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Abstract: Excessive use of antimicrobials in aquaculture is concerning, given possible environmental
ramifications and the potential contribution to the spread of antimicrobial resistance (AR). In this
study, we explored seasonal abundance of antimicrobial resistance genes and bacterial community
composition in the water column of an intensive aquaculture pond stocked with Silver Carp
(Hypophthalmichthys molitrix) prophylactically treated with sulfamethoprim (25% sulfadiazine;
5% trimethoprim), relative to an adjacent unstocked reservoir. Bacterial community composition was
monitored using high-throughput sequencing of 16S rRNA gene amplicons in eight sampling profiles
to determine seasonal dynamics, representing principal stages in the fish fattening cycle. In tandem,
qPCR was applied to assess relative abundance of selected antimicrobial resistance genes (sul1, sul2,
dfrA1, tetA and blaTEM) and class-1 integrons (int1). Concomitantly, resistomes were extrapolated from
shotgun metagenomes in representative profiles. Analyses revealed increased relative abundance of
sulfonamide and tetracycline resistance genes in fishpond-03, relative to pre-stocking and reservoir
levels, whereas no significant differences were observed for genes encoding resistance to antimicrobials
that were not used in the fishpond-03. Seasons strongly dictated bacterial community composition,
with high abundance of cyanobacteria in summer and increased relative abundance of Flavobacterium
in the winter. Our results indicate that prophylactic use of sulfonamides in intensive aquaculture
ponds facilitates resistance suggesting that prophylactic use of these antimicrobials in aquaculture
should be restricted.
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1. Introduction

The global spread of antimicrobial resistance (AMR) has severe implications for human health [1].
For example, approximately 70% of the agents causing hospital acquired infections in the United
States are resistant to at least one antimicrobial family [2], demonstrating the severe public health risk
associated with AMR [3]. The dynamics of environmental AMR are currently not well understood,
but there is evidence that anthropogenic activities such as animal husbandry, aquafarming and
wastewater treatment may contribute to this phenomenon [4–6]. AMR can propagate across microbial
communities via horizontal gene transfer (HGT) through mobile genetic elements such as plasmids,
transposons and integrons [7,8]. As a result, anthropogenic- and environmentally-derived bacteria
can exchange antimicrobial resistance genes (ARGs), and these HGT events can be maintained under
selective pressure.

The use of antimicrobial compounds in aquaculture has become a common practice throughout
the world [9–13]. Although clinical and prophylactic application of antimicrobials have proven
valuable in preventing and treating fish disease, excessive application of antimicrobials in this
rapidly growing industry may facilitate increased abundance of antimicrobial resistant bacteria (ARB)
and antimicrobial resistance genes (ARGs) [11]. ARB and ARGs from aquaculture can disseminate
to food webs and enter the water cycle, and alter microbial community structure. Furthermore,
ARGs harboring mobile genetic elements can mobilize to clinically relevant bacteria resulting into
global propagation of AMR (FAO/OIE/WHO, 2006) [14]. Nakayama et al. [13] reported the ubiquitous
presence of sulfonamide resistance genes coupled with remarkably low bacterial diversity at interfaces
of wastewater streams from backyard-based aquaculture units in Vietnam, associated with high load
of sulfonamide antimicrobials used in those systems. Tang et al. [15] suggested temperature as a key
driver of the bacterial community structure in freshwater aquaculture systems. Moreover, other studies
have provided valuable information about AMR in relation to microbial community composition
and temporal changes. Despite several past studies, comprehensive assessment of AMR dynamics in
conventional intensive aquaculture that apply antimicrobials has not been investigated.

Recently, shotgun metagenomics has contributed significantly to microbial ecology by describing
structure (who is there?) and function (what are they doing?) of complex environmental microbial
communities [16]. In contrast to conventional 16S rRNA gene-amplicon sequencing, shotgun genomics
adds the capacity to classify and quantify specific microbial genes in real time as a function of
environmental parameters, thereby elucidating associations among specific microbial communities
and the host genotype/phenotypes comprising the community [17–19]. For example, metagenomics
was applied to detect co-occurrence of specific ARGs on both viromes and bacterial genomes in
an experimental aquaculture facility, suggesting that transduction of ARGs takes place in these
systems [20].

In a previous culture-based study targeting Aeromonas in the water columns of two commercial-scale
aquaculture facilities, we demonstrated that sulfonamide and tetracycline gene abundance
were positively correlated to sulfadiazine/trimethoprim and oxytetracycline that were applied
prophylactically and clinically, respectively. In contrast, these isolates displayed lower resistance to
antimicrobials (chloramphenicol, ceftriaxone and gentamicin) that were not used [12]. The aim of this
study was to understand the structural and functional dynamics of the resistome and microbiome
in the water column of an intensive aquaculture system employing antimicrobials prophylactically.
Standard water monitoring methods were integrated with advanced culture-independent molecular
and metagenomic platforms.

