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ABSTRACT Objective: Polycystic  kidney  disease  (PKD)  is  the  major  cause  of  kidney  failure  and  mortality  in  humans.  It  has  always  been

suspected that the development of cystic kidney disease shares features with tumorigenesis, although the evidence is unclear.

Methods: We crossed p53 mutant mice (p53N236S, p53S) with Werner syndrome mice and analyzed the pathological phenotypes.

The RNA-seq, ssGSEA analysis, and real-time PCR were performed to dissect the gene signatures involved in the development of

disease phenotypes.

Results: We found enlarged kidneys with fluid-filled cysts in offspring mice with a genotype of G3mTerc-/-WRN-/-p53S/S (G3TM).

Pathology analysis confirmed the occurrence of PKD, and it was highly correlated with the incidence of tumorigenesis. RNA-seq

data revealed the gene signatures involved in PKD development, and demonstrated that PKD and tumorigenesis shared common

pathways,  including  complement  pathways,  lipid  metabolism,  mitochondria  energy  homeostasis  and  others.  Interestingly,  this

G3TM PKD and the classical PKD1/2 deficient PKD shared common pathways, possibly because the mutant p53S could regulate

the expression levels of PKD1/2, Pkhd1, and Hnf1b.

Conclusions: We established a dual  mouse model  for PKD and tumorigenesis  derived from abnormal cellular  proliferation and

telomere dysfunction. The innovative point of our study is to report PKD occurring in conjunction with tumorigenesis. The gene

signatures revealed might shed new light on the pathogenesis of PKD, and provide new molecular biomarkers for clinical diagnosis

and prognosis.
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Introduction

Polycystic  kidney  disease  (PKD)  is  a  disease  where  enlarged

kidneys  develop  characteristic  fluid-filled  cysts.  Cysts  in  the

liver  or  pancreas,  cerebral  aneurysms,  abnormal  cardiac

development,  and hypertension are  also frequently  found in

PKD  patients.  Genetic  studies  have  shown  that

approximately  80%  of  autosomal  dominant  PKD  (ADPKD)

is  caused  by  mutations  in  the  PKD1  gene  (encoding

polycystin-1,  PC1),  and  about  20%  of  ADPKD  was  due  to

mutations in PKD2 gene (encoding polycystin-2, PC2). It has

been  extensively  shown that  PC1/2  act  as  the  key  regulators

for calcium homeostasis, and the dysfunction of PC1/2 might

play  an  essential  role  in  calcium  imbalance  and  cAMP

signaling,  resulting  in  the  development  of  PKD

phenotypes1,2.  Increasing  evidence  suggests  that  PC1/2

proteins  might  interact  with  key  regulators  in  cell  cycle

regulation,  especially  in  cell  proliferation  and  secretion-

related  signaling  pathways1.  PKD1 has  been  found to  play  a

role  in  preventing  immortalized  proliferation  of  renal  cells

through p53 and JNK, suggesting a novel link between PKD1
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and  p533.  It  has  also  been  found  that  the  tumor  suppressor

protein  p53  participates  in  a  negative  feedback  loop  to

regulate  PKD1  gene  expression,  thus  preventing  renal  cysts

formation4.  Interestingly,  another  study  has  shown  that

Mekk1 acts as a co-repressor with p53 to downregulate PKD1

transcription.  This  PKD1  repression  could  be  promoted  by

stress  stimuli,  suggesting  that  abnormally  elevated  stress

responses  might  directly  downregulate  the  PKD1  gene,

possibly  causing  haploinsufficiency  and  cyst  formation5.  In

an  endothelial  cell-culture  system,  elevated  expression  of

mechanosensory  polycystins  in  human  carotid

atherosclerotic  plaques  is  associated with p53 activation and

disease  severity6.  At  the  animal  level,  Bcl2  knockout  mice

manifested  PKD  and  PKD  phenotypes  that  could  not  have

been  rescued  by  p53  deficiency7,8.  The  mutant  p53  protein,

especially the missense point mutation, is the major form of

p53 deficiency in human disease. It promotes the progress of

disease  by  both  loss  and  gain  of  function9.  However,  no

evidence  has  been  found  to  connect  mutant  p53  with  the

progress of PKD.

Werner syndrome (WS) protein is a member of the RecQ

helicase  family  implicated in the maintenance of  genome

stability.  WRN  plays  an  essential  role  in  telomere  DNA

replication,  and  WRN  defects  cause  human  pathologies

linked to cancer predisposition and premature aging, such as

WS10-12. By masking the chromosome ends from the DNA

repair  machinery  through  repression  of  the  ATM/ATR

signaling pathways, telomere DNA has a crucial function in

DNA damage response (DDR). Telomere DNA is elongated

by  telomerase  and  protected  by  the  protein  complex

shelterin,  which  regulates  telomere  length  and  protects

telomeres from activating DDR13.

The mouse model of WS is established by double knockout

of WRN and the RNA component of telomerase. The late

generation (G4-6)  of  WS mice  with  both telomerase  and

WRN  deficiency  (mTR-/-WRN-/-)  exhibited  the  clinical

features observed in WS patients14-16. Our previous study has

shown  that  ALT  tumorigenic  cell  lines  derived  from

senescent  WS  MEFs  gained  the  same  point  mutation  in

tumor  suppressor  gene  Trp53,  encoding  a  mutant  p53

protein known as  p53N236S (p53S hereafter).  The p53S/S

mice manifested highly invasive lymphomas and metastatic

sarcomas  with  dramatically  increased  double  minute

chromosomes17.

We introduced this p53S mutation back into WS mice to

study the intrinsic role of p53S in modulating WS symptoms,

by  crossing  mice  carrying  p53S  mutation  with  WS mice.

Surprisingly, we found that the offspring of p53S and WS

mice (mTR-/-WRN-/-p53S/S) manifested both PKD and tumor

phenotypes.  Here we report  the phenotypes  of  this  novel

mouse model.  By RNA-seq and ssGSEA analysis,  we have

identified the  gene signatures  and pathways  that  connect

mutant p53 and telomere dysfunction with the development

of PKD.

Materials and methods

Mice

Transgenic  p53S  mice  and  WS  (mTR-/-WRN-/-)  mice  were

bred to generate mTR-/-WRN-/-p53S/S mice. We crossed mice

carrying p53S mutation (p53S/S) with WS mice (mTR-/-WRN-/-)

and  obtained  the  first  generation  of  mice  with  telomerase

knockout, WRN knockout,  and  p53S  mutation  (G1 mTR-/-

WRN-/-p53S/S),  referred  to  as  G1  triple  mutation  (G1TM).

The mice were then bred generation-by-generation to obtain

G2  and  G3  TM  mice.  The  telomerase  knockout  and WRN

knockout mice (double mutation, DM) and wild type (WT)

mice were used as  control.  All  experiments  were carried out

with the approval of the Kunming University of Science and

Technology and Use  Committee  (Approval  ID:  M2015-011)

in  accordance  with  the  guidelines  of  the  Association  for

Assessment and Accreditation of Laboratory Animal Care.

MEF cells

The  MEF  cells  with  different  genotypes  were  harvested  in

13.5  days  and  cultured  in  Dulbecco’s  modified  Eagle’s

medium  (DMEM)  with  10%  fetal  bovine  serum  (FBS)  at

37  °C  with  5%  CO2 and  3%  O2.  To  maintain  their  original

characteristics,  only the early  passages  (≤ passage 5)  of  MEF

cells were used for experiments.

Pathology analysis

Mouse  kidney  samples  were  fixed  in  4%  neutral  buffered

formalin for  6  hours,  then alcohol-dehydrated and paraffin-

embedded.  The  paraffin-embedded  tissue  blocks  were

sectioned into  4  μm  slices  for  later  experiments.  For

hematoxylin-eosin  (HE)  staining,  the  tissue  sections  were

deparaffinized  and  rehydrated,  and  H&E  staining  was

applied.  The  H&E  stained  slides  were  observed  via

microscopy  and  the  histological  changes  and  kidney  lesions

were evaluated by pathologists.

