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Metabolic syndrome (MetS) is characterized by the concurrence of multiple metabolic
disorders resulting in the increased risk of a variety of diseases related to disrupted
metabolism homeostasis. The prevalence of MetS has reached a pandemic level
worldwide. In recent years, extensive amount of data have been generated throughout
the research targeted or related to the condition with techniques including high-throughput
screening and artificial intelligence, and with these “big data”, the prevention of MetS could
be pushed to an earlier stage with different data source, data mining tools and analytic
tools at different levels. In this reviewwe briefly summarize the recent advances in the study
of “big data” applications in the three-level disease prevention for MetS, and illustrate how
these technologies could contribute tobetter preventive strategies.
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INTRODUCTION

Metabolic syndrome (MetS) consists of a cluster of metabolic conditions that occur simultaneously
and significantly increases cardiovascular and cerebral diseases (higher risk for heart attack and
stroke) and type 2 diabetes (multiple complications affecting the cardio-cerebral system, nervous
system and renal function) and potentially many other pathological conditions, including cancer,
neurodegenerative diseases, and non-alcoholic fatty liver diseases (increased risk for cirrhosis and
hepatic failure) (Wilson et al., 2005; Esposito et al., 2012; de A Boleti et al., 2021; Golabi et al.,
2018). MetS has been estimated to affect a large population globally, with a reported incidence of
34% in the US population (Moore et al., 2017) and 20–25% in the adult population of developed
countries (Saklayen, 2018). Generally recognized diagnostic criteria include the concurrence of
more than two of the following: (I) increased abdominal circumference (waistline of 40 inches or
more for men and 35 inches or more for women), (II) low plasma levels of high-density lipoprotein
cholesterol (less than 40 mg/dl (men) or under 50 mg/dl (women)), (III) increased values for
plasma triglycerides (above 150 mg/dl), (IV) elevated blood pressure (130/85 mm Hg or higher),
and (V) elevated glucose levels (fasting blood glucose level greater than 100 mg/dl), defined by the
National Cholesterol Education Program Adult Treatment Panel III (Lorenzo et al., 2007). The
current understanding of MetS is a multi-system pathophysiological process initiated by adipose
tissue dysfunction and insulin resistance (Després et al., 2008). The former results in the secretion
of free acids and a series of cytokines, including tumor necrosis factor, leptin, resistin, and
plasminogen activator inhibitor, contributing to insulin resistance (Türkoglu et al., 2003). Its
prevalence is high and still increasing, with consequences throughout the body covering the full
spectrum of modern diseases. However, the eventual occurrence of these processes is influenced by
complex interactions between internal factors such as genetic backgrounds and external factors
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such as environmental influence, rendering it an extremely
heterogeneous pathological entity (McCracken et al., 2018).

When considering intervention for a specific condition, the
stage during its natural history directly influences the strategy and
options. Prevention corresponding to different stages of diseases
has long been promoted as a basic concept for health promotion,
with the most commonly adopted “three levels of prevention”
being primary (prevent a disease from ever occurring), secondary
(early disease detection), and tertiary prevention (reduce the
severity of the disease and prevent associated sequelae), with
primordial prevention (risk factor reduction) and quaternary
prevention (prevention of overmedicalization) having been
added later. The prevention of MetS for individuals in a
traditional sense would be diet control and exercise counseling
in primary, screening for diabetes and cardiovascular diseases in
secondary, and cardiac rehabilitation and diabetes complication
prevention in tertiary prevention and minimizing side effects
from medication in quaternary prevention. However, the mass
application of mathematical models and computational tools in
medicine has shifted the understanding of disease mechanisms
and intervention strategies (Saberi-Karimian et al., 2021).
Simultaneously, these applications have generated a vast
amount of data from molecular to behavioral levels; with the
advent of the concept of “big data,” the scale effects are beginning
to reshape clinical paradigms to a degree of unprecedented
precision. For MetS prevention and intervention, incorporating
“big data” approaches has pushed the overall three-level
prevention to an earlier stage with high-throughput
technology, machine learning and deep learning, and the latest
medical databases and databank. This narrative review
summarizes the latest advances (searched on PubMed with key
words: “Metabolic syndrome,” “T2D,” “Big data,” “machine
learning,” “artificial intelligence,” “deep learning,” “genomics,”
“epigenomics,” “metabolomics,” and “proteomics”) in the field to
illustrate the applications of common “big data” approaches in
the three levels of prevention for MetS.

COMMONDATA SOURCES ANDANALYTIC
TOOLS FORBIGDATARESEARCH INMETS

The term “data mining” has been given a greater interest in recent
years with both reductions of the cost of high-throughput analysis
generating “omics” data in the realm of bio-informatics, and the
maturation of artificial intelligence in processing data of mixing
types from clinical practices (Gonzalez et al., 2016; Lan et al.,
2018). The purpose of data mining in itself is to discover patterns
in large data sets to generate new knowledge. For this purpose, a
group of tools from multidisciplinary fields are available,
including database technology providing a source of data, such
as the Swedish Longitudinal Integrated Database for Health
Insurance and Labour Market Studies (LISA, Longitudinell
Integrationsdatabas för Sjukförsäkrings-och
Arbetsmarknadsstudier) and diabetes mellitus database
(Ludvigsson et al., 2019; Kohsaka et al., 2021), statistics as the
mathematical basis, such as the TREAT model, MAYO Clinic
model, and Liverpool Lung Project model (Shipe et al., 2019), and

machine learning, unsupervised learning, unsupervised learning,
and deep learning as analytic tools (Handelman et al., 2018;
Rauschert et al., 2020). For MetS preventions on different levels,
the current research advance has used different analytical
algorithms for various data sources.

“Big Data” From Omics
“Omics” is a concept to expand the achievement from the Human
Genome Project with high-throughput technologies for the
comprehensive study of DNA, RNA, metabolites, and proteins.
With proper mathematical analysis, differences between study
populations could be identified to deepen the understanding of
diseases. “Omics” approaches commonly used for MetS study
include genome, epigenome, proteome, and metabolome, for
assessment of disease risk from both internal and external
factors and evaluation of response to interventions. However,
for genomic and epigenome studies, available sources are usually
from blood samples acquired from populations recruited for
extensive prospective studies of single centers or multiple
centers, national bio-databases, or models from certain
institutes (Chitrala et al., 2020; Nuotio et al., 2020; Parisinos
et al., 2020). Techniques involving micro-arrays or chips as high-
throughput platforms are commonly used for sequencing and
analysis of genomic DNA and DNAmethylation from peripheral
blood leukocytes, and regression-based mathematical models are
applied in many of these studies as genomic-wide and
epigenome-wide association studies (Murrell et al., 2005;
Wilson et al., 2006; Dixon et al., 2007). Different studies might
have variations in the details of adoptions of the database, DNA
sample processing, and mathematical tools. Still, the core purpose
is to capture the inherent traits of genetic variations between
individuals from different backgrounds, most commonly
presented as single nucleotide polymorphism in a genome-
wide association study, and methylation and histone
alterations in an epigenome-wide association study, to relate to
MetS occurrence and intervention response. Different from
genetics scrutinizing single genes, genomics studies stress all
genes and their relationships; hence, it is an essential step for
MetS study because of the complexity in its pathogenesis.
However, there is a difference in association and causality, and
further limited by the fact that most SNPs are found in the non-
coding areas, which is still not fully understood, genomic studies
such as GWAS alone cannot fill the gap between genetic changes
and phenotype changes. The discovered loci can only explain a
small amount of heritability, that is, there is a large amount of
missing heritability that needs to be further explored. GWAS
usually associates genotype to phenotype by computational
testing. However, direct functional data are required to assign
individual genetic changes to the related phenotype. This makes
genomic analysis and epigenome analysis a data source and tool
for primordial and primary prevention for MetS, to identify
individuals with inherent risk factors for close monitoring.

In contrast to genomic and epigenomic studies, functional
omics including transcriptome, proteomic, and metabolomic are
more dynamic and local, reflecting the complex gap phenotype
and the genetic basis (Lindon et al., 2004). Current MetS research
focuses more on the proteomic and metabolomic level changes.
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Compared with genomic and epigenomic analysis, recent
proteomic and metabolomic studies recruit relatively fewer
samples with smaller-scale studies, as the technology platforms
have been developed later and are more costly and, in certain
situations, could require more invasive measures for sample
acquisition. Proteomics, as the name suggests, is the large-scale
study of proteins. As one of the functional ends, proteomics is
organ-specific, meaning different tissue have specific proteomics
profiles and change over time (Hsieh et al., 2016). In MetS
research, plasma proteins are usually selected as the target for
study as they theoretically reflect a more systemic condition;
other studies have also involved skeleton muscle and adipose
tissue (Leggate et al., 2012; Ayoub et al., 2018; Gueugneau et al.,
2021). Available techniques to analyze proteins on an “omics”
level include a series of modalities such as micro-array, mass-
spectrometry, X-ray crystallography, and nuclear magnetic
resonance (NMR) spectroscopy, and with regression models or
machine learning algorithms, a proteomic-wide analysis could be
conducted (Low et al., 2019). Like proteomics, metabolomics is
another functional end of the study and intimately related to
proteomics as proteins constantly degrade into metabolites and
metabolites participate in post-translational modifications of
proteins. Compared with the proteome, metabolome sampling
is relatively less invasive as many metabolites could be detected in
plasma and urine using standard techniques of NMR or mass-
spectrometry (Letertre et al., 2021), making it a more convenient
data source and tool for screening of MetS. Data acquired from
proteomic and metabolomic studies could potentially present
information for ultra-early detection of MetS before meeting the
diagnostic criteria and evaluating the response to intervention;
hence, they could be powerful tools utilized in secondary and
tertiary prevention for MetS.