2. Materials and Methods

2.1. Sampling and DNA Extraction

Water samples for 16SrRNA gene amplicon and qPCR analysis were collected from fishpond-03
(FP-03) and reservoir (Res) of the Dor aquaculture research station, Israel, details of which have
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previously been described [12] and sample wise analysis details were tabulated below (Table S1).
Altogether, eight profiles were sampled for the duration of a Silver Carp (Hypophthalmichthys molitrix)
fattening cycle: 6 July 2015; 4 August 2015; 18 August 2015; 31 August 2015; 14 October 2015;
22 December 2015, 10 February and 9 March 2016. All samples were collected in triplicate (except
6 July, 4 August, and 18 August, when for logistical reasons samples were collected in duplicate and
10 February where only a single replicate was sampled). Samples were immediately filtered (25–30 mL
depending on turbidity) onto glass microfiber filters (Whatman GF/F; 0.7µ; dia 25 mm) for nutrient
analyses, and subsequently onto 0.22µ polycarbonate filters for DNA extraction and subsequent
molecular analyses. Filters were preserved in conservation buffer (50 mM Tris, pH = 8.3, 0.75 M
Sucrose, 40 mM EDTA), transferred on ice to the laboratory within 2 h and stored at −80 ◦C until DNA
extraction. Subsequently, frozen filters with conservation buffer added to the tubes were transferred
on ice to the Biomedical Core Facility of the Technion for robotic DNA extraction. The first step of
extraction included chemical and mechanical extraction as follows: filters were thawed, centrifuged for
10 min at 15,000× g and the conservation buffer removed. Next, Blood and Tissue Kit lysis buffer
(Qiagen) was added, and the samples were mechanically extracted using two 3 mm stainless steel
beads and a speed of 30/s for 1.5 min on the TissueLyser LT (Qiagen). An amount of 30 µL of lysozyme
was added and the tubes incubated at 37 ◦C for 30 m, after which 25 µL and 200 µL proteinase K and
buffer AL (Qiagen) were added, respectively, and the tubes incubated at 56 ◦C for 1 h on a shaker.
Finally, the tubes were centrifuged for 10 min at 5000× g and the upper liquid was transferred to a
new 2 mL Eppendorf tube for further extraction using the Qiacube robot (Qiagen) and the DNeasy
Blood and Tissue Kit. Extracted DNA was maintained at −20 ◦C serving as working stock, and at
−80 ◦C as preserved stock for 16S rRNA gene amplicon sequencing and shotgun metagenomic analyses
described below.

2.2. Physiochemical Analyses

Analysis of ammonia, nitrite and nitrate was performed using an autoanalyzer continuous flow
system (Lachat QuikChem® 8500 Series 2 Flow Injection Analyzer, Milwaukee, WI, USA). The pH
was measured with a pH meter (EUTECH Instruments pH 700), while average temperature and
precipitation at the target site during the study period was obtained from the Israel Meterological
Service database (https://ims.data.gov.il/).

2.3. Sequencing of 16S rRNA Gene Amplicons

All 38 (19 FP-03 and19 Res) environmental DNA samples were amplified separately targeting the
V3-V4 16S rRNA gene region using primer set CS1_341F and CS2_816R [21] with a two-stage “targeted
amplicon sequencing (TAS)” protocol [22,23]. The primers contained 5′ common sequence tags (known
as common sequence 1 and 2 or CS1 and CS2) as described previously by Moonsamy et al. [24].
The PCR reaction was conducted in a final volume of 25 µL and PCR conditions were as follows: 1 cycle
of 95 ◦C for 5 min, followed by 28 cycles of 95 ◦C for 30 s, 50 ◦C for 30 s and 72 ◦C for 60 s with final
elongation of 72 ◦C for 5 min. Subsequently, sond PCR amplification was performed in 10µl reactions in
96-well plates. A mastermix for the entire plate was prepared using MyTaq HS 2X mastermix. To each
well, a separate primer pair with a unique 10-base barcode was added, obtained from the Access Array
Barcode Library for Illumina (Fluidigm, South San Francisco, CA; Item# 100-4876). These Access Array
primers contained CS1 and CS2 linkers at the 3′ ends of the oligonucleotides. Cycling conditions were
as follows: 95 ◦C for 5 min, followed by 8 cycles of 95 ◦C for 30 s, 60 ◦C for 30 s and 72 ◦C for 30 s.
A final, 7-min elongation step was performed at 72 ◦C. PCR products were purified using SequalPrep
plates (Life Technologies) according to manufacturer’s instructions. Subsequently, the PCR products
were quantified using a Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher) implemented on
a Genios Pro Fluorescence microplate reader (Tecan). PCR products were pooled using PicoGreen
quantification on an epMotion5075 liquid handling workstation (Eppendorf).