RNA-seq and gene expression signature
analysis

Cell  or  tissue  (sarcoma  and  cystic  kidney)  samples  were

collected  and  sent  for  commercia  RNA-seq  service
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(Novogene, China). Briefly, the total RNA was extracted and

enriched  by  oligo-dT  labeled  magnetic  beads,  and  used  to

construct  a  library  for  RNA-seq.  The  sequenced  reads  (raw

reads)  were  evaluated  for  quality  control.  The  adapters  and

low  quality  reads  were  filtered  to  obtain  clean  reads.  The

clean  data  were  then  aligned  with  the  reference  mouse

genome  by  TopHat2.  The  RNA-seq  counts  were  annotated

and the FPKM file was generated for bioinformatic analysis.

The Bioinformatics ExperT SYstem (BETSY) was applied

to  automate  the  development  of  workflows18.  The  single

sample gene set enrichment analysis (ssGSEA)19was applied

to analyze the RNA-seq data. Hallmark (designed for well-

defined biological  states  and processes),  C2 (BIOCARTA,

KEGG, REACTOME, etc.), and C5 (GO) gene sets from the

Molecular  Signatures  Database20were  used  for  ssGSEA

analysis.  The  heat  maps  were  plotted  with  BETSY  by

centering with mean but without hierarchical clustering. The

common pathways between cystic kidneys and tumors were

ranked and plotted based on their ssGSEA scores.

Ingenuity pathway analysis

The  essential  genes  involved  in  PKD  development  were

selected  according  to  the  literature1,21.  The  fold  change  in

their  expression  between  G3TM  and  G3DM  was  calculated

from RNA-seq data. After applying the cutoff (2 ×) for gene

expression  fold  change,  the  remaining  genes  and  their  fold

changes,  and P values  were  imported  to  Ingenuity  Pathway

Analysis  (IPA)  software.  The  knowledge  base  of  IPA  were

used  to  draw  their  expression  regulation  and  interaction

network.  The  network  with  largest  numbers  of  genes  is

included,  such  as  developmental  disorders,  immunological

diseases,  inflammatory diseases,  inflammatory response,  and

renal and urological disease.

Quantitative real-time PCR analysis

RNA was isolated from cell or tissue samples, and cDNA was

synthesized  by  reverse  transcription.  Real-time  PCR  was

performed on an ABI Prism 7300 sequence detection system

with  SYBR-Green  PCR  master  mix  according  to  the

manufacturer’s  instructions  (Applied  Biosystems,  CA).  The

primers used are as follows:

PKD1,  forward  primer:  5’-CCCTCTCGGAGCAGAA

TCAAT-3’,  reverse primer:  5’-GTGTTGAGCTAATGGGC

AGG-3’;

PKD2,  forward  primer:  5’-GGGGAACAAGACTCATG

GAAG-3’,  reverse  primer:  5’-GCCGTAGGTCAAGATGC

ACAA-3’;

Pkhd1,  forward  primer:5’-GGGAGGTCGATGGTGCA

TAAG-3’,  reverse  primer:  5’-GATGTCCGTTCTTCCCCC

AAG-3’;

Hnf1b,  forward  primer:  5’-AGGGAGGTGGTCGATG

TCA-3’,  reverse  primer:  5’-TCTGGACTGTCTGGTTGA

ACT-3’;

C2, forward primer: 5’-CGGTGGTAATTTCACCCTCAG-

3’, reverse primer: 5’-GGTGTGATGTGAGCTAGACCT-3’;

C5, forward primer: 5’-GAACAAACCTACGTCATTTCA

GC-3’, reverse primer 5’-GTCAACAGTGCCGCGTTTT-3’;

Pgc1a, forward primer: 5’-TATGGAGTGACATAGAGTGT

GCT-3’, reverse primer: 5’-CCACTTCAATCCACCCAGAAA

G-3’;

Tfam,  forward  primer:  5’-ATTCCGAAGTGTTTTTC

CAGCA-3’, reverse primer: 5’-TCTGAAAGTTTTGCATCTG

GGT-3’;

Wnt1, forward primer: 5’-GGTTTCTACTACGTTGCTA

CTGG-3’,  reverse primer: 5’-GGAATCCGTCAACAGGTT

CGT-3’;

Ctnnb1, forward primer: 5’-ATGGAGCCGGACAGAAA

AGC-3’,  reverse  primer:  5’-CTTGCCACTCAGGGAAG

GA-3’;

Srebf1,  forward  primer:  5’-GATGTGCGAACTGGACA

CAG-3’,  reverse  primer:  5’-CATAGGGGGCGTCAAAC

AG-3’;

Srebf2,  forward  primer:  5’-GCAGCAACGGGACCAT

TCT-3’, reverse primer: 5’-CCCCATGACTAAGTCCTTCAA

CT-3’;

β-actin,  forward  primer:  5’-AGAGGGAAATCGTGCG

TGAC-3’, reverse primer: 5’-CAATAGTGATGACCTGGCC

GT-3’.

Results

Generation of a mouse model manifesting
PKD phenotypes

We crossed mice carrying p53S mutation with WS mice and

obtained the  first  generation of  mice  with  telomerase, WRN

knockout,  and  p53S  mutations  (G1mTR-/-WRN-/-p53S/S),

referred  to  as  G1  triple  mutation  (G1TM).  The  mice  were

then bred generation-by-generation to obtain G2 and G3 TM

mice (Figure 1A and 1B).

As expected, we observed the incidence of sarcomas when

telomere  length  was  shortened  to  a  certain  level,  which

occurred in G3TM (G3mTR-/-WRN-/-p53S/S) mice (Figure
1C).  The  affected  mice  were  sacrificed  and  anatomical

analysis showed that the mice also manifested unilateral or

bilateral  enlarged  kidneys  with  multiple  fluid-filled  cysts

(Figure 1D). Thus, surprisingly, PKD phenotypes were found

in G3TM mice at around 4 months old.
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The H&E of the kidney sections showed that the kidneys

from wild type mice developed normal  renal  tubules  and

glomeruli (Figure 2A), while the kidneys from G3TM mice

displayed  a  range  of  phenotypes  associated  with  renal

dysplasia  and  renal  cyst  formation.  In  the  G3TM mouse

EH85, the normal histological structure of the right kidney

was completely replaced by fluid-filled cysts of various sizes

(Figure 2B). At higher magnification, we could observe that

the  renal  tubules  and  glomeruli  were  compressed  and

atrophied, and the glomerulus lost its capillary loop structure

completely (Figure 2C). These data show the severe fluid-

filled cyst formation and total loss of renal function in this
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Figure 1   Generation of a mouse model manifesting PKD. (A) The breeding strategy for generating G3TM (G3mTR-/-WRN-/-p53S/S). Mice

carrying the p53S mutation were crossed with WS mice and G1TM were obtained (G1mTR-/-WRN-/-p53S/S).  The mice were then bred

generation-by-generation to obtain G2 and G3 TM mice. (B) Genotyping of mice carrying mTR, WRN and p53S mutations. (C) Incidence of

sarcoma in a G3TM mouse. (D) Bilateral enlarged kidneys with multiple fluid-filled cysts in a G3TM mouse.
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Figure 2   Hematoxylin and eosin staining of kidney sections from mice with PKD phenotype. (A) The normal morphology of a kidney from

a wild type mouse. (B) An end stage cystic kidney from a G3TM (G3mTR-/-WRN-/-p53S/S) mouse (ID number: EH85). The normal structure was

completely replaced by various sizes of fluid-filled cysts (arrow pointed). (C) Higher magnification power view of the cystic kidney from

mouse EH85 showing that the renal tubules and glomeruli were compressed and atrophied. The glomerulus was enclosed and lost its

capillary loop structure (arrow pointed). (D) Swelling renal tubule epithelial cells, hydropic degeneration, and vacuolation in the cells were

observed (arrow pointed) in the kidney from G3TM mouse EJ08. (E) A kidney from the G3TM mouse EM06, showing the cyst surrounding

flat epithelial  cells  (arrow pointed) that might be caused by fluid pressure changes resulting from cyst formation.  (F)  An abnormal

glomerulus with poorly defined capillary loop (arrow pointed) in the kidney from G3TM mouse CS87.
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kidney.  In  the  kidney  from  G3TM  mouse  EJ08,  cellular

swelling  or  hydropic  degeneration  and  vacuolation  were

observed (Figure 2D), suggesting the dysfunction of ion and

water  regulation in  these  renal  cells.  In  the  kidneys  from

G3TM mouse EM06, the cyst is surrounded by flat epithelial

cells, which suggests that cellular morphological changes are

caused by fluid pressure from the cyst (Figure 2E). In the

kidney from G3TM mouse CS87,  we found the abnormal

glomerulus with poorly defined capillary loop (Figure 2F).