“Big Data” From Clinical Practice
Clinical practice contains rich data sources for MetS
prevention, with its abundance and heterogeneity and the
exponentially growing storage and linkage, and it represents
a typical example for big medical data (Obermeyer and
Emanuel, 2016). Traditionally, evidence-based medicine
regards randomized controlled trials as the evidence source
close to the top of the evidence pyramid. However, with the
generation of big data in the information age of medicine,
alternative sources for clinical evidence such as real-world
data, defined by the FDA as “data related to healthcare status,
routinely collected from a variety of sources, outside of
randomized clinical trials,” have received growing
recognition. For MetS research and prevention, these data
would come from multiple sources of entirely different
dimensions, which could include: 1) Anthropometric data:
height, weight, BMI, body fat percentage, lean body mass,
water content, total muscle mass, bone mass, etc., 2) medical
imaging: CT, MRI, ultrasound, etc., 3) lab test results, and 4)
natural language in electronic health record. Currently, with
the development of micro-sensors and chips, the concept of
traditional practice and health care have been merged and
pushed to new boundaries with technology assemblies such as
the internet of things. Objects of everyday use such as vehicles,

watches, mobile phones, and health-monitoring devices, when
equipped with connectivity for computation, could generate
continuous data.

Again, all these data from different dimensions would contain
knowledge aiding MetS prevention in ways not previously
known. One of the most essential sets of tools to depict these
unknowns is data mining technology, characterized by the
application of data extracting and analyzing tools such as
machine learning to discover patterns among a vast amount of
confounding factors, while comparing the utility and efficacy of
different algorithms. Machine learning originated as a branch of
artificial intelligence to execute automated knowledge acquisition
with existing experiences. Roughly categorized into supervised
(learning algorithms based on labeled datasets related to
outcomes, to predict outcomes with given data) and
unsupervised (self-organized algorithms not needing labeled
datasets, without predefined results, to discover unknown
patterns) algorithms, machine learning contains a wide range
of models to achieve the purpose of regression, classification,
clustering, and association (Saberi-Karimian et al., 2021). For the
same purpose, different models could exhibit different efficacy,
such as how in supervised machine learning, the sensitivity and
specificity vary among different models and detailed studies are
needed to designate the most suitable model. For MetS, various
algorithms have been tested, and many highlighted the “random
forest” as the most appropriate model (Xia et al., 2021; Yu et al.,
2021), and studies have also used deep learning tools to analyze
data from medical images to further contribute to the prediction
of MetS occurrence and outcomes, contributing to secondary and
tertiary prevention strategies (Lin et al., 2021a; Pickhardt et al.,
2021).

IDENTIFYING POPULATION WITH
INHERENT RISK: GENOME AND
EPIGENOME “BIG DATA” FOR
PRIMORDIAL AND PRIMARY PREVENTION
OF METS

As a global health issue, metabolic syndrome and its
components have a very high prevalence across regions, but
its risk could differ among different populations with different
gender, genotype, ethnicity, lifestyle, diet, and physical
activity. This reflects the complex pathogenesis of
metabolic syndrome and its components, being an outcome
of the interplay of interacting factors of both genetic and
environmental backgrounds, via multiple mechanisms
including inflammation, oxidative stress, insulin resistance,
changes in lipid metabolism, endothelial dysfunction, and
many other factors that are not entirely clear. In this sense,
for primary prevention, a critical objective is to precisely
locate individuals with inherently higher risk for
developing MetS, namely, to look for those with specific
“birthmarks,” to enable early reduction of risk factors,
hence integrating primordial prevention and early
intervention before the onset of disease.
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The prevalence of MetS has significant variability across
regions that could be attributed to many socio-economic
factors, including the availability of health care resources
leading to differences in environmental exposure. Still, on the
other hand, in terms of heritability, research has estimated its
contribution to be up to 13–30% for MetS (Joy and Hegele, 2008;
Henneman et al., 2010; L. Monda et al., 2010). Hence, both
genetic and epigenetic investigations would add to screening
healthy populations who are prone to the disorder.

MetS Risk by Race and Ethnicity
Racial disparities play a significant role in the prevalence of MetS.
In multiracial regions such as the United States, Canada, and
Singapore, solid pieces of evidence have been provided by
epidemiological studies proving the inequality of MetS burden

among populations of Hispanics (highest prevalence in the US),
white people, and African Americans; Indigenous Canadians
(highest majority in Canada), South Asians, Europeans, and
East Asians; and South Asians (highest majority in Singapore),
Malays, and Chinese (Lear and Gasevic, 2019). On the genetic
level, some of the earliest genome-wide studies identified a series
of tag SNPs associated with components of MetS with genomic
data (Table 1). Aldi T. Kraja et al. reported the first result to locate
these genetic variants with MetS as a whole. The research
recruited genomic data from 22,161 participants of European
ancestry for analysis and found 29 common variants associated
with MetS or MetS components, and the majority of them were
located in genes participating in lipid metabolism (Kraja et al.,
2011), the most influential of which included LPL, CETP,
APOA5, ZNF259, BUD13, TRIB1, LOC100129500, and

TABLE 1 | SNPs associated with MetS&MetS components from recent GWAS studies in different races and ethnicities.

Race and ethnicity Number of
samples

Identified genes Identified SNPs Race or ethnicity
specific SNPs

European ancestry 22,161 LPL rs13702 (LPL)--- HDLC, TG NA
CETP rs9939224 (CETP)--- HDLC, TG
APOA5 rs2266788 (APOA5)---HDLC,TG
ZNF259 rs2075290 (ZNF259)---HDLC, TG
BUD13 rs10790162 (BUD13)---HDLC,TG

European ancestry (Finnish
population)

11,616 APOA1/C3/A4/A5
LRP1B

rs964184 (APOA1/C3/A4/A5)---VLDL, TG, HDL,
rs17771092 (LRP1B)---TG, insulin

NA

African ancestry 4,820 CA10 rs73989312 (CA10), rs73989319(CA10) rs73989312 rs77244975
CTNNA3 rs77244975 (CTNNA3)--- Waist circumference
RALYL rs76822696 (RALYL)
KSR2 rs7964157 (KSR2)--- Systolic BP
MBNL1 rs146816516 (MBNL1)--- Systolic BP
BAI3 rs9354671 (BAI3)
EDEM1-GRM7 rs2061117 (BAI3)
LPL rs149307971 ( EDEM1-GRM7)--- HDL
CETP rs294 (LPL)

rs4523270 (LPL)
rs2165558 (LPL)
rs35237252 (LPL)
rs4783961 (CETP)

Eastern Asian ancestry (Han
ethnicity)

1,994 APOA5ALDH2BUD13 rs651821(APOA5)---TG,HDL-C rs671rs180326
rs671(ALDH2)---BMI, WHR, SBP and TG in alcohol drinkers
rs445925---LDL-C
rs180326 (BUD13)---TG

Eastern Asian ancestry
(Korean ethnicity)

