistent with that Duxbl was shown to have high recombination activity before β-

selection and result in a developmental block at the DN3-to-DN4 transition due to enhanced

apoptosis and reduced proliferation of pre-T cells in thymus [57]; noticeably, there are addi-

tional TFs in the same cluster, such as Lcor, Tcf4 and Runx2, suggesting their possible roles in

the development of preT.DN3.Th. Another example is C10, which is specifically important in

T8.Tem.LCMV.d180.Sp and most of the 19 TFs have not been reported to function in TEM,

such as Rfx6, Lhx4 and Atf6. Identification of these transcriptional waves with defined regula-

tory patterns and predicted regulatory interactions not only uncover new regulators but also

would greatly facilitate mechanistic studies.

To reveal the conserved regulatory code across organisms, we also constructed the regula-

tory networks in matched human immune cells using the Taiji framework. The systematic

comparison of constitutively active TFs and cell lineage-specific TFs showed that some TFs

undertake similar crucial roles in the development and differentiation of immune cells in both

human and mouse systems, like Stat1, Stat3 [107–109], Sp2 and Sp3 [110–112] as common

constitutively active TFs; Eomes [86–88], Bcl11b [89–91], Lef1 and Tcf7 [26,92,93] as CD4+ and

CD8+ T cell-important TFs. This systematic analysis that spans all the immune cell lineages

identifies the conserved TFs across species and shows the potential of elucidating the molecu-

lar functions of unknown TFs in the human immune system.

To demonstrate the power of our analysis, we experimentally validated 4 regulators that

have no reported functions in circulating and tissue-resident CD8+ T cell memory. T cells

responding to infection engage a transcriptional network that directs differentiation of prog-

eny that adopt a range of cellular states; thus, creating a heterogeneous population of effector T

cells composed of cells able to eliminate the present infection and others capable of providing
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robust long-lasting immunological memory [106,113]. A large fraction of effector T cells are

terminally differentiated and after providing immediate effector function to clear the pathogen

from the host will undergo apoptosis. Alternatively, other cells will be maintained in a ‘stem-

like’ state capable of seeding the memory T cell population that provides protection from rein-

fection [106,113]. The T cells within the memory population also exist in a spectrum of pheno-

types. TEM and TRM reside in the circulation and peripheral tissues, respectively, and provide

an immediate effector response while TCM remains less differentiated, able to undergo exten-

sive proliferation to generate a new burst of effector T cells [106]. While key transcriptional

regulators that program these cellular fates have been identified [114], a comprehensive net-

work of TFs has not been completed, particularly when the subsets represented within the

memory T cell population are considered. Our analysis uniquely compared several memory B

and T cell populations as a whole to effector populations and identified a number of novel

putative important TFs of memory states, including Elf1 and Prdm9. Elf1 has been associated

with NKT cell development [115] and Prdm9 with regulation of cell cycle, a process closely

linked with cellular differentiation [116,117]. Our validation of their role in CD8+ T cell differ-

entiation following acute infection clearly demonstrated essential roles for these TFs in pro-

moting the terminally differentiated state of CD8+ effector T cells. This suggests that Elf1 and

Prdm9 control the terminal differentiation transcriptional program directly or inhibit the pro-

gram that promotes formation of the memory cell state. While our analysis predicts relative

regulatory weight of the TF at the given cell-fate branch point, it cannot determine direction of

regulation (i.e., whether it promotes or inhibits). Thus, additional hits from our analysis may

be vital for regulating differentiation of the memory T cell subsets as suggested by the identifi-

cation of the well-known TF Foxo1 that promotes and sustains the CD8+ T cell memory popu-

lation [63–66].

While distinct regulatory networks drive the differentiation and maintenance of effector

and memory CD8+ T cells cell states, additional transcriptional programs define the trafficking

patterns and location of T cells within the host. To identify TFs important for directing the res-

idency of T cells within peripheral tissues, we compared several lymphocyte populations local-

ized to the gut to those found in the circulation. We identified numerous known and also

unknown regulators including Kdm2b and Tet3. We validated the function of Kdm2b and Tet3
in the formation of CD8+ TRM across several tissues. CD8+ TRM failed to accumulate the fol-

lowing infection in the absence of Kdm2b. Kdm2b has been shown to promote not only cell

proliferation but also migration of mouse embryonic fibroblasts [118] and analogous mecha-

nisms may be in play in tissue-resident lymphocyte populations. Our validation experiments

also revealed that the differentiation of CD103+ TRM cells were delayed with the loss of Tet3.