The abnormal glomerulus with semi-enclosed capillary loop

was  also  frequently  observed,  indicating  the  loss  of

glomerulus function and downregulation of blood filtering

function.

Together these data suggest that kidneys from G3mTR-/-

WRN-/-p53S/S  mice  were  hypoplastic  and  developed  PKD

phenotypes.

The correlation of tumorigenesis and PKD
phenotypes

As  described  earlier,  the  G3TM  mice  should  manifest

phenotypes  that  correlate  with  abnormal  DNA  damage

response  and  abnormal  proliferation.  In  our  case,  it

manifested  as  increased  tumorigenesis  and  PKD  formation.

To  further  understand  the  relationship  between  abnormal

DNA damage response, tumorigenesis, and PKD phenotypes,

we  analyzed  the  frequencies  and  co-occurrence  of  cystic

kidney  and  tumorigenesis  in  mice  groups  with  different

genotypes.

We did not find any tumorigenesis or PKD in those mice

with  WRN  and  telomerase  double  knockout,  including

G1DM  mice  (n=41),  G2DM  mice  (n=52),  and  G3DM

(n=63).  However,  we  observed  a  few  PKD  or  tumor

incidences in G1TM and G2TM mice; this number increased

dramatically  in  G3TM  mice  (Table  1,  Figure  3A).  The

incidence increased along with telomere shortening (G1-G2-

G3) and the introduction of p53S (TM vs. DM). These data

strongly suggest that interplay of telomere DNA damage and

p53S  mutation  contributed  to  the  development  of  PKD.

Furthermore, most PKD co-occurred with tumor phenotypes

(Table 1, Figure 3A), showing that the occurrence of PKD

phenotype  was  highly  corre lated  with  increased

tumorigenesis.

Gene signatures of PKD caused by telomere
dysfunction and p53S mutation

Since  the  genetic  defect  in  this  PKD  model  is  very  different

from classical PKD models with polycystins defects, we were

interested  in  investigating  the  gene  signatures  in  MEFs

(G3TM),  cystic  kidneys,  and  tumors  from  G3TM.  We

compared the gene expression profiles in MEFs from G1DM

to G3TM mice  using  RNA-seq  and  ssGSEA analysis,  as  well

as the tumors and cystic kidneys from G3TM mice.

First,  we  analyzed  the  gene  signatures  that  were

upregulated or downregulated in cystic  kidneys using the

Hallmark dataset.  We found that  the  metabolism-related

pathways,  particularly  lipid  metabolism,  were  strikingly

upregulated  in  cystic  kidneys.  These  included  bile  acid

metabolism, fatty acid metabolism and others (Figure 3B).

Cell cycle-related pathways were clearly downregulated, such

as mitotic spindle, G2M checkpoint, and E2F targets. (Figure

3B). These data suggest that abnormal metabolic regulation

contributed greatly to PKD progress in G3TM mice.

Interes t ing ly ,  the  pathways  such  as  oxidat ive

phosphorylation, complement, and interferon alpha gamma

were upregulated in both cystic kidneys and tumors (Figure

3B).  These  common regulated  pathways  suggest  that  the

development of cystic kidney shares common mechanisms

with tumorigenesis.

We then expanded the ssGSEA analysis by combining the

Hallmark,  C2,  and  C5  datasets20,  and  mapping  the  gene

signatures that were gradually upregulated or downregulated

in G3TM cells, tumors, and cystic kidneys (Supplementary

Figure S1  and S2).  The data revealed that most strikingly

upregulated pathways shared by tumors and cystic kidneys

included complement pathways, the immune response, lipid

metabolism,  and  mitochondrial  energy  homeostasis.

Interestingly,  we  observed  that  kidney  function-related

pathways,  such  as  microvillus  organization  and  water

homeostasis, were upregulated in both tumors and kidneys.

The  data  also  show  that  organic  cation  transport  and

Table 1   The occurrence of cystic kidney and/or tumor in mice with different genotypes

Number of mice G1DM G1 TM G2 DM G2 TM G3 DM G3 TM

Cystic kidney 0 1 0 2 0 4

Tumor 0 5 0 9 0 23

Cystic kidney+ tumor 0 5 0 9 0 23

Total 41 21 52 39 63 43
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Figure 3   Co-occurrence of tumorigenesis with PKD and gene signature analysis. (A) The percentage of tumor/cystic kidney incidence in

mice with genotypes from G1DM (G1mTR-/-WRN-/-) to G3TM (G3mTR-/-WRN-/-p53S/S) indicated the co-occurrence of tumorigenesis with

PKD, and the incidence increased with telomere shortening (G1-G2-G3), and the introduction of p53S (TM vs. DM). (B) The heatmap of gene

expression profiles (ssGSEA analysis results of the RNA-seq data using Hallmark dataset) in MEFs from G1DM, G2DM, G3DM, G1TM, G2TM,

and G3TM mice, as well as the tumors and cystic kidneys from G3TM mice. The pathways were ranked by scores showing up- (red) or

downregulation (blue) in cystic kidney, as well as in tumor and in G3TM MEFs. (C) The expression levels of PKD1 and PKD2 decreased

significantly from G1DM to G3TM, along with the introduction of p53S mutation and telomere shortening. (D) The interaction network of

genes essential for classical PKD development generated by Ingenuity Pathway Analysis (IPA). The expression fold change and P-values are

shown under the gene name. Genes downregulated by Trp53S are connected by blue inhibition lines. As per IPA knowledge base, orange

lines indicate gene expression level is consistent with activation of cystic kidney, whereas grey lines are inconsistent with activation of cystic

kidney. (E) The validation of key gene expression levels by quantitative real-time PCR. The expression levels of genes involved in PKD

pathway (PKD1, PKD2, Pkhd1, Hnf1b), complement pathway (C2 and C5), mitochondria pathway (Pgc1a and Tfam), Wnt signaling pathway

(Wnt1 and Ctnnb1), and lipid metabolism pathway (Srebf1 and Srebf2) were evaluated by real-time PCR in G3TM MEFs. WT MEFs and

G3DM MEFs were used as controls.
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glucuronidation pathways were highly upregulated in cystic

kidneys (Supplementary Figure S1).

On the other hand, the pathways obviously downregulated

in  tumor  and  kidneys  included  cytoskeleton  regulation,

extracellular signal transduction and others (Supplementary

Figure S2). Together, regulation of these pathways revealed

that  G3TM  PKD  shares  common  mechanisms  with

tumorigenesis.  These  dysfunctions  of  gene  regulation

composed the gene signatures of G3TM PKD.

Comparison of gene signatures in PKD caused
by telomere dysfunction and p53S mutation
with classical PKD caused by PKD1 or PKD2
deficiency

After analyzing the gene signatures in the G3TM PKD model

(G3mTR-/-WRN-/-p53S/S),  we  compared  the  gene  signatures

in this  model with classic PKD models  with PKD1 or PKD2

deficiency.  We  analyzed  RNA-seq  data  of  the  classic  PKD

models with PKD1 or PKD2 deficiency22 by the same ssGSEA

analysis,  and  compared  gene  signatures  between  the  three

mouse  models.  The  data,  analyzed  by  the  Hallmark  dataset,

showed that the common upregulated pathways among these

three  PKD  models  included  complement,  coagulation,  and

apical surface, whereas the common downregulated pathways

included angiogenesis (Supplementary Table S1).

The expanded analysis with Hallmark, C2, and C5 datasets

revealed  that  common  upregulated  pathways  included

complement  activation,  bile  acid  metabolism,  and  ion

homeostasis.  The  common  downregulated  pathways

included  cell-to-cell  adhesion  signaling  and  epithelial

structural maintenance (Supplementary Table S2).

Together these data reveal that although the G3TM PKD

model  was  derived  from  different  genetic  aberrations  to

classical  PKD  models,  they  share  common  pathways  in

regulating complement activation, lipid metabolism, cell-to-

cell  adhesion signaling etc.  These pathways might play an

essential role in PKD development.