https://ims.data.gov.il/
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The pooled libraries, along with a 15% phiX spike-in, were loaded to a MiSeq v3 flow cell,
and sequenced using an Illumina MiSeq sequencer. Fluidigm sequencing primers, targeting CS1 and
CS2 linker regions, were used to initiate sequencing. De-multiplexing of reads was performed on the
instrument. Library preparation and pooling was performed at the DNA Services (DNAS) facility,
Research Resources Center (RRC), University of Illinois at Chicago (UIC). Sequencing was performed
at the W.M. Keck Center for Comparative and Functional Genomics at the University of Illinois at
Urbana-Champaign (UIUC). Raw sequences were processed through downstream analysis, using the
below mentioned bioinformatic tools.

2.4. Metagenome Analysis Employing Shotgun Sequencing

Extracted DNA was prepared and processed for sequencing using Nextera XT kit (Illumina,
San Diego, CA, USA) according to the manufacturer’s instructions, and sequenced at the Genome
Research Division Sequencing Core, University of Illinois, Chicago, USA. After processing, libraries were
assessed for size using an Agilent TapeStation 2000 automated electrophoresis device (Agilent
Technologies, Santa Clara, CA, USA) and for concentration by a Qubit flurometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA). Libraries were pooled in equimolar ratio and sequenced on a
mid-output kit using an Illumina NextSeq500 sequencer, with paired-end 2 × 150 base reads.

2.5. Bioinformatic Analysis

2.5.1. 16S rRNA Gene Amplicon Analysis

Amplicon sequences were subjected to an initial quality control step followed by bioinformatic
analysis using a pipeline that integrated tools from QIIME v.1.91 [25] and MOTHUR v.1.33.3 [26]. Briefly,
sequences containing more than one ambiguous base, those having a homopolymer length longer than
8bp, and sequences with an average quality score below 25 were removed from analysis. We included
fragments ranging from 440 to 475 bp after adjacent PCR primer prioritizing quality of the sequences.
Sequences were aligned using the SILVA reference database [27] and potential chimeric sequences
were detected and removed using the chimera.uchime of MOTHUR. Sequences were assigned to
operational taxonomic units (OTUs), based on ≥97% sequence similarity cutoff. Alpha diversity of the
samples was calculated using the Simpson diversity index, while the Bray–Curtis dissimilarity matrix,
which incorporates both membership and abundance, was used to interpret beta diversity among the
samples and was calculated using the QIIME and MOTHUR combined pipeline.

2.5.2. Shotgun Metagenome Analysis

Four selectedFP-03 (July 2015; August 2015; December 2015, and March 2016) and four previously
sampled reservoir/Res (July 2013; August 2013; January 2014, and March 2014) profiles were selected
for shotgun metagenome analysis. Two annotation pipelines were used to interpret the shotgun
metagenomics data. The COSMOSID pipeline (app.cosmosid.com; [28–30]) was used to elucidate
microbial (bacteria, virus, fungus and protist) community composition of the FP-03 water column
samples, identify specific potential pathogens and pinpoint dominant ARGs in the water column
samples. This pipeline facilitates rapid identification and quantifies microbial species, even from
unassembled short NGS reads. A non-automated custom pipeline was also employed in the analysis
for characterizing ARGs in the targeted samples. For the latter pipeline, raw reads were quality checked
using FastQC, followed by trimmomatic [31]. BLAST analysis was performed using a downloaded
version (1.1.3) of the Comprehensive Antibiotic Resistance Database (CARD). All reads were annotated
and identified as ARG, according to its best BLAST hit [32], with minor modifications as follows:
BLASTx with E-value cut-off set at ≤10−6, considering ≥80% similarity and ≥30 bit score to establish
the ARG profile as well as abundance. The metagenomic data were deposited in the NCBI Sequence
Read Archive under accession number SRP101485.
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2.6. Quantification of ARGs Using qPCR