24 APOA5 rs662799 (APOA5)---MetS, TG,HDL rs1260326, s1260333
GCKR rs2075291 (APOA5)----TG,HDL rs1919127, rs964184
C2orF16 ,rs2266788 (APOA5)---TG rs780092, rs780093, rs780094 rs2075295, rs1558861
ZPR1 rs1260326, rs1260333 (GCKR)---TG rs4775041, rs10468017

rs1800588
BUD13 rs1919127, rs1919128 (C2orf16)---TG rs72786786, rs173539,

rs247616
ALDH1A2 rs603446, rs964184 (ZPR1)---TG rs247617, rs3764261
LIPC rs2075295, rs11216126, rs1558861 (BUD13)---TG rs708272, rs7499892
HERPUD1, CETP rs4775041, rs10468017 (ALDH1A2)---HDL
MTNR1B rs1800588(LIPC)---HDL-C

rs72786786, rs173539, rs247616
rs247617, rs3764261 (HERPUD1, CETP)---HDL-C
rs708272, rs7499892, rs2303790 (CETP)---HDL-C
rs10830962, rs10830963 (MTNR1B)---FBG
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LOC100128154. The top three most influential genes (LPL,
CETP, and APOA5) are associated with multiple bioactivities
such as the generation of lipoprotein lipase, the transferring of
cholesteryl esters in HDLC toward TG-rich lipoproteins, and
endocytosis of TG-rich particles (Mead and RAMJI, 2002; Su
et al., 2018; Morton et al., 2021). The variants of these genes
contributing to a certain proportion of MetS occurrence
supported the theory regarding dyslipidemia as a fundamental
component in the development of MetS. Their direct associations
with MetS have been reported in small sample studies for LPL
methylation associating with triglyceride concentrations,
increased CETP mass for reduced HDL-C, and reduced LDL
particle diameter. For APOA5 variants, a recognized player in
MetS, it is believed to affect insulin resistance, systolic blood
pressure, and triglyceride levels (Sandhofer et al., 2006; Xiao-Yan
et al., 2013; Castellano-Castillo et al., 2018). A later study with
GWAS for Finnish cohorts (Kristiansson et al., 2012) identified
SNP rs964184 in APOA1/C3/A4/A5 to be associated, most
significantly, with all 30 of the very-low-density lipoprotein
(VLDL) particle TG metabolites, but not with other MetS
traits including waist circumference, blood pressure, or
glucose. The study also constructed a risk score system based
on previously reported data and then confirmed 22 SNP variants,
of which five were associated with glucose, nine with HLD, 6 with
TG, 1 with systolic blood pressure, and 1 with waist. The risk
score system achieved an Odds ratio of 1.55 comparing the
highest quartile with the lowest.

However, like many diseases, race and ethnicity factors
combine intrinsic genetic variance and cultural diversity and
play essential roles in the general risk of MetS development,
such as the significant difference in MetS incidence between
American Hispanics, Americans, and African Americans (Lear
and Gasevic, 2019). This fact determines the necessity of large-
scale studies based on genomics and epigenomics targeting
populations with generally different genetic backgrounds.
Several regional genome-wide association studies covering
populations besides those of European ethnicity have been
conducted to determine genetic signatures predicting MetS
risk. A study performed with African samples discovered a
variant of SNP rs73989312 near CA10 increasing MetS risk,
which is African ancestry–specific, reflecting a possible role of
brain function (CA10 exclusively expressed in the brain) in the
development of MetS in this population (Tekola-Ayele et al.,
2015). The SNP rs73989312 near CA10 was predicted to alter
binding motifs of transcription factor activator protein-2, leading
to dysregulation of adipocyte function and regulation alteration
of the nervous system in these populations at risk (Susan and
McKenna, 2014). Furthermore, the influence of LPL and CETP
loci previously identified in European ancestries has also been
confirmed in continental Africans, suggesting their more
fundamental roles in the development of MetS. Later study
with Han ethnicity samples confirmed the east Asian–specific
common variant rs671 (ALDH2, participant of alcohol
metabolism) associated with MetS and further discovered a
novel secondary TG-associated signal at rs180326 on BUD13
(Zhu et al., 2017). BUD13, located in the APOC3/A4/A5 gene
cluster on chromosome11q23.3 to be associated with serum lipid

components (Lynn-Htet-Htet et al., 2014), ranked as the fifth
most influential gene whose mutation contributed to MetS risk in
the European population (rs10790162). But whether the novel
rs180326 variant is specific to Han ethnicity among the East
Asian population remains to be elucidated. Another study
covering East Asian ethnicity analyzed SNPs associated with
MetS in the Korean population and found 17 SNPs variants
relating to MetS components potentially specific to Koreans
(6 TG SNPs: rs1260326, rs1260333, rs1919127, rs964184,
rs2075295, and rs1558861 and 11 HDL-C SNPs: rs4775041,
rs10468017, rs1800588, rs72786786, rs173539, rs247616,
rs247617, rs3764261, rs4783961, rs708272, and rs7499892)
(Oh et al., 2020), yet the most influential SNP is rs662799,
located in the APOA5 gene, as opposed to rs2266788 in the
European population. Adding to the demographic value, a study
targeted Korean females to identify rs455489 in DSCAM for
fasting plasma glucose and rs7115583 in SIK3 for high-density
lipoprotein cholesterol (HDLC) as gender-specific risk factors
(Kong and Cho, 2019). With the accumulation of research, large-
scale replication, meta-analyses, and fine mapping across
worldwide populations of ethnically diverse genetic ancestries
will reveal more information about the genetic complexity of
MetS. However, GWAS study in itself has certain limitations,
such as the reliance on pre-existing genetic variant reference
panels, while many sequencings of populations of different ethnic
backgrounds on a large scale are still not complete, and there is an
inability to detect ultra-rare mutations contributing to disease
(Tam et al., 2019).

Race and ethnicity exhibit not only different inherent genetic
backgrounds but also involve a large proportion of external
factors such as dieting habits and physical activity, which,
again, could embed their influences into the genetic
background (Salas et al., 2021). Studies have revealed
epigenetic differences among different races and ethnicities in
their risk in certain diseases such as cancer (different incidence
and mortality) and certain types of cancers (e.g., triple-negative
breast cancer, infection-related liver, stomach, and cervical
cancer). Similarly, as a pathology affected by external factors,
evaluating the risk for MetS on an epigenetic level would
significantly contribute to primary prevention of MetS as
epigenetic changes are reversible, allowing more room for
intervention. Basic studies have offered evidence of a complex
network of reciprocal interconnections during transcription
regulations between epigenetic changes such as DNA
methylation and histone modifications and expression
regulators (Ramzan et al., 2021). These complexities depicted
on a population scale have supported the background role of lipid
metabolism in the development of MetS as mentioned above.
Recent studies on certain races have also revealed racial-specific
epigenetic alterations for risk prediction. One of the latest studies
compared race-specific modifications in DNA methylation
between African Americans and white people and reported
methylation in the ABCG1 gene in both races and increased
methylation in the IGF2BP1 gene only in whites (Chitrala et al.,
2020). ABCG1 belongs to the family of ATP binding cassette
proteins that play a mediating role in free cholesterol efflux to
HDL and participates in lipid accumulation, and its lower
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expression in visceral adipose tissue has been reported to be
associated with obesity andMetS (Choromanska et al., 2019), and
its epigenetic alteration Cg06500161 is associated both with
serum triglycerides and waist circumference (Nuotio et al.,
2020). IGF2BP1 is a member of a conserved family of single-
stranded RNA-binding proteins (IGF2BP1-3) that have an
essential role in modulating embryogenesis and participate in
carcinogenesis and the development of chemoresistance (Xinwei
et al., 2018). The racial-specific IGF2BP1 methylation
(cg24876164) has also been confirmed to be correlated with
breast and colon cancers, adding to the link between MetS
and the development of certain malignancies (Chitrala et al.,
2019).

The large-scale applications of GWAS and EWAS in the
study of MetS have been the newer field of research; more
coverage of different populations is still needed to achieve
practical value that could eventually be developed into risk
stratification tools to alter the public health strategies. Similar
examples have been reported in the genetic stratification of
stroke incidence in patients with cardiometabolic disease. The
study combined the genetic data from five trials whose
subjects consisted of European ancestry to develop a
genetic risk score system based on 32 SNPs. This study
found in the primary prevention setting that the 32-SNP
system could stratify a hazard ratio for the top versus
lowest tertile of 1.27 (Moon et al., 2018). Similar tools
could be developed for the prevention of MetS. However,
in contrast to stroke, MetS risk is more complicated, MetS is
more prevalent and heterogeneous and would require larger
populations of longer follow-ups, yet considering the
significant increase in multiple disease risk after MetS,
GWAS- and EWAS-based risk stratification tools could be
valuable when incorporated into public health activities such
as routine health examinations and the drafting of health care
insurance policies.

Specific Potential Single Biomarkers
Identified by Genome and Epigenome “Big
Data” Studies
Based on the extensive initial screening of variants and
epigenetic alterations, specific targets have been located for
detailed research for MetS risk. SID1 transmembrane family
member 2 (SIDT2) is a lysosomal integral membrane protein
that promotes insulin secretion. In the laboratory setting,
SIDT2 knockout resulted in insulin resistance in peripheral
tissue by affecting the IRS-1 signal pathway (Qian-Ying et al.,
2020). For its effect on MetS risk, a multiple-phenotype GWAS
has identified rs7107152 and rs1242229 SNPs of SIDT2 to be
associated with metabolic syndrome risk in the Korean
population (Marston et al., 2021), increasing HDL and
triglyceride levels among metabolic syndrome-component
traits. Yet for the same gene, different variants of rs1784042
and rs17120425 were found in the Mexican population, the
former showing an overall association with MetS and with low
levels of high-density lipoprotein, the latter with Type 2
diabetes risk (León-Reyes et al., 2020). These results further

support the critical role of specific genes linking lipid
metabolism and metabolic syndrome, whose variants might
have a higher impact among others in risk prediction tools to
design.