Furthermore, we found that from G1DM to G3TM, along

with  the  introduction  of  p53S  mutation  and  telomere

shortening,  the  expression  levels  of  PKD1  and  PKD2

decreased significantly  (Figure  3C),  suggesting that  p53S

mutation could downregulate PKD1 and PKD2 expression.

In the end-stage tumor and cystic kidney tissues, the PKD2

level was slightly upregulated, but was still  lower than the

level in G3DM (Figure 3C).

Since  G3TM  is  the  genotype  with  most  incidences  of

tumor and cystic kidney disease, but not G3DM, comparison

of gene regulation in G3TM with G3DM might provide the

mechanisms for PKD attributed to p53S. We evaluated the

genes  essential  for  classical  PKD  development1,21,  and

mapped their interaction networks with IPA (Figure 3D).

Based on expression fold-changes of genes in this interaction

network, the molecule activity predictor showed that cystic

kidney module was significantly activated (P-value: 3.31E-

11). Other than PKD1 and PKD2, the ARPKD protein Pkhd1

(polyductin) and its transcriptional factor Hnf1b (hepatocyte

nuclear factor 1 homeobox B)23  were also downregulated.

These data suggest that p53S plays a role in transcriptional

regulation of PKD-related genes.

To validate the key genes in altered pathways as revealed

by RNA-seq data, we further analyzed the regulation of genes

involved  in  the  PKD  pathway,  complement  pathway,

mitochondria pathway,  Wnt signaling pathway,  and lipid

metabolism  pathway  by  quantitative  real-time  PCR.

Compared with  WT and G3DM MEFs,  the  expression of

PKD genes PKD1, PKD2, Pkhd1, and Hnf1b was suppressed

in G3TM MEFs. However, complement pathway genes C2

and C5; mitochondria pathway genes Pgc1a and Tfam; Wnt

signaling  pathway  genes  Wnt1  and  Ctnnb1;  and  lipid

metabolism  pathway  genes  Srebf1  and  Srebf2  were

upregulated in G3TM MEFs (Figure 3E). These data further

confirmed the RNA-seq data, and suggest that p53S regulates

genes involved in the aforementioned pathways attributed to

the development of cystic kidney.

Discussion

It  has  always  been  suspected  that  the  development  of  cystic

kidney  disease  shares  features  with  tumorigenesis,  although

the evidence is unclear24,25. Recent understanding of aberrant

downstream  pathways  in  ADPKD  demonstrates  that

transcriptional  functions that  regulate cell  cycle  progression,

energy  metabolism,  and  secretion-related  signaling  are

abnormal in PKD1,  and p53 is the essential node in all  these

transcriptional regulations26.

It has always been documented that wild type p53 could

bind to the PKD1 promoter, and the kidneys of p53 null mice

expressed  higher  PKD1  mRNA  levels  than  wild-type

littermates,  suggesting  that  wild  type  p53  suppressed  the

expression of PKD14. It has also been shown that depletion of

PKD1  led  to  increased  cell  proliferation  and  caused  a

premature G1/S transition, and the elevated expression of

m e c h a n o s e n s o r y  p o l y c y s t i n s  i n  h u m a n  c a r o t i d

atherosclerotic plaques was associated with p53 activation6,27.

Thus, it is conceivable that mutant p53, which loses the wild

type function of p53 and gains oncogenic function, plays an

important role in the development of PKD.

Cancer Biol Med Vol 16, No 1 February 2019 85



Here  we  revealed  a  novel  PKD  and  tumor  combined

mouse  model  (PKD derived from G3mTR-/-WRN-/-p53S/S

mice) (Figure 1 and 2). The co-occurrence of cystic kidneys

and tumors suggests common genetic mechanisms, which in

this  case  could  be  DNA  damage  caused  by  telomere

dysfunction  and  the  abnormal  DNA  damage  response,

cellular proliferation, or metabolic dysregulation caused by

p53N236S mutation. This model provides direct evidence to

connect  mutant  p53  DNA  damage  response  with  PKD

development. The fact that the incidences of cystic kidneys

increased along with telomere shortening suggests that DNA

damage triggered the development of PKD.

To  dissect  the  common  genetic  causes  of  PKD  and

tumorigenesis,  we identified the upregulated pathways in

tumors and cystic kidneys. Among the common pathways in

cystic  kidneys  and tumors,  the  pathways  of  activation  of

complement,  inflammatory  response,  and mitochondrial

function were most significantly upregulated (Figure 3B and

3E, Supplementary Figure S1). It has been documented that

activation of the alternative complement pathway and the

consequent inflammatory response plays an essential role in

the progress of kidney diseases, such as atypical hemolytic

uremic syndrome, C3 glomerulopathies, and atypical post

infectious GN, as well as ADPKD28,29. These data suggest the

importance  of  complement  cascade  in  the  regulation  of

inflammatory  response  of  both  cystic  kidney  disease  and

tumors.

Mitochondrial function is essential in energy metabolism,

oxygen consumption, ROS regulation, and ATP synthesis.

Aside from kidney disease, mitochondrial dysfunction is also

related to the processes of aging and tumor development 30,31.

By ssGSEA analysis, we found that the pathways involved in

mitochondrial function and related fatty acid metabolisms

are highly activated in tumors and cystic kidneys from G3TM

mice;  however,  they  are  not  significantly  up-regulated in

PKD1- or PKD2-deficient PKD22(Supplementary Table S1,

S2).

It  is  very  promising  that  we  found  that  PKD1,  PKD2,

Pkhd1,  and  Hnf1b  were  all  downregulated  by  the

introduction of p53S (Figure 3D). It has been documented

that Hnf1b is the transcription factor for both Pkhd1 and

PKD2. Mutation of Hnf1b results in kidney phenotypes that

include  renal  agenesis,  dysplasia,  and  cysts32.  These

phenotypes  are  consistent  with  our  pathological  analysis

(Figure 2).

Putting these data together, we report a novel PKD and
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Figure 4   A schematic of the establishment of G3TM PKD model, and the gene signatures shared between development of PKD and

tumorigenesis, and with PKD1/2 PKD model.
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tumor  combined  mouse  model,  and  reveal  the  gene

signatures involved in the development of PKD. The G3TM

PKD model shared common pathways with classical PKD.

These common pathways might be essential in PKD progress,

and thus could be common targets for PKD prevention, drug

screening, and patient care strategies. In depth analyses of

these pathways could provide new biomarkers for the clinical

diagnosis and prognosis of PKD (Figure 4).
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Supplementary materials
 Table S1   The common pathways shared by G3TM PKD and Pkd1/2-deficient PKD revealed by ssGSEA analysis results of the RNA-seq data
using the Hallmark dataset

Up-regulated in G3TM PKD Down-regulated in G3TM PKD

Up-regulated
in Pkd1 deficient PKD

Up-regulated
in Pkd2 deficient PKD

Down-regulated
in Pkd1 deficient PKD

Down-reulated
in Pkd2 deficient PKD

HALLMARK_APICAL_SURFACE HALLMARK_ANDROGEN_RESPONSE HALLMARK_ANGIOGENESIS HALLMARK_ANGIOGENESIS

HALLMARK_COAGULATION HALLMARK_APICAL_SURFACE HALLMARK_GLYCOLYSIS HALLMARK_
SPERMATOGENESIS

HALLMARK_COMPLEMENT HALLMARK_
CHOLESTEROL_HOMEOSTASIS HALLMARK_MITOTIC_SPINDLE

HALLMARK_
ESTROGEN_RESPONSE_LATE HALLMARK_COAGULATION HALLMARK_MYOGENESIS

HALLMARK_
KRAS_SIGNALING_DN HALLMARK_COMPLEMENT HALLMARK_PI3K_AKT_

MTOR_SIGNALING

HALLMARK_
ESTROGEN_RESPONSE_EARLY HALLMARK_UV_RESPONSE_DN

HALLMARK_
ESTROGEN_RESPONSE_LATE

HALLMARK_
INTERFERON_ALPHA_RESPONSE

HALLMARK_
INTERFERON_GAMMA_RESPONSE

HALLMARK_
PANCREAS_BETA_CELLS

HALLMARK_
PROTEIN_SECRETION
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 Table S2   The common pathways shared by G3TM PKD and Pkd1/2-deficient PKD revealed by ssGSEA analysis results of the RNA-seq data
using Hallmark, C2, and C5 dataset