Interestingly, Tet3 has been linked to the regulation of multiple key TGF pathway genes [119],

a signaling pathway that is critical for the generation and maintenance of CD103+CD8+ TRM

[120].

Taken together, our analyses have identified critical TFs that regulate two important T cell

differentiation pathways—determination of cell state/fate and cellular trafficking/localization.

The literature evidence of well-known TFs and the validation experimental results of novel

regulators suggest the power of our study in guiding mechanistic investigations in the future.

With the increasing understanding of CD8+ T cell community, our approach will also be appli-

cable to further identify key regulators in the finer definition of CD8+ T cells, thus facilitating

the novel discovery of CD8+T cell diversities and functions. Importantly, our approach is gen-

erally applicable to any cell type. Given the fast accumulating transcriptomic and epigenomic

data generated from projects such as Human Cell Atlas, Taiji provides a powerful tool to pro-

file the landscape of regulators that define cell-type and cell-state specificity, which would
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facilitate understanding the underlying mechanisms and elucidate manipulations such as over-

expression of the key regulators to manipulate cell fate.

Materials and methods

Dataset acquisition

The mouse dataset was downloaded from Gene Expression Omnibus (GEO) (GSE100738 and

GSE109125 corresponding to ATAC-seq and RNA-seq, respectively [16]). We matched the

ATAC-seq and RNA-seq by sample name and 115 samples in 73 cell types were used as input

to Taiji. The cell types span nine cell lineages: stem cells, dendritic cells (DC), macrophages/

neutrophils (MF/GN), monocytes (Mo), B cells, innate lymphoid cells (ILC), αβ T cells (abT),

γδ T cells (gdT), and activated T cells (Act_T).

The human datasets analyzed in this study were retrieved from GEO (GSE118189 and

GSE118165, GSE74912 and GSE74246) [76,77]. In total, 226 samples distributed in 61 immune

cell types were chosen as input. The cell types span nine cell lineages: B, CD4+T, CD8+T, γδT,

monocytes, dendritic cells, natural killer (NK), and stem cells. All of the sample names and

division methods were consistent with the original paper.

TF regulatory networks construction and visualization

Taiji v1.1.0 with default parameters was used for the integrative analysis of RNA-seq and

ATAC-seq data (https://github.com/Taiji-pipeline/Taiji). The motif file was downloaded

directly from the CIS-BP database. There were 815 mouse motifs and 1112 human motifs. The

majority of these proteins are TFs. The PageRank scores for mouse and human are shown in

S1 Table.

The network shown in Fig 3C is a subset of the whole network for PBX4 in T8.IEL.LCMV.

d7.SI. We first removed the edges with weight less than 1 and then retained 500 out of 1437

regulatees via random sampling while keeping the ratio between non-TF nodes and TF-nodes

constant. Next, we constructed the regulatory network between TF-nodes and non-TF nodes

within 500 regulatees and thus expanded the network to 4213 edges. For better visualization

we further downsampled 25% of the total edges and used it as input. Cytoscape v3.8.0 was

used for network visualization. The size of the node is proportional to its PageRank score.

TF regulatory networks weighting scheme

As described in the original Taiji paper [13], a personalized PageRank algorithm is applied to

calculate the ranking scores for TFs. We first initialized the edge weights and node weights in

the network. The node weight was calculated as ezi , where zi is the gene’s relative expression

level in cell type i, which is computed by applying the z score transformation to its absolute

expression levels. The edge weight is determined by eij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
Pn

k¼1
pk �mk

p
, where p is the

peak intensity, calculated as 1

1þe� ðx� 5Þ, where x is −log10(p), represented by the p-value of the

ATAC-seq peak at the predicted TF binding site, rescaled to [0, 1] by a sigmoid function; m is

the motif binding affinity, represented by the p-value of the motif binding score, rescaled to

[0, 1] by a sigmoid function; g is the TF expression value; n is the number of binding sites

linked to gene j. Let s be the vector containing node weights and W be the edge weight matrix.

The personalized PageRank score vector v was calculated by solving a system of linear equa-

tions v = (1 − d)s + dWv, where d is the damping factor (default to 0.85). The above equation

can be solved in an iterative fashion, i.e., setting vt+1 = (1 − d)s + dWvt.
If the TFs in the same protein family share the same motifs, their PageRank scores are dis-

tinguished by their own expression levels because their motifs and the target genes are the
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same. If a motif is weak, the PageRank score of the TF is decided by whether these motifs

occur in the open chromatin regions (measured by the peak intensity of the ATAC-seq data),

the TF expression and its target expression levels. The relative difference between the PageR-

ank scores of TFs also helps to uncover important TFs with weak motifs.