Somatostatin is a ubiquitous peptide exerting a wide range
of actions, including intestinal absorption regulation,
gastrointestinal motility, and insulin and glucagon
production (Stadaas et al., 1978; Saksena et al., 2009;
Vergari et al., 2019). It is the most effective inhibitor of
growth hormone (GH) release. In one study, somatostatin
was designated as a target for hypertension and hyper-
glycerolemia with linkage analysis following genome-wide
microsatellite marker scan of 38 families. For blood
pressure modulation, the polymorphism of poly-T repeat
sequence (rs34872250) in its promoter is associated with
higher blood pressure with longer repeats in overweight
and obese carriers (Tremblay et al., 2016). A recent study
further revealed the association between the rising number of
poly-T repetitions with increased MetS onset (Tremblay et al.,
2018). Unlike many other potential biomarkers for MetS
mainly associated with lipid metabolism, longer poly-T
repeats in somatostatin were associated with higher
incidence for all MetS components, with a significant
increase in the risk of hypertriglyceridemia and low HDL-
cholesterol level in men and abdominal obesity, hypertension,
and hyperglycemia in women.

On the epigenetic level, an early study designated SOCS3, a
gene involved in leptin and insulin signaling, and found that its
methylation reduced the risk of MetS and its component,
whose effect was also confirmed in later studies for
protection against adverse cardiometabolic effects of obesity
(Ali et al., 2016). This protection against MetS risk could be
due to the increase in the response to the action of leptin and
insulin and the reduction in the signaling of IL-6 and other
inflammatory cytokines, which have been proven in the
laboratory setting with animal subjects undergoing SOC3
methylation or neuron-specific SOC3 knockout (Babon
et al., 2012). CPT1A is a transferase involved in the
regulation of insulin-mediated inhibition of glucose
production, insulin secretion, glycogen synthesis, and
appetite control (Zammit, 2008). Early EWAS study found
two methylations of CPT1A locus, cg00574958, and
cg17058475, as potential MetS risk markers (Das et al.,
2016). A later study further confirmed cg00574958 bridging
the effect of carbohydrate and fat intake on MetS components,
where carbohydrate intake increases cg00574958 methylation,
reduces CPT1A expression, and decreases MetS risk, while fat
intake acted inversely (Lai et al., 2020).

These targets, with further studies in different populations,
could potentially become valuable biomarkers to facilitate
MetS risk assessment on a large scale. However, the
interpretation of risk assessment with these markers should
remain cautious as different markers represent different
components of MetS with the additional strength of
associations in other populations. Further research is
needed to focus on their assemblies and impacts in more
integrated systems.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8101526

Jiang et al. Big Data for Metabolic Syndrome

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


EARLY DETECTION OF METS: FROM
“OMICS” TO CLINICAL “BIG DATA” IN
SECONDARY PREVENTION
The different concept between primary and secondary prevention
lies in the difference between “risk” and “early stage.” An
individual with certain genetic or epigenetic risk factors does
not necessarily develop MetS even without intervention but
would undoubtedly benefit from monitoring of early signs of
disease development. A current secondary prevention strategy for
MetS includes monitoring lipid levels every 6 weeks and serum
aminotransferase and CK levels every 6 months. Blood pressure,
blood glucose, and HbA1c should be monitored every 3 months.
However, ideal secondary prevention ofMetS would be capable of
identifying the population with or without hereditary risk factors
or environmental risk factors for early detection of biological
alterations (Larsen et al., 2018) and certain combinations of these
alterations (Srikanthan et al., 2016), which could potentially stand
out among a vast amount of confounding factors and eventually
contribute to the development of MetS. This requires a different
methodology compared with the ones used currently, which
heavily rely on known factors whose changes already represent
the possible occurrence of MetS. The nature of MetS being a
systemic disorder determines its analysis, which must consider
both patterns of changes of known factors and factors that are
unknown and awaiting discovery. This very particular challenge
generated the necessity of the merging of the “big data” method
with secondary prevention on different levels, to fill in the gap
between “early signs” and “risks” and connect primary prevention
and secondary prevention as a continuum. For this purpose,
biomarkers discovered from functional levels of omics could
provide more information regarding the purpose of finding
“the early signs.” Several examples have shown this possibility.

Omics Data From a Tissue Sample
Skeletal muscle has long been confirmed to be related to
metabolism with its role as an energy and amino acid reserve
and as a significant site for fatty acid oxidation, carbohydrate
metabolism, and heat homeostasis (Stump et al., 2006; Baraibar
et al., 2013). Skeleton muscle mass has been inversely associated
with MetS development in retrospective studies (Park and Yoon,
2013; Kim et al., 2018). At the same time, it is also a location of
pathogenesis, such as glucocorticoid receptor expression, micro-
vasculopathy, accumulation of intramyocellular lipid droplet,
inflammation, and insulin resistance (Whorwood et al., 2002;
Petersen et al., 2007; Goodwill and Frisbee, 2012; Marette et al.,
2014; Gueugneau et al., 2015).

Muscle loss due to aging is a significant factor influencing the
increased MetS risk (Dominguez and Barbagallo, 2016).
However, the latest “omics” study suggested this association
might not be equivalent to a direct causal relationship.
Analysis of muscle specimen for proteomic and transcriptomic
profiling between healthy aging and aging with metabolic
syndrome revealed a clear distinction of genes differentially
regulated by metabolic syndrome and aging, with the former
over-expressing genes related to biological processes of cell death
and adhesion, ECM and angiogenesis, catabolic process and

signaling, under-expressing genes related to electron transport
chain, and, on the protein level, a tendency for alterations in
NADH/NAD+ shuttle and β-oxidation compared with the fast-
to-slow transition and downregulation of glycolysis seen in
healthy aging (Gueugneau et al., 2021).

For specific MetS components, a recent study delved into the
detailed process from prediabetes into type 2 diabetes to delineate
proteomic changes. The study recruited 148 male subjects
(20–70 years) of different glucose metabolic statuses from
standard glucose tolerance, impaired fasting glucose, and
impaired glucose tolerance to T2D. Muscle samples were
obtained from the vastus lateralis muscle for mass
spectrometry analysis. Under multi-linear regression, the
proteome analysis designated 200 proteins for glucose
tolerance status (Öhman et al., 2021), including mitochondrial
energy metabolism proteins of isocitrate dehydrogenase [NAD]
subunit beta, mitochondrial (IDH3B), NADH dehydrogenase
[ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial
(NDUFA10), and ATP synthase subunit an (MT-ATP6),
which were decreased by worsening of the glucose tolerance
status and independent of the subjects’ age. Of these decreased
proteins, the study also found NADH dehydrogenase
[ubiquinone] 1 beta subcomplex subunit 3 (NDUFB3) and
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex
subunit 2 (NDUFA2) to be increased with physical activity,
whose implication highlights the importance of early
intervention.

The transition of laboratory studies of omics data acquired
from skeletal muscle to preventive medicine practice would
require more standardization of tissue acquisition and analysis
protocols. Studies have been pushing the refinement of these
protocols and the establishment of a database and databank for
skeleton muscle proteome and transcriptome analysis (Vissing
and Schjerling, 2014; Gonzalez-Freire et al., 2017; Asplund et al.,
2020; Deshmukh et al., 2021). Yet challenges remain in certain
aspects, such as the representative power of the selected specimen
for the metabolic status of an individual as a whole. In contrast,
harvesting specimens at multiple locations becomes more
invasive.

Omics Data From a Blood Sample
Compared with muscle specimens, whose harvesting process is
relatively invasive and inconvenient, the acquisition of blood
specimens is more routinely adopted as a screening approach in
clinical practice and studies with large populations. The
identification of biomarkers with blood samples is, hence,
theoretically of a lower threshold for mass clinical application.
An example is beyond the GWAS from the Korean Genome and
Epidemiology Study. The project itself accumulated an extensive
database for further studies of known biomarkers for MetS risk
prediction. Based on this database, several common markers for
various conditions, including Gamma-Glutamyl transferase,
Adiponectin, Leptin, fasting glucose, and glycated hemoglobin,
have been reexamined for their patterns associated with MetS
(Jung et al., 2019; Lee et al., 2019; Lee and Shin, 2020).

Besides knownmarkers, metabolomics and lipidomic profiling
have been adopted to search for novel patterns as biomarkers. For
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the former, with simultaneous measurement of metabolites, a
large amount of data reflecting the cellular activity at a functional
level could achieve a more direct evaluation of the health status.
The earliest proof of concept with metabolomics for MetS
prediction was a case-control revealing subtle phenotypic
differences 5 years before MetS occurrence (Pujos-Guillot
et al., 2017). The study applied an untargeted metabolomics
approach to identify metabolites from the comparison between
normal controls and subjects defined as “pre-MetS” (within
normal range but higher BMI, waist-to-hip ratio, systolic and
diastolic blood pressure, and fasting blood glucose levels). A 58-
metabolite (49 identified with two-way analysis of variance and
nine identified with random forest) model was constructed and
confirmed to be robust in predicting MetS with the T2D
component (all the subjects for model training presented the
T2D piece of MetS), from which a linear logistic regression also
identified a 5-metabolite model (glutamic acid, phenylalanine,
glucose, deoxyglucose phosphate, and L-GPC) that presented
similar predictive performances. Interestingly, this study, from a
different perspective, further strengthened the feasibility for
continuous monitoring of the progression of the T2D
component in MetS, which could also be illustrated by the
proteomic changes in the skeletal muscle as mentioned
previously. Whether this evolution of molecular changes could
be captured likewise for other MetS components, or if these
changes occur with similar chronological patterns, remains to be
studied.