Amongst extracted DNA, eight samples (one each from all sampling profile as detailed in
Table S1) of FP-03 were prepared as described above, and subjected to quantitative PCR amplification.
The analysis was targeting five ARGs: sul1, sul2, dfrA1, tetA and blaTEM; the class-1 integron integrase
gene intI1; and the 16S rRNA gene (which provides a rough estimate of total bacterial abundance in a
given sample). Fast Real Time PCR was employed (Applied Biosystems). PCR was conducted using a
final volume of 20 µL with master mix reagents as follows. Amplification programs were: 1 cycle of
95 ◦C for 10 min, 40 cycles of 95 ◦C for 15 s and 60 ◦C for 60 s with POWER and SELECT master mix
reagents (Thermo Scientific), following 1 cycle of 95 ◦C for 5 min, 40 cycles of 95 ◦C for 5 s and 60 ◦C for
30 s with FAST SYBR green reaction master mix reagents (Thermo Scientific). Standards for respective
genes were in a tenfold dilution series (gene copy numbers of 1 × 101, 1 × 102, 1 × 103, 1 × 104, 1 × 105

and 1 × 106/reaction) run with prepared Dor FP-03DNA samples. Each sample was analyzed using
three technical replicates for each run. Primer details are provided in Table 1. Quantitative analysis
of unknown samples was performed using standard curves generated from the amplification plot of
known concentrations of the respective standard [33]. Efficiencies of all qPCR reactions ranged from
95% to 105%, except for sul1. Limit of detection for all of the screened ARGs was 10 copies.

Table 1. qPCR primers and conditions used in this study.

Gene Target Primer Sequence Amplicon (bp)
SYBR Green Master

Mix Kit (Applied
Biosystems)

Reference

16S rRNA
(CS1_341F and

CS2_806R)

5′-ACACTGACGACATGGTTCT
ACANNNNCCTACGGGAGGCAGCAG-3′

195 FAST [21]
5′-TACGGTAGCAGAGACTTG

GTCTGGACTACHVGGGTWTCTAAT-3′

sul1

5′-CGCACCGGAAACATCGCT
GCAC-3′

163 FAST [34]
5′-TGAAGTTCCGCCGCAAGG

CTCG-3′

sul2

5′-TCCGATGGAGGCCGGTATC
TGG-3′

191 POWER [34]
5′-CGGGAATGCCATCTGCCTT

GAG-3′

dfrA1

5′-TTCAGGTGGTGGGGAGAT
ATAC-3′

150 POWER [35]
5′-TTAGAGGCGAAGTCTTGG

GTAA-3′

tetA

5′-GCTACATCCTGCTTGCCT
TC-3′

210 SELECT [36]
5′-CATAGATCGCCGTGAAGA

GG-3′

blaTEM

5′-TTCCTGTTTTTGCTCACCC
AG-3′

113 SELECT [37]
5′-CTCAAGGATCTTACCGCTG

TTG-3′

intI1
5′-CCTCCCGCACGATGATC-3′

293 POWER [38]
5′-TCCACGCATCGTCAGGC-3′

2.7. Statistical Analyses

Statistical analyses were performed to determine correlations between abiotic factors, such as
temperature, pH and average precipitation, with relative abundance of ARGs estimates made by qPCR
and the bacterial communities delineated as OTUs at phylum as well as genus level. Pearson Correlation
Coefficient was calculated to reflect variance among the datasets with respect to significance. Similarly,
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Canonical Correspondence Analysis (CCA) was performed to determine relative impact among the
above-mentioned factors on each other. The relative abundance of ARGs was transformed to log
(base 10) for ease of analysis. All statistical analyses were performed by PAleontologicalSTatistics
software (PAST, version 3.08). Heatmaps were generated using the Python 3.1 Seaborn data visualization
package. PERMANOVA test was conducted by “vegan” package in “R” [39].

The 16S rRNA gene amplicon sequencing data from nineteen FP-03 and Res samples and the
shotgun metagenomic data from the eight FP-03 and Res samples were collectively deposited to
the NCBI Bioproject repository as project # PRJNA375891entitled “Temporal analysis of intensive
aquaculture water column”.

3. Results

3.1. Nutrient Analysis of Water Samples

Variable levels of ammonia (0.05–0.96 mg/L), nitrite (0.01–0.19 mg/L) and nitrate (0.04–5.73 mg/L)
were observed in both FP-03 and Res water columns (Figure S1, Table S2). Despite significantly higher
fish densities, ammonia and nitrate levels measured in FP-03 were similar or only slightly higher than
those measured in the Res.

Precipitation, temperature and pH profiles for samples collected in this study are shown in
Table S2. Rainfall was highest in February 2016 (63.7 mm), and there was no rainfall in July and August,
2015. Maximum and minimum temperatures were recorded in August 2015 (27.8 ◦C) and December
2015 (14.7 ◦C), respectively. The pH of the water samples ranged from 7.7 to 8.2.