Up-regulated in G3TM PKD Down-regulated in G3TM PKD

Up-regulated
in Pkd1 deficient PKD

Up-regulated
in Pkd2 deficient PKD

Down-regulated
in Pkd1 deficient PKD

Down-regulated
in Pkd2 deficient PKD

AIGNER_ZEB1_TARGETS AIGNER_ZEB1_TARGETS AMIT_SERUM_
RESPONSE_240_MCF10A

BECKER_TAMOXIFEN_
RESISTANCE_UP

BANDRES_RESPONSE_TO_
CARMUSTIN_WITHOUT_
MGMT_24HR_UP

BIOCARTA_COMP_PATHWAY BARIS_THYROID_CANCER_DN BIOCARTA_
CELL2CELL_PATHWAY

BIOCARTA_COMP_PATHWAY BROWNE_HCMV_
INFECTION_48HR_UP

BECKER_TAMOXIFEN_
RESISTANCE_UP

BIOCARTA_GCR_PATHWAY

DACOSTA_UV_RESPONSE_
VIA_ERCC3_COMMON_UP

DACOSTA_UV_RESPONSE_
VIA_ERCC3_COMMON_UP

BIOCARTA_
ELL2CELL_PATHWAY

BIOCARTA_NO2IL12_PATHWAY

DURCHDEWALD_SKIN_
CARCINOGENESIS_UP

DURCHDEWALD_SKIN_
CARCINOGENESIS_UP

BIOCARTA_IL2RB_PATHWAY BIOCARTA_
P53HYPOXIA_PATHWAY

FIGUEROA_AML_METHYLATION_
CLUSTER_4_UP

ENGELMANN_CANCER_
PROGENITORS_DN

BIOCARTA_SODD_PATHWAY BIOCARTA_TALL1_PATHWAY

FURUKAWA_DUSP6_
TARGETS_PCI35_UP

FIGUEROA_AML_
METHYLATION_CLUSTER_4_UP

BOWIE_RESPONSE_
TO_EXTRACELLULAR_MATRIX

BROWNE_INTERFERON_
RESPONSIVE_GENES

GO__DE_NOVO_
POSTTRANSLATIONAL_
PROTEIN_FOLDING

FURUKAWA_DUSP6_
TARGETS_PCI35_UP

BROWNE_INTERFERON_
RESPONSIVE_GENES

CHAN_INTERFERON_
PRODUCING_DENDRITIC_CELL

GO__DE_NOVO_
PROTEIN_FOLDING

GO__DE_NOVO_P
OSTTRANSLATIONAL_
PROTEIN_FOLDING

BURTON_ADIPOGENESIS_12 CHEMELLO_SOLEUS_VS_
EDL_MYOFIBERS_DN

GO_2_IRON_2_SULFUR_
CLUSTER_BINDING

GO__DE_NOVO_
PROTEIN_FOLDING

CHAN_INTERFERON_
PRODUCING_DENDRITIC_CELL

CHIANG_LIVER_CANCER_
SUBCLASS_INTERFERON_UP

GO_AMMONIUM_ION_BINDING GO_ACTIN_NUCLEATION CHEMELLO_SOLEUS_VS_
EDL_MYOFIBERS_DN

CLIMENT_BREAST_
CANCER_COPY_NUMBER_UP

GO_APOPTOTIC_
MITOCHONDRIAL_CHANGES

GO_APOPTOTIC_
MITOCHONDRIAL_CHANGES

CLIMENT_BREAST_CANCER_
COPY_NUMBER_UP

DAUER_STAT3_TARGETS_DN

GO_BILE_ACID_
METABOLIC_PROCESS

GO_BILE_ACID_
METABOLIC_PROCESS

CROONQUIST_STROMAL_
STIMULATION_DN

DOANE_BREAST_CANCER_
CLASSES_DN

GO_BRAIN_MORPHOGENESIS GO_BROWN_FAT_
CELL_DIFFERENTIATION

DAUER_STAT3_TARGETS_DN DUTTA_APOPTOSIS_VIA_NFKB

GO_BROWN_FAT_
CELL_DIFFERENTIATION

GO_CELL_MATURATION DORN_ADENOVIRUS_
INFECTION_32HR_UP

EINAV_INTERFERON_
SIGNATURE_IN_CANCER

GO_CALCIUM_INDEPENDENT_
CELL_CELL_ADHESION_VIA_
PLASMA_MEMBRANE_CELL_
ADHESION_MOLECULES

GO_CELLULAR_IRON_
ION_HOMEOSTASIS

DORN_ADENOVIRUS_
INFECTION_48HR_UP

FARMER_BREAST_
CANCER_CLUSTER_1

GO_CATECHOLAMINE_BINDING GO_CHAPERONE_MEDIATED_
PROTEIN_COMPLEX_ASSEMBLY

DUTTA_APOPTOSIS_VIA_NFKB FERRANDO_LYL1_NEIGHBORS

GO_CELLULAR_IRON_
ION_HOMEOSTASIS

GO_COMPLEMENT_ACTIVATION EINAV_INTERFERON_
SIGNATURE_IN_CANCER

GAUSSMANN_MLL_AF4_
FUSION_TARGETS_F_DN

GO_CHAPERONE_MEDIATED_
PROTEIN_COMPLEX_ASSEMBLY

GO_COMPLEMENT_ACTIVATION_
ALTERNATIVE_PATHWAY

FIGUEROA_AML_
METHYLATION_CLUSTER_5_DN

GO_ACETYLGALACTOSAMINYLT
RANSFERASE_ACTIVITY

GO_CHYLOMICRON GO_CYTOSOLIC_SMALL_
RIBOSOMAL_SUBUNIT

FINETTI_BREAST_
CANCER_KINOME_GREEN

GO_ACTIN_FILAMENT_
POLYMERIZATION
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_ALTERNATIVE_PATHWAY FUSION_TARGETS_F_DN ATING_DOPAMINE_RECEPTOR_
SIGNALING_PATHWAY