A retrospective study demonstrating the application of
metabolomics in MetS used principal component analysis and
orthogonal projections to latent structures and achieved a
reduction to 26 metabolites involving intrinsic pathways of the
urea cycle, amino acid, sphingo- and glycerophospholipid, and
sugar metabolisms and metabolites reflecting environmental
factors of nutrition, microbiota, and physical activity
(Surowiec et al., 2019). Among these metabolites, the study
further confirmed the association between higher levels of
branched-chain amino acids (with alanine being the strongest
association) and high uric acid levels with the risk of T2D and
discovered the positive correlation of acylcarnitines with MetS
risk. On the other hand, similar to metabolomics, lipidomic
analysis, with high-throughput techniques using small volumes
of serum or plasma, is capable of identifying andmeasuring blood
plasma levels of hundreds of different lipid species from dozens of
different classes and subclasses (Zhao et al., 2020) that have been
proven to assert evaluative value for MetS. In one of the studies,
Xiaoyan Yin et al. analyzed the lipid profile measured from 658
participants and found 39 lipids associated with obesity and
dysglycemia (Yin et al., 2020). Another study covered both
metabolomic and lipidomic data for targeting MetS and found
100 lipids of triglycerides, phosphatidylcholines,
phosphatidylinositols, and ceramides to correlate with the
metabolic syndrome score positively (Surowiec et al., 2019).

However, despite the versatility of high-throughput
techniques such as metabolomics and lipidomic analysis, with
blood samples being a less invasive method in omics study, the
current understanding of metabolomic and lipidomic changes in
both pre-MetS and MetS conditions is preliminary. It is obvious

that the results from different studies do not correspond well,
such as how glutamic acid and phenylalanine in the pre-MetS
prediction model did not reach statistical significance in the MetS
association study retrospectively. Further application of these
techniques in ultra-early diagnosis would require more
standardization of research design and analytic tools.

Multi-Omics and Machine Learning
The future direction of the biomarker identification of MetS,
supported by the latest studies, would be the integration of these
omics data acquired simultaneously for analysis on a more
general level, especially the combination of bio-molecules of
metabolites, lipid, and protein which are internally related in
the biological system (Whorwood et al., 2002). Some of the latest
attempts have gained progression in the integration of data within
the realm of metabolomics and lipidomics. A study established a
multiplatform of reversed-phase LC-MS (C18) analysis
complemented by hydrophilic interaction chromatography
(HILIC) to allow the detection of polar metabolites and an
untargeted lipidomics approach using a reverse-phase LC-MS
(C8) to profile a large set of lipid species. The platform was
designed to maximize the serum metabolome coverage (Comte
et al., 2021).

However, the processing, interpretation, and integration of
large datasets remain a challenge, especially for traditional
bioinformatic tools. Hence, new statistical and computational
algorithms for data integration, filtering, and network analysis are
needed to process extensive multivariate data (Suravajhala et al.,
2016; Auerbach et al., 2018). As mentioned previously, machine
learning algorithms, with automation features in searching
patterns, have been gradually incorporated into the study of
ultra-early detection of MetS. An earlier study proved the
feasibility of applying machine learning algorithms to
simultaneously process metabolomics, lipidomics, and clinical
data with a random forest algorithm (Acharjee et al., 2016). A
later study further supported the strength of machine learning
processing omics data in the realm of MetS, collecting one of the
most extensive transcriptomics data to discover nine hub-gene
features (SPTAN1, KCTD7, PSMD1, FZD1, KLHL9, PTTG1,
TSPAN14, P2RY2, and CXCR5) with excellent classification
ability (Liu et al., 2021). With improved coverage of omics
data over different populations, machine learning could
potentially standardize molecular screening markers for MetS
while deepening the understanding of its biological mechanism.

Clinical Data and Machine Learning
A limitation of molecular traits for secondary prevention for
MetS, similar to genome-based studies, lies in the causal
relationship. Available omics data and common general
biomarkers, on the one hand, could be a direct reflection of
the genetic basis, through complex biochemical processes, while
on the other hand, succumb to tremendous influence from
external factors. Inversely, external factors could assert a broad
impact beyond the current technical coverage of detection for
functional players such as metabolites and lipids; these
components are not yet known and are detectable when they
remain in the black box. Therefore, it is not reasonable to regard
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multi-omics data as the only tool for secondary prevention in the
realm of precision medicine. External factors, when facing a black
box of pathological processes, the unknowns could be, to a certain
level, bypassed with data “big” enough by mathematical and
computational tools such as machine learning, and play
important roles at a later stage in secondary prevention.

Indeed, many studies of machine learning in metabolic
disorders, including MetS, type II diabetes, and hypertension,
focus on mining data from extensive medical documentation
such as electronic records and medical images from daily
practices and large-scale trials (Lin et al., 2021b; Yu et al.,
2021). Common data types would include anthropometric
data, laboratory tests covering different systems, and medical
imaging of other modalities such as x-ray based, ultrasound-

based, and even MRI-based techniques. With large enough data,
unrecognized patterns could be captured and reveal novel risk
factors. The inclusion of many co-variants for study and analysis
could have tremendous costs under traditional paradigms
(Vrbaški et al., 2019). Machine learning tools are an ideal
option to contribute to higher efficiency and precision in
identifying the population at risk for developing metabolic
disorders for early prevention and those with metabolic
diseases with higher risk for a worse prognosis for more
extensive management.

A direction of study is to discover the potential expansion of
diagnostic criteria at a later stage of secondary prevention. As
machine learning is inherently capable of processing a vast
number of co-variants, the boundary between the population

TABLE 2 | Machine learning for MetS risk/prediction with clinical data.

Data source Sample
size

Studied machine
learning tools

Clinical data
type

Optimal
algorithm

Associated/significant
clinical
index

Retrospective Cohort,
Cheng-Sheng Yu,
2020

Health
examination

1,333 Decision tree---classification
and regression trees, C5.0,
chi-square automatic
interaction detection,
conditional interference trees,
evolutionary learning of
globally optimal trees,
generalized linear model trees,
random forest

Anthropometrics,
laboratory tests,
medical imaging

NA Obesity, serum GOT, serum
GPT, CAP score, HbA1c

Cheng-Sheng Yu,
2021, Retrospective
Cohort+3 year
follow-up

Health
examination

1,129 K-nearest neighbor
classification (KNN), linear
discriminant analysis (LDA),
logistic regression for
classification, ensemble
learning:random forest,
adaptive boosting, support
vector machine (SVM), naive
Bayes classification (NB), and
hierarchical clustering
analysis (HCA)

Anthropometrics,
laboratory tests,
medical imaging

Random forest Body mass index, HbA1c, CAP
score

Ji-Eun Park, 2021,
Retrospective Cohor

Korean Genome
and Epidemiology
Study

2,871 K-nearest neighbor (KNN),
naive Bayes, random forest,
decision tree, multilayer
perceptron (MLP), support
vector machine (SVM)

Anthropometrics, life
style data

Naive Bayes
(most sensitive)

Age, stress (potential
predictors included age, sex,
education level, marital status,
body mass index (BMI),
physical activity, alcohol
consumption, and smoking)

Shu-jie Xia, 2021,
Retrospective Cohort

In-patient 586 Decision tree (DT), support
vector machine (SVM) and
random forest (RF)

Anthropometrics,
laboratory tests, TCM
indexes

Random forest
(RF) (best
performance)

Waist circumference, fasting
blood-glucose, BMI, alkaline
phosphatase creatinine, blood
urea nitrogen, AST/ALT,
weight, TCM indexes: body fat,
wiry pulse, chest tightness,
spontaneous perspiration,
greasy tongue coating, snoring
sleep

Perry J. Pickhardt,
2021, retrospective
cohort

HIPAA-compliant
investigation

7,785 Convolutional neural network
(3D U-Net), region-based
convolutional neural network
(R-CNN)

CT-based biomakers NA Univariate L1-level total
abdominal fat** (80.1%
sensitivity, 85.4% specificity),
L3-level skeletal muscle index,
volumetric liver attenuation
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with or without metabolic diseases might be obscured by the
identification of risk factors that were not considered previously
for evaluation.