3.2. Microbial Community Analysis

Evaluation of bacterial community structure in the FP-03 water column at eight selected time
points during the fish fattening cycle was achieved by targeting 16S rRNA gene amplicon sequences.
A total of 2,429,487 Illumina MiSeq-generated reads were obtained for 19 FP-03 and 19 Res samples in
eight temporal profiles. Each sample contained between 40,000 and 160,000 reads with an average
of 51,600 good quality reads per sample. Alpha diversity of the bacterial communities in the FP-03
and Res water columns at various sampling times was estimated using the Simpson diversity index
and species richness (Figure 1). In general, we did not observe statistically significant differences
in diversity for water column samples. However, the diversity of FP-03 was generally lower in the
summer and relatively higher in the fall and winter. In the reservoir, lower diversity and species
richness was observed in the summer and winter, respectively, relative to the same seasonal profiles
in FP-03.

We applied non-metric multidimensional scaling (NMDS) to observe dissimilarities in microbial
community composition among all the sampling profiles (Figure 2). Samples were grouped based on
date of sampling (PERMANOVA of Bray–Curtis dissimilarity matrix, F = 8.59, p value = 0.001) and
specifically segregated based on seasonality (summer and autumn—from July to October, versus winter
and spring—December to March), at the first NMDS axis. This seasonal trend is supported by shifts in
specific bacterial taxa described in the paragraph below. Although seasonality was the stronger driver,
we also observed a statistically significant difference between the FP-03 vs. Res samples (FP vs. RES,
F = 2.866, p value = 0.017).
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At the phylum level, Proteobacteria, Actinobacteria, Bacteriodetes [40] and Verrucomicrobia were
abundant in the water columns of both the FP-03 and Res, and Plantomycetes was also present at
lower levels (Figure S2). Cyanobacteria were abundant in the summer profiles, but almost completely
absent in the winter. Genus level taxonomical analysis revealed that these were primarily Microcystis,
although Synechococcus were present in several Res profiles, inversely correlated to the relative
abundance of Microcystis (Figure 3). The facultative phototrophic purple sulfur bacterium Rhodobacter
was abundant in both water column samples throughout the year, as was the metabolically versatile
genus Sphingomonas. Pseudomonas spp. was ubiquitous in both water column systems, but apparently
inversely correlated with Microcystis blooms. Novosphingobium, Bradyrhizobium and Fluviicola spp. were
present in all samples, but at lower relative abundances. Flavobacterium spp. were abundant in winter
in both water column microbiomes, but almost undetectable in summer.
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To identify specific clinically-associated bacteria, eukaryotes and viruses in the FP-03 and Res
water columns, as mentioned above in the materials and methods section, four FP-03 (July 2015;
August 2015; December 2015, and March 2016) and four previously sampled Res (July 2013; August 2013;
January 2014, and March 2014) samples were analyzed by shotgun metagenome analysis using the
COSMOSID pipeline. Abundance of human/animal-associated bacterial pathogens and commensals
(Figure 4) included Mycobacterium, Aeromonas, Elizabethkingia and Enterobacter spp., as well as Escherichia
coli and Staphylococcus spp. With the exception of Mycobacterium UM WGJ (isolated from a suspected
tuberculosis patient in Malaysia) of these potential pathogens comprised less than 1% of the total
bacterial community. Most of these were unique to a specific profile, suggesting these bacteria represent
transient components of the water column microbiome.

COSMOSID bioinformatics were further applied to assess composition of viruses (Figure S3),
protists (Figure S4) and virulence genes in the eight targeted FP-03 and Res water column samples.
Almost all of the viruses that were detected were bacteriophages and the vast majority were
Microcystis phages, corresponding to the Microcystis blooms observed in the summer in both
the FP-03 and Res. Bacteriophages associated with Pelagibacter and Enterobacteriacae also were
ubiquitous in most of the samples. Protist diversity was significantly higher in FP-03 water.
While Thalassiosira, Pseudoperonospora cubensis and Paramecium biaurelia were ubiquitous in water
at both sites, Acanthamoeba palestinensis, Hammondia hammondi, Reticulomyxa filosa and Acanthamoeba
mauritaniensis were highly abundant and unique in the FP-03. A myriad of virulence genes associated
with the Klebsiella pneumonia, Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Proteus
mirabilis were detected in all of the samples, but were for the most part substantially more abundant in
the FP-03 than in the Res samples.
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3.3. Assessment of ARGs Using Shotgun Metagenomics and qPCR

Relative abundance of ARGs in FP-03 and Res water was assessed using shotgun metagenomics and
analyzed with both the COSMOSID and the CARD bioinformatic platforms, respectively. Subsequently,
quantitative estimates of selected clinically relevant ARGs in the FP-03 water samples were conducted
using qPCR.