Identification of putative driver TFs in cell lineage specification

To identify lineage-specific TFs, we divided the samples into two groups: target group and

background group. Target group included all the samples belonging to the cell type/lineage of

interest and the background group comprised the remaining samples (S1 Table). We then per-

formed the normality test using Shapiro-Wilk’s method to determine if each TF is log-nor-

mally distributed across two sets of samples in each test. And on average, most of the TFs

(90%) follow the log-normality distribution (p-value of 0.05). Based on log-normality assump-

tion, an unpaired t-test with Welch’s correction was used to calculate the P-value. As for the

very small target group (size smaller than 3) like Mo, two-sample unpaired t-test is no longer

available. So, we used one sample t-test to test whether the mean of background population is

equal to some value. A P-value cutoff of 0.001 and log2 fold change cutoff of 1 were used for

calling lineage-specific TFs (see the full result in S2 Fig).

Identification of memory cell-specific and tissue-resident-specific TFs

To identify memory cell-specific TFs, we grouped three memory cells, i.e. B.mem.Sp, T8.Tcm.

LCMV.d180.Sp, T8.Tem.LCMV.d180.Sp, into target group while leaving other 70 samples

except for T8.MP.LCMV.d7.Sp as background, because T8.MP.LCMV.d7.Sp is a memory pre-

cursor cell. The normality test showed that most samples were log-normal distributed so that

we performed unpaired t-test with Welch’s correction based on log-normality assumption. A

P-value cutoff of 0.1 was used to identify the memory cell-specific TFs. The list was filtered by

removing the digestion-related genes. We identified 30 memory cell-specific TFs.

This partition best reflects the biological identities. However, the unbalanced number of

two partitions needs to be considered. That is why we applied Welch’s correction to t-test,

which accounts for the unequal variance brought by the unbalanced number. To further

reduce the effect of confounding factors, we randomly sampled three cell types from the non-

memory group to make the t-test balanced and applied the same criteria as in the main text (p-

value of 0.1) to select specific TFs in each test. We repeated the balanced Welch’s t-test for 100,

500, and 1000 times respectively and ranked the TF based on the selected frequency among all

the tests. We compared the overlap set between the memory TF list in the main text and the

ranked list using the permutation test. More than half of the memory TFs are recovered

including Prdm9 when compared with top 30 TFs and 80% of the memory TFs are recovered

including both Prdm9 and Elf1 when compared with top 60 TFs. This permutation test shows

that our memory TF list is reliable. The permutation test result is summarized in S8 Table.

To identify tissue-resident-specific TFs, we grouped six lymphocytes resident in small intes-

tine (ILC3.NKp46+.SI, ILC3.NKp46-CCR6-.SI, ILC3.CCR+.SI, ILC2.SI, Treg.4.FP3+.Nrplo.

Co, T8.IEL.LCMV.d7.SI) as target group and eight similar cells in circulation as background

(T8.Tcm.LCMV.d180.Sp, T8.Tem.LCMV.d180.Sp, T8.MP.LCMV.d7.Sp, T8.TE.LCMV.d7.Sp,

Treg.4.25hi.Sp, NK.27+11b-.Sp, NK.27+11b+.Sp, NK.27-11b+.Sp). Based on the log-normality

assumption, we performed the unpaired t-test with Welch’s correction and used double cut-

off (P-value <0.1 and log2 fold change> 0.5) for calling the putative driver TFs. The list was

filtered by removing the digestion-related genes. A list of 54 tissue-residency-specific TFs were

thus identified.
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The cutoff selection for p-values and the fold changes depends on different biological com-

parisons and different sample effect sizes. When choosing the cutoff values, we consider both

the interpretation significance and the output TF list size. We apply more stringent cutoff val-

ues in the identification of lineage-specific TFs and sub-cell lineage-specific TFs compared to

that in the tissue-resident-specific and memory-specific TFs because different lineages are

more distinct from each other than cell types within the same lineage due to both biological

differentiation and sample size. The guideline for the cutoff choice is to keep a reasonable size

of output TF list as 30–50, which is an empirical range considering both biological significance

and interpretation convenience. As for the relatively loose cutoffs in the identification of tis-

sue-resident- and memory-specific TFs, it’s mainly restricted by the small effect sizes. That’s

also part of the reason to experimentally validate the TFs with relatively low significance (Tet3,

Elf1 with p-value as 0.1) in tissue-resident-T cells and memory T cells formation.