Several studies have reported the application of machine
learning for MetS risk/predication with clinical data (Table 2).
Cheng-Sheng Yu et al. reported the comparison of different
decision tree algorithms over medical data from self-paid
health examination by 1,333 individuals, discovering the CAP
score (a liver steatosis score), obesity, and HbA1c as being the
principal factors predicting metabolic syndrome, and argued the
narrowness of the current diagnostic criteria for metabolic
syndrome omitting hepatic and nephritic presentations (Yu
et al., 2020). Liver steatosis is a condition characterized by
increased liver fat content. In terms of nonalcoholic fatty liver
disease (NAFLD), it has been reported that despite the prevalence
of NAFLD being 18.2% (95% CI 16.5–19.9), it was significantly
greater (43.2%) in those with MetS (OR 11.5, 95% CI 8.9–14.7). It
increased with the number of MetS criteria (67% for those with all
five standards) (Jinjuvadia et al., 2017). Yet the causal relationship
between MetS and NAFLD is complicated. MetS and NAFLD
share predisposing risk factors such as overeating and physical
inactivity. For NAFLD, the pathogenesis includes the promotion
of synthesis of intrahepatocellular triglycerides and VLDL. At the
same time, the ability of insulin to suppress glucose and VLDL
production in the fatty liver is impaired, resulting in mild
hyperglycemia and stimulation of insulin secretion, hyper-
triglyceridaemia, and low HDL cholesterol concentration,
which are also components of MetS. However, it has been
reported that carriers of the PNPLA3 Ile148Met allele have an
increased risk of the disease but do not typically display features
of metabolic syndrome. In a later study, the authors further
identified patients with different combinations of specific
metabolic traits and especially potential patients in the non-
obese population (Yu et al., 2021), and with random forest
algorithm, further confirmed the capability of the three
parameters, namely, CAP score, HbA1c, and body mass index
(study focusing on non-obese patients), in predicting MetS in a 3-
year follow-up. This is an example of the versatility of data
research in shifting the traditional diagnostic concept of
diseases, especially with continuous variables such as CAP
score to replace an arbitrary diagnosis of NAFLD, reflecting a
progressive development of MetS. Yet these studies have not
answered the integration of diagnostic parameters for better
prediction.

A similar study adopted a broader expansion for risk factor
inclusion by incorporating concepts from traditional medicine, as
conventional medicine has statistical significance via long-term
accumulation of “medical data.” The study included the “Sasang
constitution type” from traditional Korean medicine for
comparison of six types of machine learning methods over a
data set of 2,871 visitors from a medical center and discovered
higher sensitivity for prediction with incorporation “Sasang
constitution type” (Park et al., 2021). Another study
incorporating traditional medicine methodology combined
clinical variables, including 20 physicochemical indexes
commonly tested in routine medical practice, with 47
symptoms described within the framework of traditional

Chinese medicine (Xia et al., 2021). Three machine learning
methods were tested with these data resulting in the
superiority of the rain forest model, whose prediction power
increased with the incorporation of symptom variables.

Medical imaging plays a crucial role in both preventive and
clinical medicine, offering structural and functional information
on the health status of different organs and systems. In metabolic
diseases, the very early development and progression can leave
local traces which might not parallel with systemic changes. Yet,
these signals might not be identified by a human observer (Han
et al., 2010). Therefore, the mining of imaging data with machine
learning tools could provide early signs of both risk and diagnosis
from a different dimension. Examples of machine learning in the
application of early MetS detection are abdominal imaging. CT
and MRI or ultrasound are commonly administered screening
modalities for various abdominal diseases both emergent or
chronic (Tanaka et al., 2006). This location of imaging harbors
indicators including visceral fat, hepatic steatosis, and skeleton
muscle, which are closely related to MetS (Lin et al., 2021a; Chou
et al., 2021; Pickhardt et al., 2021; Wu and Park, 2021). Machine
learning, especially deep learning methods, has been studied for
fast automated quantification of different fat compartments, level
of steatosis, and fat distribution (Sun et al., 2020; Bhanu et al.,
2021; Rhyou and Yoo, 2021). A recent report utilized imaging
data from opportunistic abdominal CT scanning from 9,223
adults, with deep learning-based segmentation of image and
analysis, and found an L1-level total abdominal fat threshold
of 460.6 cm could achieve an 80.1% sensitivity and 85.4%
specificity for asymptomatic metabolic syndrome (Pickhardt
et al., 2021).

DETECTION OF METS PROGRESSION:
MACHINE LEARNING IN TERTIARY
PREVENTION
MetS is the clustering of cardiovascular risk factors and is known
as a powerful predictor of diabetes and cardiovascular disease.
MetS portends increased risk for chronic disease and mortality.
The most well-known link is between MetS and the incidence of
cardiovascular disease. However, there are established links
between MetS and increased risk of chronic kidney disease,
diabetes mellitus, arthritis, schizophrenia, non-alcoholic fatty
liver disease, and multiple types of cancer. MetS is associated
with a greater risk of mortality, a 2-fold increased risk for
cardiovascular events or death, and a 1.8-fold increased risk of
mortality (Gonzalez et al., 2016; Saberi-Karimian et al., 2021).
Both metabolic syndrome and its metabolic consequence as type
II diabetes could lead to significant health burden and mortality
via direct and indirect processes. Such unsatisfying prognosis
could be encountered in patients without proper management
and those with both known and unknown factors.

Prognosis Prediction
Glycated hemoglobin (HbA1c) is used as one of the diagnostic
criteria for diabetes and the category of increased risk for diabetes.
A well-known indicator of metabolic disease reflecting the quality
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of control is glycosylated hemoglobin, representing an average
glucose level for the previous 2–3 months. Its status was further
confirmed to be a predictive factor, together with fasting plasma
glucose and body mass index, for the development of type 2
diabetes in patients of metabolic syndrome (Park et al., 2012).
Sang Hyun Park et-al. suggested that HbA1c might be used as a
diagnostic criterion for MetS and the appropriate cut-off value of
HbA1c may be 5.65% in this Korean population. Machine
learning methods to determine the optimal variables should
define distinct cohorts of HbA1c trends. Machine learning
carries the capability of identifying subtle multivariate
relationships and has emerged as a powerful tool in the
analysis of large databases. Avivit Cahn et al. explored the
association of HbA1c changes and mortality in a National
Registry of patients with type 2 diabetes. They reported
unstable glycosylated hemoglobin, compared with the stable
level, and predicted an increased all-cause mortality rate. The
study covered a massive cohort of 293,314 patients. The machine
learning method provided evidence supporting the association of
HbA1c variability with mortality (Cahn et al., 2022), which had
conflicting results in previous studies. In previous studies, the
association of HbA1c variability with mortality yielded
inconsistent results, largely dependent upon sample size,
adjustment for confounders, and measures of variability used.
Seven HbA1c SDs were independently associated with mortality
only in the older age groups (age over 55). Moreover, HbA1c had
a J-shaped association with cumulative mortality, apparent in all
age groups. Studies that did not analyze outcomes by age or
HbA1c categories may have failed to associate HbA1c variability
with mortality due to the inclusion of disparate clinical
phenotypes in a single model.

For factors not yet determined, studies have also utilized
machine learning in scrutinizing the natural language of
clinical notes in predicting mortality rate in clinical scenarios
with abundant confounding factors such as critical care in
diabetic patients (De Silva et al., 2021). Machine learning has
been used effectively for diabetes research, demonstrating its
potential for advancing the management of various diabetes
phenotypes across their natural histories (Türkoglu et al.,
2003; Lorenzo et al., 2007; Després et al., 2008). With the
advent of natural language processing—a branch of artificial
intelligence amenable to unstructured text data—clinical text
mining is increasingly used in various health domains (Lan
et al., 2018; Ludvigsson et al., 2019; Kohsaka et al., 2021). In
diabetes research, it has been used in areas such as the analysis of
protein–protein interactions and early drug discovery (Shipe
et al., 2019; Rauschert et al., 2020). Such studies could reveal
unknown associations and risk factors besides objective
information provided by laboratory tests and medical imaging,
providing valuable dimensions for evaluating the progression of
metabolic diseases and their eventual outcome.

Complication Prediction and Early
Detection
Metabolic syndrome and its components could contribute to the
development of a series of complications leading to microvascular

and macrovascular disease, cardiovascular disease, retinopathy,
nephropathy, neuropathy, and many other disorders with
chronic conditions, especially for those with insulin resistance
and the development of type 2 diabetes (Cull et al., 2007;
Czernichow et al., 2010; Callaghan and Feldman, 2013; Mbata
et al., 2017). These complications remain prevalent especially in
areas with weak medical resources, adding health burdens. Early
detection of chronic complications and prevention of acute
complications would facilitate health management. The
application of mathematical tools has been proven effective in
specific scenarios.