A large fraction of the identified ARGs (Table S3) encode for efflux pumps, which are often intrinsic
and generally not associated with mobile genetic elements. We, therefore, focused on genes that can be
potentially mobile. The most abundant of these ARGs identified using the COSMOSID and CARD
bioinformatic pipelines are shown in the heatmaps in Figure 5A,B, respectively. Collectively, more ARGs
were detected in the FP-03 compared to the Res water column samples. Sulfonamide resistance genes
(sul1 and sul2) were ubiquitous in the FP-03 samples, but were almost completely absent in the Res
samples. While sul2 was present in all of the profiles including July 2015, prior to antimicrobial
administration, sul1 was most abundant subsequent to the prophylactic treatment of fish with
trimethoprim-sulfamethoxazole. In contrast, trimethoprim (administered prophylactically, along with
sulfamethoxazole) resistance genes were not correlated with antimicrobial use and a substantial
level of discrepancy in the detection of trimethoprim resistance genes occurred between the applied
bioinformatic pipelines. COSMOSID analysis identified trimethoprim resistance genes dfrA31 and
dfrD, but only in the July 2013 Res samples, whereas CARD analysis showed high relative abundance
of dfrE in all of the FP-03 and Res water samples. Based on COSMOSID analyses, tetracycline resistance
genes were substantially more abundant in the FP-03 (with the exception of tetG in the March 2014 Res
profile). This was, however, not the case in the CARD analysis, where a substantially higher number of
tetracycline resistance genes was identified. The β-lactamase gene blaOXA was detected in all samples by
CARD analyses, but only in a few samples by COSMOSID analysis and no substantial differences were
observed between the FP-03 and Res samples. Collectively, these analyses demonstrate that different
bioinformatic platforms can produce different results on the same data. However, both platforms
clearly indicated profuse and ubiquitous presence of sulphonamide resistance genes (sul1 and sul2) in
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the FP-03 and almost complete absence of these genes in the Res. This suggests a correlation between
these genes and the prophylactic antimicrobial use in the FP-03.

We subsequently applied quantitative PCR (qPCR) to assess the relative abundance of selected
ARGs in water samples from FP-03 in eight profiles spanning the duration of the fish fattening cycle
from July 2015 to March 2016 (Figure 6). Efficiencies of all of the qPCR reactions ranged from 95%
to 105%, except for sul1. Limit of detection for all ARGs was 10 copies. The abundance of sul1
(ranging from 6.8 × 104 to 3.5 × 105 copies mL−1) substantially fluctuated during the fish fattening
cycle, whereas sul2 abundance was extremely low in the pre-stocked June profile, but was markedly
increased in the post-stocking water column samples. The abundance of tetA and int1 (ranging from
1.4 × 102 to 3.7 × 105 gene copy numbers) varied in the different sampling profiles, but the abundance
of tetA was increased substantially in the December and February profiles. Levels of dfrA1 and blaTEM

were much lower than the other ARGs (4.9 × 10−1 to 3 × 101), and no clear temporal trend in the
abundance of these genes was observed.
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3.4. Correlation Analysis

Canonical Correspondence Analysis showed complex relationships between and among specific
environmental parameters (temperature, pH, average precipitation), ARG abundance based on qPCR
and bacterial community composition from amplicon sequencing analyses (Figure 7, Table S4), of both
FP-03 and Res water samples. A positive correlation was observed between targeted ARGs encoding
resistance to antimicrobials used in FP-03 (sul1, tetA and dfrA1) and the class 1 integron integrase
gene (int1; p < 0.01; R = 0.7282/sul1, 0.6322/tetA, 0.7945/dfrA1; n = 8 for each gene). Furthermore,
positive correlation was observed between members of Bacteroidetes spp. in FP-03 water and ARGs
sul1, tetA and int1 (p < 0.05; R = 0.7172/sul1, 0.869/tetA, 0.9279/int1; n = 8). Presence of Flavobacterium
spp. was strongly correlated with tetA abundance in both water columns (p < 0.01; R = 0.9618/FP-3,
0.8819/Res; n = 8), and was positively correlated with int1 in FP-03 water (p < 0.05; R = 0.755; n = 8).
Similarly, Fluviicola spp. was positively correlated with tetA (p < 0.01; R = 0.8485; n = 8) and int1 in
FP-03 (p < 0.05; R = 0.8209; n = 8), whereas in Res water Pseudomonas spp were positively correlated
with tetA (p < 0.01; R = 0.9171; n = 8). Cyanobacteria were positively correlated with temperature
(R = 0.8011/FP-3, 0.8961/Res; n = 8), while relative abundance of Proteobacteria (p < 0.01; R = 0.836;
n = 8) in FP-03 water was positively correlated with precipitation. At the genus level, Microcystis
was positively correlated with temperature at both sites (p < 0.05; R = 0.8166/FP-3, 0.7163/Res; n = 8),
while the opposite held for Flavobacterium (p < 0.05; R = -0.7584/FP-3, -0.8618/Res; n = 8).
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4. Discussion