GO_CYTOSOLIC_SMALL_RIBOSO
MAL_SUBUNIT

GO_ERBB2_SIGNALING_
PATHWAY

GAVIN_FOXP3_TARGETS_
CLUSTER_T7

GO_ADENYLATE_CYCLASE_ACTIV
ATING_G_PROTEIN_COUPLED_
RECEPTOR_SIGNALING_PATHWAY

GO_DETECTION_OF_CHEMICAL_
STIMULUS_INVOLVED_IN_SENSO
RY_PERCEPTION_OF_TASTE

GO_FAT_SOLUBLE_VITAMIN_
METABOLIC_PROCESS

GENTILE_UV_RESPONSE_
CLUSTER_D1

GO_ADENYLATE_CYCLASE_MOD
ULATING_G_PROTEIN_COUPLED_
RECEPTOR_SIGNALING_PATHWAY

GO_DETOXIFICATION GO_GAS_TRANSPORT GO_14_3_3_PROTEIN_BINDING GO_ADRENERGIC_RECEPTOR_
SIGNALING_PATHWAY

GO_ENDOCYTIC_
VESICLE_LUMEN

GO_HUMORAL_IMMUNE_
RESPONSE_MEDIATED_BY_
CIRCULATING_IMMUNOGLOBULIN

GO_ACETYLGALACTOSAMINYLT
RANSFERASE_ACTIVITY

GO_AXON_REGENERATION

GO_EPOXYGENASE_
P450_PATHWAY

GO_HYDROLASE_ACTIVITY_
ACTING_ON_CARBON_NITROGEN_
BUT_NOT_PEPTIDE_BONDS_IN_
LINEAR_AMIDINES

GO_ACROSOME_ASSEMBLY GO_B_CELL_RECEPTOR_
SIGNALING_PATHWAY

GO_FAT_SOLUBLE_VITAMIN_
METABOLIC_PROCESS

GO_MAP_KINASE_KINASE_
KINASE_ACTIVITY

GO_ACTIN_FILAMENT_
POLYMERIZATION

GO_BASEMENT_MEMBRANE_
ORGANIZATION

GO_HIGH_DENSITY_
LIPOPROTEIN_PARTICLE

GO_MHC_CLASS_II_PROTEIN_
COMPLEX_BINDING

GO_ACTIVATION_OF_
ADENYLATE_CYCLASE_ACTIVITY

GO_BETA_1_3_GALACTOSYLTRA
NSFERASE_ACTIVITY

GO_HUMORAL_IMMUNE_
RESPONSE_MEDIATED_BY_
CIRCULATING_IMMUNOGLOBULIN

GO_MULTIVESICULAR_BODY_
ORGANIZATION

GO_ACTIVATION_OF_CYSTEINE_
TYPE_ENDOPEPTIDASE_
ACTIVITY_INVOLVED_IN_
APOPTOTIC_SIGNALING_PATHWAY

GO_CELLULAR_RESPONSE_TO_
EXOGENOUS_DSRNA

GO_HYDROLASE_ACTIVITY_
ACTING_ON_CARBON_
NITROGEN_BUT_NOT_PEPTIDE_
BONDS_IN_LINEAR_AMIDINES

GO_NEGATIVE_REGULATION_
OF_ACUTE_INFLAMMATORY_
RESPONSE

GO_ADENYLATE_CYCLASE_ACTIV
ATING_G_PROTEIN_COUPLED_
RECEPTOR_SIGNALING_PATHWAY

GO_CELLULAR_RESPONSE_TO_
PROSTAGLANDIN_E_STIMULUS

GO_INTRINSIC_COMPONENT_
OF_MITOCHONDRIAL_OUTER_
MEMBRANE

GO_NEGATIVE_REGULATION_
OF_ANDROGEN_RECEPTOR_
SIGNALING_PATHWAY

GO_ADENYLYLTRANSFERASE_
ACTIVITY

GO_COPPER_ION_TRANSPORT

GO_MHC_CLASS_II_PROTEIN_
COMPLEX_BINDING

GO_NEGATIVE_REGULATION_
OF_CALCIUM_ION_IMPORT

GO_ANTIGEN_BINDING GO_CYTOLYSIS

GO_MITOCHONDRIAL_ATP_
SYNTHESIS_COUPLED_PROTON_
TRANSPORT

GO_NEGATIVE_REGULATION_
OF_CARBOHYDRATE_
METABOLIC_PROCESS

GO_B_CELL_ACTIVATION GO_CYTOPLASMIC_SEQUESTERI
NG_OF_TRANSCRIPTION_
FACTOR

GO_MULTIVESICULAR_BODY_
ORGANIZATION

GO_NEGATIVE_REGULATION_
OF_HORMONE_SECRETION

GO_B_CELL_RECEPTOR_
SIGNALING_PATHWAY

GO_DISRUPTION_OF_CELLS_
OF_OTHER_ORGANISM

GO_NEGATIVE_REGULATION_
OF_ACUTE_INFLAMMATORY_
RESPONSE

GO_NEGATIVE_REGULATION_
OF_PEPTIDE_SECRETION

GO_BETA_1_3_GALACTOSYLTRA
NSFERASE_ACTIVITY

GO_DISRUPTION_OF_CELLS_OF_
OTHER_ORGANISM_INVOLVED_
IN_SYMBIOTIC_INTERACTION

GO_NEGATIVE_REGULATION_
OF_ANDROGEN_RECEPTOR_
LING_PATHWAY

GO_NEGATIVE_REGULATION_
OF_PROTEIN_OLIGOMERIZATION

GO_CELLULAR_COMPONENT_
DISASSEMBLY_INVOLVED_IN_
EXECUTION_PHASE_OF_APOPTOSIS

GO_DNA_TEMPLATED_TRANSCR
IPTIONAL_PREINITIATION_
COMPLEX_ASSEMBLY

GO_COMPLEMENT_ACTIVATION GO_DETECTION_OF_CHEMICAL_
STIMULUS_INVOLVED_IN_SENSO
RY_PERCEPTION_OF_TASTE

FUNG_IL2_SIGNALING_2 GO_ACTIVATION_OF_CYSTEINE_
TYPE_ENDOPEPTIDASE_ACTIVITY_
INVOLVED_IN_APOPTOTIC_
SIGNALING_PATHWAY

GO_COMPLEMENT_ACTIVATION GO_DYNEIN_BINDING GAUSSMANN_MLL_AF4_ GO_ADENYLATE_CYCLASE_ACTIV
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_C_FROM_MITOCHONDRIA

GO_NEGATIVE_REGULATION_
OF_RESPONSE_TO_OXIDATIVE_
STRESS

GO_PEPTIDE_ANTIGEN_BINDING GO_COPPER_ION_TRANSPORT GO_ERYTHROCYTE_
DEVELOPMENT

GO_ORGAN_OR_TISSUE_
SPECIFIC_IMMUNE_RESPONSE

GO_POSITIVE_REGULATION_
OF_CARDIAC_MUSCLE_
CONTRACTION

GO_CYCLIN_DEPENDENT_
PROTEIN_SERINE_THREONINE_
KINASE_INHIBITOR_ACTIVITY

GO_EXECUTION_PHASE_
OF_APOPTOSIS

GO_OXIDOREDUCTASE_ACTIVITY_
ACTING_ON_PAIRED_DONORS_
WITH_INCORPORATION_OR_
REDUCTION_OF_MOLECULAR_
OXYGEN_REDUCED_FLAVIN_
OR_FLAVOPROTEIN_AS_ONE_
DONOR_AND_INCORPORATION_
OF_ONE_ATOM_OF_OXYGEN