To prevent acute complications of metabolic disorders,
mathematical and computational tools such as machine
learning models could utilize the abundance of data from both
public databanks and electronic hospital records for risk
evaluation. An example is hypoglycemia, a frequently
occurring severe complication with the risk of permanent
neurological damage and fatality affecting diabetic patients
(Frier, 2014). Analyzing de-identified health claims data using
machine learning analytic tools from the Bayesian machine
learning platform has been reported to successfully identify
diabetic patients with prior history and hypoglycemia and
anemia as a subgroup with the highest risk for future
hypoglycemia events, enabling specific cautions for
hypoglycemia prevention in this population (Mueller et al.,
2020). Hypoglycemia, a common adverse effect of treatment of
diabetes mellitus with insulin and sulphonylureas, is associated
with impairment of cognitive function, which can have significant
consequences on everyday behavior. Adults with type 1 diabetes
mellitus have ~2 episodes of mild hypoglycemia per week; the
annual prevalence of severe hypoglycaemia is ~30%. Adults with
insulin-treated type 2 diabetes mellitus experience a lower
frequency of mild and severe hypoglycemia episodes than
those with type 1 diabetes mellitus. Hypoglycemia is the most
common and feared adverse effect of insulin therapy and is the
most significant barrier to the maintenance of near-
normoglycaemia. The risk of hypoglycemia creates internal
conflict within the individual, diminishing motivation to
adhere to intensive therapeutic regimens and attain strict
glycemic control despite the knowledge that achieving this
goal would minimize the risk of diabetic complications. The
elimination of hypoglycemia would make the management of
diabetes mellitus much less demanding (Frier, 2014). In the
inpatient setting, where hypoglycemia is a substantial risk, a
study of the comparison between different machine learning
prediction models based on abundant local medical data could
contribute tomore precise inpatientmanagement. Recent advances
using deep-learning classifiers have led to applications of artificial
intelligence (AI) in many areas of health care, including image-
based diagnosis and natural language processing. In particular,
convolutional neural networks (CNNs) with transfer learning have
facilitated efficient and accurate image-based diagnosis well beyond
human capabilities. By adopting advanced treatment options such
as continuous glucose monitoring (CGM) or closed-loop insulin
delivery, the patients predicted by the model with high risk
could potentially avoid such complications (Ruan et al., 2020).
Kang Zhang at el showed that deep-learning models could be
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used to identify type 2 diabetes solely in combination with
clinical metadata (age, sex, height, weight, body-mass index, and
blood pressure) (Zhang et al., 2021). The models were trained
and validated with a total of 115,344 retinal fundus photographs
from 57,672 patients and can also be used to predict estimated
blood-glucose levels and to stratify patients according to
disease-progression risk. They evaluated the generalizability
of the models for identifying type 2 diabetes with
population-based external validation cohorts and via a
prospective study captured with smartphones and assessed
the feasibility of predicting disease progression in a
longitudinal cohort.

Chronic complications of metabolic syndrome and its
components are a significant determinant of the eventual
prognosis affecting disease morbidity, mortality, and quality of
life. Many of the complications could be challenging to identify at
an early stage, and the optimal strategy for those already in the
state of metabolic syndrome with or without type 2 diabetes is to
capture the objective but indirect signs at the very early stage
before the irreversible end-organ damage. This attempt has been
reported to be facilitated by algorithms in analyzing the extent of
the disease development. A study focused on delineating the
relationship between hyperglycemia and skeletal muscle mass. As
mentioned above, skeletal muscle mass is an essential part of
insulin stimulation, maintenance of glucose homeostasis, and
fatty acid metabolism. The study trained seven machine learning
algorithms with body composition data from 6,657 participants.
Models generated by XGBoost and ANN algorithms showed
good accuracy for predicting skeletal muscle mass and found
serum platelet levels, triglyceride concentrations, and glomerular
filtration rate as related biomarkers and an inverse relationship
between hyperglycemia and skeletal muscle mass, enabling the
potential for early management with diet control and physical
exercise (Wu and Park, 2021). For patients already in the state of
type 2 diabetes, another study reported the efficacy of deep
learning models for predicting chronic kidney disease, which
is an essential comorbidity of diabetes challenged with early
diagnosis. The study attempted to find the early signs in
retinal fundus changes to indicate chronic kidney disease risk.
Deep learning models were trained with imaging data from
115,344 retinal fundus photographs and achieved prediction of
glomerular filtration rates with mean absolute errors of
11.1–13.4 ml min−1 per 1.73 m2, with the potential for a
clinical application non-invasive, high-throughput, and low-
cost screening tool (Zhang et al., 2021). While the model
appears well suited for diagnostic screening, it remains limited
in providing prognostic information to individual patients or
insights into pathogenic mechanisms based on saliency maps,
regarding the feature importance analysis, simple XGBoost,
random forest, and linear regression exploring important
variables without knowing the impact of each variable.
However, according to Lundberg’s research on Shapley
Additive exPlanations (SHAPs), the SHAP value can explain
how each feature affects machine learning algorithms,
providing a new interpretation method for the machine
learning black-box algorithms. In a future study, the SHAP
algorithm needs to be used to determine the impact of each

variable in the prediction model. In addition, whether additional
clinical metadata (such as blood pressure trends, smoking status,
alcohol consumption level, and family history) could further
improve the accuracy of the predictions needs to be explored.

INTERVENTIONS FOR METS SUPPORTED
BY “BIG DATA” APPROACHES

Traditional interventions for MetS focus on preventing
progression into type 2 diabetes, the development of
cardiovascular diseases, and many neurological
complications. Evidence has been provided by numerous
studies supporting the role of lifestyle modifications in
delaying T2D onset, reducing incidents of cardiovascular
events and microvascular complications, and all-cause
deaths. Effects on normalizing glucose tolerance, reduction
in blood pressure, lipid, and hyper-insulinemia were also
observed (Nilsson et al., 2019).

Diet Control
A significant component of lifestyle modification relies on the
conversion of dietary habits. Extensive research has provided
evidence of food quality improvement and macronutrient
adjustment benefiting MetS intervention. A variety of diet
strategies, including the Mediterranean diet, DASH diet, plant-
based diets, ketogenic diets, low-fat diet, and high-protein diet
have been reported with different improvements of MetS traits
(Castro-Barquero et al., 2020). Recent advances of omics studies
have also helped with the deepening understanding of the
reaction to diet strategies, possibly facilitating more precise
dietary control, such as decreased gamma-tocopherol by
DASH diet and lowered TMAO and l-carnitine by plant-based
diets (Pourafshar et al., 2021; Wang et al., 2021).

Of the many diets studied for health control, the
Mediterranean diet has been given special credit as the best
diet since 2018. Mediterranean diet has high-fat and low-
carbohydrate pattern, characterized by a high intake of
vegetables including leafy green vegetables, fruits, whole-grain
cereals, pulses, legumes, nuts, and extra virgin olive oil as the
primary source of fat (Critselis and Panagiotakos, 2020). Some
omics studies have revealed the details of the mechanism of this
diet strategy on MetS control. An early study reported a
significant reduction in inflammation-related inter-α-trypsin
inhibitor heavy chain H4 by HDL proteomic analysis in
subjects consuming 5 weeks of the Mediterranean diet
(Richard et al., 2014). This potential anti-inflammation effect
partly explains the intervening development of the
Mediterranean diet, as pro-inflammatory has later been
confirmed to increase MetS risk and its component, though a
gender difference in risk was also observed; hence, the details
could benefit from the further study (Khan et al., 2020). Another
study revealed metabolic changes after the Mediterranean diet for
2 months and 6 months. After 2 months of the Mediterranean
diet, a significant reduction in levels of hippuric acid and lipid
levels was observed, associated with removal of inflammatory
markers, and reduction of palmitic acid and lactic acid and
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increase in lithocholic acid were observed after more extended
intervention at 6 months (Bondia-Pons et al., 2015).

Nutrient Response Evaluation
When delving deeper into the components of diet patterns and
their effects on the MetS population, much attention has been
given to dietary protein and fat. Current understanding of diet
protein’s participation in MetS intervention focuses on its effect
on alteration of glycemic response and glycemic load, by delaying
gastric emptying and stimulating insulin, glucagon-like peptide-
1, and peptide YY secretion, and outcomes in preventing specific
MetS components via fat mass reduction while maintaining lean
body mass during energy-deficiency and increasing HDL
cholesterol (Chalvon-Demersay et al., 2017). One study with
metabolome analysis was with pre-meal whey protein to study
the metabolic changes of the Staub–Traugott effect (Bonuccelli
et al., 2009), which represents the phenomenon of sequential
glucose loading improving glucose tolerance. The study used
different doses of whey protein and various types of protein,
including whey protein, casein, or gluten, as pre-meal with
different timing. The analysis indicated the effect of pre-meal
protein in elevating BCAA and aromatic amino acid levels,
decreasing decreased PC (32:1) and PC (35:2) levels, which
had a significant influence on insulin secretion, skeletal muscle
glucose uptake, and improving insulin response (Pekmez et al.,
2020).