The objective of this study was to evaluate ARG and microbial community dynamics in a freshwater
aquaculture pond for the duration of a full annual fish fattening cycle, following prophylactic
administration of antimicrobials. Similar to previous studies that assessed ARG abundance in
aquaculture systems [41,42], shotgun metagenomic analyses indicated that sulfonamide resistance
genes were strongly correlated to antimicrobial use, as both sul1 and sul2 were relatively copious in
FP-03 water columns, but almost completely absent in the non-stocked Res water columns. While sul2
was abundant in all of the FP-03 profiles, the relative abundance sul1 substantially increased subsequent
to prophylactic application of trimethoprim/sulfomethoxazole at the beginning of the fish fattening
cycle, suggesting that the relative abundance of bacteria harboring this gene increases upon exposure
to sub-therapeutic sulphonamide concentrations. Correlations between prophylactic antimicrobial
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use in aquaculture and enhanced abundance of ARGs has been previously reported by Gao et al. [43]
and Xiong et al. [1]. This phenomenon was supported by a previous study we conducted that linked
prophylactic trimethoprim/sulfomethoxazole use in aquaculture ponds to sulphonamide resistance in
Aeromonas spp. [12].

The ubiquitous presence of sul2 in all of the FP-03 profiles (including the pre-stocked Jul15 profile
not exposed to antimicrobials) and its complete absence in the adjacent non-stocked Res, suggests that
the FP-03 sediment may be a reservoir for sulphonamide-resistant bacteria. Previous studies have
reported significant accumulation of ARGs in sediments impacted by aquaculture, which were
subsequently characterized as potential ARG repositories [1]. Kobayashi et al. [44] and Suzuki et al. [45]
reported similar augmented resistomes in Mekong river sediments impacted by aquaculture.

Contrary to sulphonamide resistance genes, we did not observe a clear correlation between
prophylactic trimethoprim/sulfomethoxazole use and the propagation of trimethoprim resistance
genes. Overall, there were significant discrepancies in the distribution and relative abundance of
trimethoprim resistance genes in the water column samples depending on the type of analysis
conducted. COSMOSID detected high abundances of dfrD in the July 13 Res water profile (but not
elsewhere), whereas qPCR and CARD analyses reported dfrA and dfrE, respectively, in all profiles
with no clear trend in relative abundance. These discrepancies can stem from a wide range of factors
discussed below.

Class 1 integrons play an important role in carriage and dissemination of ARGs [46], and sul1
is often ubiquitous in these elements. The strong positive correlation between sul1 and dfrA1 and
class-1 integron integrase genes (int1) observed in the qPCR analysis, suggests that these two ARGs are
harbored on class-1 integrons. Nonetheless, more robust analyses specifically targeting integron gene
cassettes [47] need to be conducted in order to confirm this assumption.

Results of both the qPCR and the COSMOSID analysis of metagenomic data showed increased
abundance of tetracycline resistance genes in Dec15 and Feb16 FP-03 water samples (not reflected in
the CARD metagenomics analysis). While oxytetracycline was applied to quarantined fish in some of
the fishponds linked to FP-03, and has been used in quarantined fish in FP-03 in previous seasons,
to the best of our knowledge, unlike trimethoprim and sulfomethoxazole, it was not used directly
during this study. Therefore, it is probable that oxytetracycline concentrations in the water column are
extremely low and most likely do not select for tetracycline resistance.

While the study provides strong evidence linking prophylactic use of trimethoprim/sulfomethoxazole
to increased abundance of sulfonamide resistance genes, discrepancies between the relative abundances
of sul1 and sul2, the various trimethoprim resistance genes and other ARGs between qPCR and the
shotgun metagenomic analysis highlights the complexity of elucidating resistome dynamics in complex
environments. Inconsistencies in relative abundance of ARGs detected using shotgun metagenomics
rather than PCR have been reported previously [48]. Andersen et al. [49] suggested that they may
stem from different detection sensitivity and potential inhibition associated with either of the methods,
but concluded that shotgun metagenomics was more accurate in detecting spiked DNA within complex
microbial communities. Collectively, we believe that the shotgun metagenomic analyses of the ARGs
is more accurate than the qPCR, considering the potential biases associated with PCR amplification
and the fact that primers can potentially miss a large fraction of the targeted ARGs.