GO_POSITIVE_REGULATION_OF_
CATECHOLAMINE_SECRETION

GO_CYTOPLASMIC_SEQUESTERING_
OF_TRANSCRIPTION_
FACTOR

GO_GRANULOCYTE_
DIFFERENTIATION

GO_OXYGEN_BINDING GO_POSITIVE_REGULATION_OF_
TRANSCRIPTION_INITIATION_
FROM_RNA_POLYMERASE_
II_PROMOTER

GO_DEAMINASE_ACTIVITY GO_INTERACTION_WITH_
SYMBIONT

GO_OXYGEN_TRANSPORT GO_PROTEIN_BINDING_
INVOLVED_IN_PROTEIN_FOLDING

GO_DEFENSE_RESPONSE_
TO_VIRUS

GO_ISOPRENOID_BINDING

GO_POSITIVE_REGULATION_
OF_CARDIAC_MUSCLE_
CONTRACTION

GO_REGULATION_OF_APPETITE GO_DOPAMINE_RECEPTOR_
BINDING

GO_LYMPHOID_PROGENITOR_
CELL_DIFFERENTIATION

GO_POSITIVE_REGULATION_
OF_FATTY_ACID_METABOLIC_
PROCESS

GO_REGULATION_OF_CELL_
PROJECTION_SIZE

GO_ENDOLYSOSOME GO_MACROPHAGE_
DIFFERENTIATION

GO_POSITIVE_REGULATION_
OF_FATTY_ACID_OXIDATION

GO_REGULATION_OF_CELLULAR_
AMINO_ACID_METABOLIC_
PROCESS

GO_ENDOPLASMIC_RETICULUM_
CHAPERONE_COMPLEX

GO_MAINTENANCE_OF_CELL_
POLARITY

GO_POSITIVE_REGULATION_
OF_LIPID_STORAGE

GO_REGULATION_OF_MICROTU
BULE_BASED_MOVEMENT

GO_EPITHELIAL_STRUCTURE_
MAINTENANCE

GO_MAINTENANCE_OF_GASTRO
INTESTINAL_EPITHELIUM

GO_POSITIVE_REGULATION_
OF_RELEASE_OF_CYTOCHROME_
C_FROM_MITOCHONDRIA

GO_REGULATION_OF_
URINE_VOLUME GO_EXTRINSIC_APOPTOTIC_

SIGNALING_PATHWAY_VIA_
DEATH_DOMAIN_RECEPTORS

GO_MAP_KINASE_ACTIVITY

GO_POSITIVE_REGULATION_
OF_RESPONSE_TO_OXIDATIVE_
STRESS

GO_RENAL_SYSTEM_PROCESS_
INVOLVED_IN_REGULATION_
OF_BLOOD_VOLUME

GO_FEMALE_GAMETE_
GENERATION

GO_MULTICELLULAR_
ORGANISMAL_MOVEMENT

GO_NEGATIVE_REGULATION_
OF_CALCIUM_ION_IMPORT

GO_NEGATIVE_REGULATION_
OF_RELEASE_OF_CYTOCHROME_
C_FROM_MITOCHONDRIA

GO_CELLULAR_RESPONSE_TO_
ACID_CHEMICAL

GO_DOPAMINE_RECEPTOR_
BINDING

GO_NEGATIVE_REGULATION_
OF_HORMONE_SECRETION

GO_NUCLEOBASE_METABOLIC_
PROCESS

GO_CELLULAR_RESPONSE_TO_
EXOGENOUS_DSRNA

GO_DOPAMINE_RECEPTOR_
SIGNALING_PATHWAY

GO_NEGATIVE_REGULATION_
OF_LIPID_CATABOLIC_PROCESS

GO_NUCLEOSIDE_PHOSPHATE_
ATABOLIC_PROCESS

GO_CELLULAR_RESPONSE_TO_
GLUCOSE_STARVATION

GO_DRUG_BINDING

GO_NEGATIVE_REGULATION_
OF_PEPTIDE_SECRETION

GO_ORGANIC_CYCLIC_COMPOUND_
CATABOLIC_PROCESS

GO_CELLULAR_RESPONSE_TO_
PROSTAGLANDIN_E_STIMULUS

GO_ENDOPLASMIC_RETICULUM_
CHAPERONE_COMPLEX

GO_NEGATIVE_REGULATION_
OF_RELEASE_OF_CYTOCHROME

GO_OXYGEN_TRANSPORT GO_CELLULAR_RESPONSE_TO_
PROSTAGLANDIN_STIMULUS

GO_EPITHELIAL_STRUCTURE_
MAINTENANCE
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GO_REGULATION_OF_APPETITE GO_RETINOL_DEHYDROGENASE_
ACTIVITY