Dietary fat considered for MetS intervention mainly consists
of lipids and fatty acids. The former has received long
controversies regarding its influence on triglyceride and high-
density lipoprotein. Increasing evidence suggests the replacement
of carbohydrate with fat, regardless of type, could lead to the
reduction of fasting triglyceride and increase HDL cholesterol;
however, contrasting evidence exists (Mensink et al., 2003; Siri-
Tarino et al., 2010; Itoh et al., 2014). Early studies regarding the
molecular influence between different types of dietary lipids
found high-saturated fatty acid diet increases proteins
responding to oxidative stress and DNA damages on the
proteomic level in patients with metabolic syndrome with both
short-term and long-term food intake (Rangel-Zúñiga et al.,
2015). Furthermore, there was other evidence suggesting the
detrimental effect is more conspicuous in MetS patient with
insulin resistance trait (Yubero-Serrano et al., 2015).
Considering the insulin secretion–inducing effect of a high-
saturated fatty acid diet in healthy individuals, further studies
with data from different omics could benefit the understanding of
the source of dispute for dietary fat for diverse populations. On
the other hand, unsaturated fatty acids, commonly from fish oil
component, nuts, and dairy product, have been confirmed to have
a benefit for lowering metabolic syndrome risk in multiple
studies. Still, arguments also exist for their virtual effect on the
population (Eslick et al., 2009; Guo et al., 2017). These
discrepancies have recently been shed lighter upon with
significant data approaches. One example is a study GWAS
which found substantial variations of fatty acid desaturase
gene in a Mediterranean population with metabolic syndrome.
The fatty acid desaturase gene is an important determinant of
serum polyunsaturated fatty acids level through its endogenous

production via a series of desaturations steps. The GWAS found
in Mediterranean metabolic syndrome the association of FADS1/
FADS2 locus and omega-3 polyunsaturated fatty acids and
omega-6/omega-3 ratio, revealing a potential confounder
explaining previous inconsistencies (Coltell et al., 2020). As for
the effect of fatty acids on a metabolic level, one recent study
tested the influence of Omega-3 fatty acids in healthy old subjects
and found its supplementation leads to reduction of total
triglycerides, diacylglycerols, phospholipids, and
triacylglycerols and very-low-density lipoproteins, whose
elevations are associated with metabolic diseases (Xyda et al.,
2020). Animal studies have confirmed Omega-3 fatty acid
provides cell signaling intermediate (specialized pro-resolving
mediators) precursors for inflammation resolution in the
adipose tissue microenvironment and elevates insulin
sensitivity in the condition of MetS (Carracedo et al., 2019;
Kwon, 2020). In human trials, it was also reported to assist
with facilitate cognitive dysfunction in MetS patients by
enhancing brain-derived neurotrophic factors (Tang et al.,
2020). More discoveries of acting mechanisms and finding the
sub-population of MetS that would benefit from its intake would
be unveiled by more big data studies based on omics and other
data sources.

Physical Activity
The positive link between physical inactivity and metabolic
diseases has long been recognized, and this link for MetS has
recently been confirmed with abundant evidence (Amirfaiz and
Shahril, 2018). Furthermore, physical activity which consists of
daily physical activity and exercise has been shown to prevent
MetS and its outcomes (Kudo et al., 2021). For MetS intervention,
increased physical activity (in particular aerobic exercise) has
been shown to improve dyslipidemia and insulin sensitivity, and
more specifically, resistance training plus aerobic high-intensity
interval training improves fasting glucose low density lipoprotein
and insulin secretion, while resistance training plus moderate-
intensity continuous aerobic training reduces triglycerides (Da
Silva et al., 2020). Physical exercises also induces a series of
epigenetic modifications including DNA hypomethylation in
muscle tissue at PGC1a, TFAM, PPARD, PDK4, RUNX1,
MEF2A, THADA, NDUFC2, ADPOR1, ADIPOR2, and
BDKRB; altered DNA methylation in adipose tissue with
hypermethylation (ADAMT59, CPEB4, GRB14, ITPR2, LY86,
LYPLAL1, MAP2K5, MSRA, MTIF3, MRXN3, PRKD1,
SOCCAG8, STAB1, TBX15, TMEM160, and ZNF608) or
hypomethylation (GPRC58, TUB) in obesity candidate genes;
and exercise-induced hypermethylation (ADAMT59, ADCY5,
ARAP1, BCL11A, CDKAL1, CDKN2A, DGKB, DUSP8, FTO,
HHEX, HMGA2, IGF2BP2, JAZF1, KCNQ1, PRC1, PROX1,
PTPRD, TCF7L2, THADA, WFS1, and ZBED3) or
hypomethylation (KCNQ1 and TCF7L2) in T2D candidate
genes. However, in terms of lifestyle modification, evidence
also suggests that the response to physical activity is
heterogeneous, and its balance with diet control as an
intervention strategy should vary among different individuals.
Several genetic factors have been studied to potentially contribute
to this heterogeneity including SNPs for FTO, MC4R, PPARγ2,
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and ADRB3 for central obesity, APOA5, LIPC, CETP, FADS2,
APOB, and PGS1 for dyslipidemia, P13K, LIPC, ADRA2B,
TCF7L2, PPARγ2, and ENPP1 for hyperglycemia, and ACE
for hypertension (Fenwick et al., 2019). Metabolomic studies
have indicated positive serum metabolomic changes for MetS
patients following exercise including changes in prominent serum
biomarkers of metabolic risks, such as branched-chain amino
acids, alanine, acetylcarnitine, choline, and betaine (Siopi et al.,
2019a). In terms of types of physical exercises, resistance exercise
was shown to cause the most potent metabolic responses,
followed by high-intensity interval training, and continuous
moderate-intensity exercise achieved minimal response (Siopi
et al., 2019b).

Applications in Pharmaceutical
Interventions
Pharmaceutical interventions focus on stabilizing certain
metabolic traits, as one drug to treat all components is still
unavailable. Available options include statin and non-statin
lipid-lowering medications for dyslipidemia, antihypertensive
medications for arterial hypertension and prehypertension,
and metformin for glucose intolerance. Their clinical benefit
and timing of administering and target populations are still
under extensive research. A direction for further development
of pharmaceutical intervention for MetS is predicting individual
drug response. Besides conventional studies based on animal
models in clinical trials, a high-throughput analysis could
implicate more when considering individuals. Such as on the
genomic level, GWAS has designated several variants affecting
drug response for MetS components, including rs3846662 located
on intron 13 of HMGCR for simvastatin, Rs776746 (C/T) variant
found on CYP3A5 gene for a statin, and rs12255372 of TCF7L2
gene for sulfonylureas (Jmel et al., 2018). Besides drug response
prediction, effective data approaches such as machine learning
have also been studied as a preliminary application in finding

pharmaceutic combinations not previously recognized based on
data abstracted from the electronic health record, drug
recommendation via machine learning from publications data
sources, and drug–drug interaction discovery based on
transcriptome data analysis (Koren et al., 2018; Shu et al.,
2018; Luo et al., 2021).

LIMITATIONS

“Big data” approaches harness the power from a large amount of
data acquired from genetic to clinical levels, with high-
throughput technologies and data mining technologies,
changing the basic understanding of MetS prevention at every
step (Figure 1). Novel single biomarkers for risk evaluation and
novel patterns of markers for early detection of disease
occurrence and progression could offer new options for health
care management at both preventive and clinical medicine levels.
However, with the current development, many problems still
await solutions.

Information leak is an essential challenge of “big data”
research, whether with “omic” studies or data mining of
clinical data, causing a significant violation of privacy. Many
technologies are currently adopted for the security and privacy of
big healthcare data. These technologies would fall into
authentication, encryption, data masking, access control,
monitoring, and auditing. However, even with these measures,
information leak is still not a rarity. Such as for “omics” data,
there is a leaking risk even with genomic deletions from signal
profiles, but studies have focused on better ways of data
sanitization for protection (Harmanci and Gerstein, 2018;
Gürsoy et al., 2020). Another challenge is with clinical data
mining. For studies using health care databases, information
acquired could be flooded with confounding factors without
good documentation, and in many situations, missing data
could be problematic. For these challenges, approaches to

FIGURE 1 | Conceptual framework of prevention comparison on metabolic syndrome (MetS).
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coping with confounder control such as causal graphs and
variable selection, and strategies for substituting missing data
such as machine learning tools of generative adversarial
imputation nets have been studied (Brookhart et al., 2010;
Dong et al., 2021).

The most important current problem for bringing “big data”
approaches into the practice of MetS prevention is the lack of a
unified protocol for the integration of data from different
dimensions. Indeed, both multi-omics data from MetS
research and automation in data mining for clinical data are
just beginning. With limited understanding of the heterogeneity
of MetS, many findings and evidence remain in dispute, unable to
directly generate prevention recommendations, and this review is
narrative in nature, with potential bias in interpretation of
the field.

CONCLUSION

We have been seeing an acceleration of enrichment in this realm
in recent years. Many “omics” and clinical databases still await
standardization, which could lower the technical threshold for its
integration. Future development in this field could breach the
barrier between dimensions of data and newer patterns could be

discovered with more versatile analytic tools, enabling more
specific preventive strategies for MetS.
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