GO and pathway enrichment analysis

R package clusterProfiler 4.0 (https://bioconductor.org/packages/release/bioc/html/

clusterProfiler.html) was used to perform the enrichment analysis of the identified TFs, in

which KEGG Pathway (http://www.genome.jp/kegg/catalog/org_list.html) and DAVID (via

RDAVIDWebService https://bioconductor.org/about/removed-packages/) databases are used

to query the functional terms. A cutoff of P-value < 0.01 was used to select the significantly

enriched pathways.

Mouse and cell lines

All mouse strains were bred and housed in specific pathogen–free conditions in accordance

with the Institutional Animal Care and Use Guidelines of the University of California San

Diego. C57Bl/6J, P14 (with transgenic expression of H-2Db-restricted TCR specific for LCMV

glycoprotein gp33), CD45.1+ and CD45.1.2+ congenic mice were bred in house. Both male and

female mice were used throughout the study, with sex- and age-matched T cell donors and

recipients.

Infections studies

shRNAmirs targeting mouse Elf1, Prdm9, Kdm2b, Tet3 or Cd19 in a pLMPd-Amt vector were

used to generate retroviral supernatant as previously described [14]. Naive P14 T cells from

the spleen and LN were enriched via negative selection using MACS magnetic beads following

the manufacturer’s protocol (Miltenyi Biotec) then activated at 2x106 cells/well in six-well

plates coated with 100μg/mL goat anti-hamster IgG (H+L, Thermoscientific), 1μg/mL anti-

CD3 (145–2C11), and 1μg/mL anti-CD28 (37.51) (eBioscience) for 18 h. Retroviral superna-

tant supplemented with of 50μM beta-mercaptoethanol and 8μg/mL polybrene (Millipore)

replaced the culture media and cells were centrifuged for 60 min at 2,000 rpm, 37˚C. After 24

h, P14 T cells transduced with gene targeting or Cd19 control shRNAmir encoding-retrovi-

ruses were mixed at 1:1 ratio and a total of 5×105 cells were transferred to congenically distinct

recipient mice that were infected with 2×105 plaque-forming unit (PFU) LCMV-Armstrong i.

p. A portion of the P14 CD8+ T cells transduced with gene targeting or Cd19 control shRNA-

mir encoding-retroviruses were cultured in vitro for another 24h in media supplemented with

50 U/ml of human IL-2 and sorted CD8α+Ametrine+ cells were evaluated by qPCR for knock-

down efficiency using the following primer pairs: Elf1 F:CCAAGTATTAGGACTATACAGG,

Elf1 R:GGCTATAACCGTTGTGAGTG; Prdm9 F:ATATGGAATGGAATCATCGC, Prdm9
R:GTGCTG GGAAAGGTTGTT; Kdm2b F:AGCAGACAGAAGCCACCAAT, Kdm2b R:
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AGGTGCCTCCAAAG TCAATG; Tet3 F:TGCGATTGTGTCGAACAAATAGT, Tet3 R:

TCCATACCGATCCTC CATGAG.

Preparation of single cell suspensions

Single-cell suspensions were prepared from spleen by mechanical disruption. For small intes-

tine preparations, Peyer’s patches were excised, and luminal contents were removed. The tis-

sue was cut longitudinally then into 1cm pieces then incubated in 10% HBSS/HEPES

bicarbonate solution containing 15.4mg/100mL of dithioerythritol (EMD Millipore) on a stir

plate with rotating stir bar at 37˚C for 30 min to extract intraepithelial lymphocytes (IEL). Gut

pieces were further treated with 100U/ml type I collagenase (Worthington Biochemical) in

RPMI-1640 containing 5% bovine growth serum, 2 mM MgCl2 and 2 mM CaCl2 at 37˚C for

30 min. Salivary gland and kidney were cut with scissors into fine pieces then incubated while

shaking with 100U/ml type I collagenase at 37˚C for 30 min. Lymphocytes from all tissues but

spleen were purified on a 44%/67% Percoll density gradient.