Interestingly, we also found substantial inconsistencies between the CARD and COSMOSID
outputs from the same metagenomic data. This is clearly associated with differences in both the ARG
databases used for comparison and the stringencies of the algorithms used in the two annotation
pipelines. The COSMOSID pipeline applies a highly curated database and positive hits are based
on multiple targets, and therefore, it can be assumed that the results obtained using the COSMOSID
pipeline are more reliable for identifying clinically relevant ARGs. Conversely, the CARD database is
more exhaustive and includes a broader range of ARGs from environmental sources, and therefore,
it may provide a more holistic overview of environmental resistomes.
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When assessing ARG distribution and abundance in the analysed water columns, it is vital to
consider the microbial community composition in addition to selective pressure. Certain phyla harbor
specific ARGs and, therefore, fluctuations in ARG abundance can be dictated by shifts in bacterial
community composition regardless of selective pressure. It is highly probable that the cyanobacterial
blooms observed in the summer profiles influence microbial community composition and henceforth
the scope and abundance of detected ARGs. Guo et al. [50] suggested that cyanobacterial blooms have
an inhibitory effect on ARG abundance in freshwater microbiomes, but considering the above, it is not
clear if this is a cause or effect.

Seasonal factors (i.e., temperature and radiation) were the primary drivers of the microbial
communities in the FP-03 and Res water columns. However, significant differences in the microbiomes
of the two water columns suggests other “fish-associated” factors such as oxygen saturation, organic load
and residual concentrations of antimicrobials also play a role in defining the microbial community
composition. Nakayama et al. [13] observed that the water column microbiota of different aquaculture
systems are strongly dictated by aquaculture management practices. In one report, Fouladkhah et al. [51]
stated that the rise in environmental temperatures facilitates an increase in infectious disease agents.
The multifactorial complexity of aquaculture ponds makes it difficult to determine precisely which
specific factors affect microbial community dynamics in the water column. Nonetheless, we were able
to identify trends and compile hypotheses, based on associated metadata. For example, at the genus
level, algal blooms in FP-03 predominantly comprised Microcystis, whereas Res water also contained
high levels of Synechococcus. This finding is supported by previous reports indicating that Microcystis
thrives in ecosystems rich in nutrients (such as intensive aquaculture ponds), whereas Synechococcus
proliferates in more oligotrophic ecosystems [52,53].

Sphingomonas was positively correlated with Microcystis blooms, based on its higher relative
abundance in August profiles from FP-03 as compared to the Res water column. This may be associated
with the capacity of this genus to detoxify microcystins [54]. A previously study that investigated
temperature effects on microbiomes of German lakes found that Sphingomonadales were an integral
element of Microcystis sp. blooms, corroborating results from this study [55].

Specific screening of the shotgun metagenomes using the curated COSMOSID platform identified
substantially higher loads of potential human and animal pathogens in the FP-03 water column relative
to that of the Res. These included species belonging to Mycobacterium, Aeromonas, Elizabethkingia,
Klebsiella, Staphylococcus and Enterobacter. Nonetheless, none of these strains were identified in more
than one profile, and generally, they were detected at very low concentrations, suggesting that they
may not have significant epidemiological relevance. This was true for Aeromonas and salmonicida
(detected in the July profile), the causative agent of skin lesions in carp and koi [56], and a major
pathogen in fishponds in the sampled region.

To the best of our knowledge, this is the first study to assess comprehensively the temporal
microbiome and resistome dynamics of intensive aquaculture ponds that use antimicrobials.
Although data are quite complex, we provide strong evidence that prophylactic use of
trimethoprim/sulfomethoxazole in aquaculture systems facilitates increased relative abundance of
sulfonamide resistance genes. Furthermore, we provide evidence of a highly dynamic microbial
community in aquaculture ponds that are strongly influenced by both photosynthetic and heterotrophic
bacterial communities in the water column. To fully understand the clinical risks associated with
intensive aquaculture systems using antimicrobials, future studies should assess presence of other
clinically-relevant ARGs in class 1 integrons and their association with mobile genetic elements.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/12/1984/s1,
Figure S1: Temporal analysis of ammonia, nitrite and nitrate in the fishpond-3 (FP) and the reservoir (Res) water
columns at the Dor aquaculture research station. Figure S2: Relative abundance of dominant bacterial phyla in the
Dor fishpond-3 (FP) and reservoir (Res) water columns. Figure S3: Relative abundance of predominant viruses
in fishpond-3 (Pool) and the reservoir, based on shotgun metagenomic data analysed using the highly curated
COSMOSID pipeline. Figure S4: Relative abundance of predominant protists in fishpond-3 (P) and the reservoir
(R), based on shotgun metagenomic data analysed using the highly curated COSMOSID pipeline. Table S1:
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Samples description. Table S2: Physicochemical parameters at the study site during sampling. Table S3: Antibiotic
resistance gene hits extrapolated from fishpond-3 and reservoir shotgun metagenomes using COSMOSID and
CARD bioinformatic pipelines. Genes with less than ten hits are not shown. Table S4: Pearson’s correlation
coefficients followed by Canonical Correspondence Analysis (CCA) between phyla (with relative abundance
>5.0% at any of the sampling profile), ARGs, integrase genes and environmental parameters (temperature
and precipitation).
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