Flow cytometry and cell sorting

The following antibodies (from eBioscience and Biolegend) were used for surface staining:

CD8α (53–6.7), CD8β (eBioH35-17.2), CD45.1 (A20-1.7), CD45.2 (104), CD62L (MEL-14),

CD69 (H1.2F3), CD103 (2E7,), CD127 (A7R34), KLRG1 (2F1). Cells were incubated for 30

min at 4˚C in PBS supplemented with 2% bovine growth serum and 0.1% sodium azide. To

identify tissue-resident CD8+ T cells, 3 mg of CD8α (53–6.7) conjugated to APC eFlour780

was injected into mice three minutes prior to sacrifice and organ excision. CD8β cells without

CD8α labeling were considered to be localized within non-lymphoid tissues. Stained cells were

analyzed using LSRFortessa or LSRFortessa X-20 (BD) and FlowJo software (TreeStar). Cell

sorting was performed on BD FACSAria Fusion instruments.

Quantification and statistical analysis

Statistical analysis was performed using GraphPad Prism software. A one-way paired ANOVA

or two-tailed ratio paired t-test was used for comparisons between groups as indicated in fig-

ure legends. P values of<0.05 were considered significant.

Supporting information

S1 Fig. Topological properties of genetic networks. (A) The number of edges (top) and

nodes (bottom) in each genetic network. (B) The distribution of the number of regulators per

gene for each genetic network. (C) The distribution of the number of regulatees per TF for

each genetic network.

(PDF)

S2 Fig. PageRank scores (color shade) and expression levels (circle size) of 48 constitutively

active TFs across all 73 cell types.

(PDF)

S3 Fig. Identification of important TFs in 9 immune cell lineages. (A) αβT cell. (B) Act_T

cell. (C) γδT cell. (D) ILC. (E) DC cell. (F) Mo. (G) MF/GN. (H) Stem cell. (I) B cell. The circle

size and color scale are the same as Fig 4.

(PDF)
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S4 Fig. The cumulative proportion of variance explained against the number of principal

components (PCs). The first 30 PCs were kept according to the “elbow” method.

(PDF)

S5 Fig. Selecting the best distance metric and number of clusters according to the Silhou-

ette metric. The Pearson correlation was chosen and k = 40 was the ideal cluster number.

(PDF)

S6 Fig. Forty transcriptional waves with clusters of TFs direct cell lineage differentiation

in the mouse immune system.

(PDF)

S7 Fig. Validation of novel TFs’ roles in CD8+T memory cell formation and tissue resi-

dency. (A) qPCR analysis to assess knockdown efficiency of indicated gene in P14 cells prior

to transfer. (B,C) Representative expression of CD69 and CD103 on Kdm2b KD and control

P14 cells recovered from indicated tissue on day 7 and 21 of infection (left). Quantification of

the frequency of populations (right). (D,E) Representative expression of CD69 and CD103 on

Tet3 KD and control P14 cells recovered from indicated tissue on day 7 and 21 of infection

(left). Quantification of the frequency of populations (right). Numbers in graphs indicate per-

cent of cells in the corresponding gate. Data are cumulative of 2 (B,C) or 3 (D,E) independent

experiments with n = 3–4. Graphs show mean ± SEM. A two-tailed ratio paired t-test was used

to determine statistical significance; �p< 0.05, ��p< 0.01.

(PDF)

S1 Table. PageRank scores and expression values for all TFs across different immune cell

types in mouse and human systems.

(XLSX)

S2 Table. Cell types in target/background groups in the identification of putative driver

TFs.

(XLSX)

S3 Table. P-values and log2 fold change in the identification of important TFs in 9

immune cell lineages.

(XLSX)

S4 Table. Predicted putative driver TFs in the five cell lineages.

(DOCX)

S5 Table. Predicted putative driver TFs in memory cells and tissue resident cells.

(DOCX)

S6 Table. GO terms and KEGG pathway enrichment statistics for the identified putative

driver TFs in Fig 3 and Fig 4.

(XLSX)

S7 Table. GO terms and KEGG pathway enrichment statistics for the regulatees of 4

known TFs and 4 experimentally validated TFs.

(XLSX)

S8 Table. Permutation test of memory TF identification.

(XLSX)

S9 Table. Overlap of cell type-specific TF lists between human and mouse.

(XLSX)
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34. Jeannet G, Boudousquié C, Gardiol N, Kang J, Huelsken J, Held W. Essential role of the Wnt pathway

effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc Natl Acad Sci U S A. 2010;

107. https://doi.org/10.1073/pnas.0914127107 PMID: 20457902

35. Zhou X, Yu S, Zhao DM, Harty JT, Badovinac VP, Xue HH. Differentiation and persistence of memory

CD8(+) T cells depend on T cell factor 1. Immunity. 2010;33. https://doi.org/10.1016/j.immuni.2010.

08.002 PMID: 20727791
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