GO_ISOPRENOID_BINDING GO_NEGATIVE_REGULATION_
OF_INTRINSIC_APOPTOTIC_
SIGNALING_PATHWAY

GO_REGULATION_OF_CELLULAR_
AMINO_ACID_METABOLIC_
PROCESS

GO_SENSORY_PERCEPTION_
OF_TASTE

GO_JNK_CASCADE GO_NEGATIVE_REGULATION_
OF_INTRINSIC_APOPTOTIC_
SIGNALING_PATHWAY_IN_
RESPONSE_TO_DNA_DAMAGE

GO_REGULATION_OF_ENERGY_
HOMEOSTASIS

GO_SEQUESTERING_OF_
METAL_ION

GO_KINASE_INHIBITOR_
ACTIVITY

GO_NEGATIVE_REGULATION_
OF_LEUKOCYTE_APOPTOTIC_
PROCESS

GO_REGULATION_OF_MICROTU
BULE_BASED_MOVEMENT

GO_TETRAPYRROLE_BINDING GO_KINASE_REGULATOR_
ACTIVITY

GO_NEGATIVE_REGULATION_
OF_LYASE_ACTIVITY

GO_REGULATION_OF_
OXIDATIVE_STRESS_INDUCED_
CELL_DEATH

GO_U1_SNRNP GO_LYMPH_NODE_
DEVELOPMENT

GO_NEGATIVE_REGULATION_
OF_LYMPHOCYTE_APOPTOTIC_
PROCESS

GO_REGULATION_OF_RELEASE_
OF_CYTOCHROME_C_FROM_
MITOCHONDRIA

GO_UBIQUITIN_LIKE_PROTEIN_
CONJUGATING_ENZYME_
BINDING

GO_LYMPHOCYTE_
HOMEOSTASIS

GO_NEGATIVE_REGULATION_
OF_MYELOID_CELL_APOPTOTIC_
PROCESS

GO_REGULATION_OF_
SEQUESTERING_OF_TRIGLYCERIDE

GO_VIRION_ASSEMBLY GO_MAINTENANCE_OF_
GASTROINTESTINAL_EPITHELIUM

GO_NEGATIVE_REGULATION_
OF_OSTEOCLAST_
DIFFERENTIATION

GO_REGULATION_OF_URINE_
VOLUME

GOERING_BLOOD_HDL_
CHOLESTEROL_QTL_CIS

GO_MEMBRANE_TUBULATION GO_NEGATIVE_REGULATION_
OF_RESPONSE_TO_BIOTIC_
STIMULUS

GO_RENAL_SYSTEM_PROCESS_
INVOLVED_IN_REGULATION_
OF_BLOOD_VOLUME

HALLMARK_PANCREAS_BETA_
CELLS

GO_MITOGEN_ACTIVATED_
PROTEIN_KINASE_KINASE_BINDING

GO_NEGATIVE_REGULATION_
OF_RESPONSE_TO_DNA_DAMAGE_
STIMULUS

GO_RESPONSE_TO_CAMP HALMOS_CEBPA_TARGETS_DN GO_MITOTIC_SISTER_
CHROMATID_COHESION

GO_NEGATIVE_REGULATION_
OF_SIGNAL_TRANSDUCTION_
BY_P53_CLASS_MEDIATOR

GO_POSITIVE_REGULATION_OF_
TRANSCRIPTION_INITIATION_
FROM_RNA_POLYMERASE_II_
PROMOTER

GO_RESPONSE_TO_ACTIVITY GO_G_PROTEIN_BETA_GAMMA_
SUBUNIT_COMPLEX_BINDING

GO_NATURAL_KILLER_CELL_
DIFFERENTIATION

GO_PROTEIN_BINDING_
INVOLVED_IN_PROTEIN_FOLDING

GO_RESPONSE_TO_CAMP GO_G_PROTEIN_COUPLED_RECE
PTOR_SIGNALING_PATHWAY_
COUPLED_TO_CYCLIC_NUCLEOTIDE_
SECOND_MESSENGER

GO_NECROTIC_CELL_DEATH

GO_PROTEIN_REFOLDING GO_RESPONSE_TO_COLD GO_GALACTOSYLTRANSFERASE_
ACTIVITY

GO_NEGATIVE_REGULATION_OF_
CALCIUM_ION_TRANSMEMBRANE_
TRANSPORT

GO_PROTON_TRANSPORTING_
ATP_SYNTHASE_COMPLEX

GO_RESPONSE_TO_DIETARY_
EXCESS

GO_GLYCOPROTEIN_CATABOLIC_
PROCESS

GO_NEGATIVE_REGULATION_OF_
GLYCOPROTEIN_BIOSYNTHETIC_
PROCESS

GO_QUATERNARY_AMMONIUM_
GROUP_BINDING

GO_RESPONSE_TO_MISFOLDED_
PROTEIN

GO_GRANULOCYTE_
DIFFERENTIATION

GO_NEGATIVE_REGULATION_OF_
HOMEOSTATIC_PROCESS

GO_REACTIVE_OXYGEN_SPECIES_
BIOSYNTHETIC_PROCESS

GO_RESPONSE_TO_SALT_STRESS GO_GTPASE_ACTIVATING_
PROTEIN_BINDING

GO_NEGATIVE_REGULATION_OF_
INTERLEUKIN_1_PRODUCTION

GO_REACTIVE_OXYGEN_SPECIES_
METABOLIC_PROCESS

GO_RETINA_HOMEOSTASIS GO_I_KAPPAB_KINASE_NF_
KAPPAB_SIGNALING

GO_NEGATIVE_REGULATION_OF_
INTERLEUKIN_10_PRODUCTION
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IMMUNITY

GO_UBIQUITIN_LIKE_PROTEIN_
CONJUGATING_ENZYME_
BINDING

MIKKELSEN_IPS_LCP_WITH_
H3K27ME3

GO_NEGATIVE_REGULATION_
OF_MYELOID_CELL_APOPTOTIC_
PROCESS

GO_POSITIVE_REGULATION_OF_
CAMP_MEDIATED_SIGNALING

GO_VIRION_ASSEMBLY MIKKELSEN_MEF_HCP_WITH_H3_
UNMETHYLATED

GO_NEGATIVE_REGULATION_
OF_OSTEOCLAST_
DIFFERENTIATION

GO_POSITIVE_REGULATION_OF_
ERYTHROCYTE_
DIFFERENTIATION

HALMOS_CEBPA_TARGETS_DN NGUYEN_NOTCH1_TARGETS_UP GO_NEGATIVE_REGULATION_
OF_RESPONSE_TO_BIOTIC_
STIMULUS

GO_POSITIVE_REGULATION_OF_
INTRINSIC_APOPTOTIC_
SIGNALING_PATHWAY

HEDVAT_ELF4_TARGETS_UP NIKOLSKY_BREAST_CANCER_
8Q23_Q24_AMPLICON

GO_NEGATIVE_REGULATION_OF_
RESPONSE_TO_DNA_DAMAGE_
STIMULUS

GO_POSITIVE_REGULATION_OF_
LYASE_ACTIVITY

HOUSTIS_ROS PEDERSEN_METASTASIS_BY_
ERBB2_ISOFORM_6

GO_NEGATIVE_REGULATION_OF_
STAT_CASCADE

GO_POSITIVE_REGULATION_OF_
LYMPHOCYTE_MIGRATION

HOWLIN_CITED1_TARGETS_2_UP REACTOME_APOPTOTIC_
CLEAVAGE_OF_CELL_
ADHESION_PROTEINS

GO_NEGATIVE_REGULATION_OF_
TRANSMEMBRANE_TRANSPORT

GO_POSITIVE_REGULATION_OF_
MEMBRANE_INVAGINATION

HUI_MAPK14_TARGETS_UP REACTOME_COMPLEMENT_
CASCADE

GO_NEGATIVE_REGULATION_OF_
TYPE_I_INTERFERON_
PRODUCTION

GO_POSITIVE_REGULATION_OF_
NUCLEOTIDE_METABOLIC_
PROCESS

GO_RESPONSE_TO_COLD HOUSTIS_ROS GO_MODULATION_BY_HOST_
OF_VIRAL_PROCESS

GO_NEGATIVE_REGULATION_
OF_STAT_CASCADE

GO_RESPONSE_TO_DIETARY_
EXCESS

HUI_MAPK14_TARGETS_UP GO_MRNA_TRANSCRIPTION GO_NEGATIVE_REGULATION_
OF_TRANSMEMBRANE_
TRANSPORT

GO_RESPONSE_TO_MISFOLDED_
PROTEIN

HWANG_PROSTATE_CANCER_
MARKERS

GO_MRNA_TRANSCRIPTION_
FROM_RNA_POLYMERASE_II_
PROMOTER

GO_NEGATIVE_T_CELL_
SELECTION

GO_RESPONSE_TO_OXYGEN_
RADICAL

KANG_GLIS3_TARGETS GO_NATURAL_KILLER_CELL_
ACTIVATION

GO_NEURON_PROJECTION_
REGENERATION

GO_RESPONSE_TO_
PHENYLPROPANOID

KEGG_ADIPOCYTOKINE_
SIGNALING_PATHWAY

GO_NATURAL_KILLER_CELL_
DIFFERENTIATION

GO_NUCLEAR_INCLUSION_BODY

GO_RETINA_HOMEOSTASIS KEGG_RETINOL_METABOLISM GO_NECROTIC_CELL_DEATH GO_NUCLEOTIDASE_ACTIVITY

GO_RETINOL_DEHYDROGENASE_
ACTIVITY

KIM_BIPOLAR_DISORDER_
OLIGODENDROCYTE_DENSITY_
CORR_DN

GO_NEGATIVE_REGULATION_
OF_HOMEOSTATIC_PROCESS

GO_PHOSPHOLIPASE_C_ACTIVA
TING_G_PROTEIN_COUPLED_
RECEPTOR_SIGNALING_PATHWAY

GO_SENSORY_PERCEPTION_
OF_TASTE

KIM_RESPONSE_TO_TSA_AND_
DECITABINE_UP

GO_NEGATIVE_REGULATION_
OF_LEUKOCYTE_APOPTOTIC_
PROCESS

GO_PHOSPHOLIPASE_
C_ACTIVITY

GO_SPERM_MOTILITY LEE_LIVER_CANCER_ACOX1_UP GO_NEGATIVE_REGULATION_OF_
LIPID_BIOSYNTHETIC_PROCESS

GO_PHOSPHOTRANSFERASE_
ACTIVITY_NITROGENOUS_
GROUP_AS_ACCEPTOR

GO_TETRAPYRROLE_BINDING MATZUK_SPERMATID_
DIFFERENTIATION

GO_NEGATIVE_REGULATION_
OF_LYMPHOCYTE_APOPTOTIC_
PROCESS

GO_POLY_A_MRNA_EXPORT_
FROM_NUCLEUS

GO_U1_SNRNP MEISSNER_ES_ICP_WITH_
H3K4ME3_AND_H3K27ME3

GO_NEGATIVE_REGULATION_
OF_LYMPHOCYTE_MEDIATED_

GO_POSITIVE_REGULATION_
OF_B_CELL_PROLIFERATION
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CASCADE PROGESTERONE_CLUSTER_5 CELLULAR_EXTRAVASATION ERYTHROCYTE_DIFFERENTIATION

REACTOME_FORMATION_OF_
ATP_BY_CHEMIOSMOTIC_
COUPLING

YAO_TEMPORAL_RESPONSE_TO_
PROGESTERONE_CLUSTER_9

GO_POSITIVE_REGULATION_OF_
ERYTHROCYTE_
DIFFERENTIATION

GO_REGULATION_OF_FEVER_
GENERATION

REACTOME_INITIAL_
TRIGGERING_OF_COMPLEMENT

ZHOU_PANCREATIC_EXOCRINE_
PROGENITOR

GO_POSITIVE_REGULATION_OF_
INTERFERON_ALPHA_PRODUCTI
ON

GO_REGULATION_OF_INTRINSIC
_APOPTOTIC_SIGNALING_
PATHWAY

REACTOME_OXYGEN_DEPENDENT_
PROLINE_HYDROXYLATION_
OF_HYPOXIA_INDUCIBLE_
FACTOR_ALPHA

GO_POSITIVE_REGULATION_OF_
INTERFERON_BETA_
PRODUCTION

GO_REGULATION_OF_INTRINSIC_
APOPTOTIC_SIGNALING_PATHWAY_
BY_P53_CLASS_MEDIATOR

REACTOME_REGULATION_OF_
RHEB_GTPASE_ACTIVITY_BY_
AMPK

GO_POSITIVE_REGULATION_OF_
LAMELLIPODIUM_ASSEMBLY

GO_REGULATION_OF_INTRINSIC_
APOPTOTIC_SIGNALING_
PATHWAY_IN_RESPONSE_
TO_DNA_DAMAGE

HWANG_PROSTATE_CANCER_
MARKERS

REACTOME_INITIAL_
TRIGGERING_OF_COMPLEMENT

GO_NUCLEOTIDASE_ACTIVITY GO_POSITIVE_REGULATION_OF_
OXIDATIVE_STRESS_INDUCED_
CELL_DEATH

KANG_GLIS3_TARGETS REACTOME_REGULATION_OF_
RHEB_GTPASE_ACTIVITY_BY_
AMPK

GO_OLIGOSACCHARIDE_
BIOSYNTHETIC_PROCESS

GO_POSITIVE_REGULATION_OF_
PROTEIN_DEACETYLATION

KEGG_PARKINSONS_DISEASE REACTOME_TANDEM_PORE_
DOMAIN_POTASSIUM_CHANNELS

GO_OOCYTE_MATURATION GO_POSITIVE_REGULATION_OF_
THYMOCYTE_AGGREGATION

KEGG_TASTE_TRANSDUCTION SHANK_TAL1_TARGETS_DN GO_PARTURITION GO_PROSTANOID_METABOLIC_
PROCESS

KIM_BIPOLAR_DISORDER_
OLIGODENDROCYTE_DENSITY_
CORR_DN

SUBTIL_PROGESTIN_TARGETS GO_PHOSPHATE_ION_BINDING GO_PROTEIN_DESTABILIZATION

KIM_RESPONSE_TO_TSA_AND_
DECITABINE_UP

VALK_AML_CLUSTER_10 GO_PHOSPHATIDIC_ACID_
BINDING

GO_PROTEIN_
HOMOTRIMERIZATION

LEE_LIVER_CANCER_ACOX1_UP VALK_AML_CLUSTER_15 GO_PHOSPHATIDYLINOSITOL_4_
PHOSPHATE_BINDING
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Figure  S1     A  heatmap  of  gene  expression  profiles  (ssGSEA

analysis results of the RNA-seq data using Hallmark, C2, and C5

datasets) in MEFs from G1DM, G2DM, G3DM, G1TM, G2TM, and

G3TM mice, as well as the tumors and cystic kidneys from G3TM

mice. The pathways were ranked by scores, showing upregulation

in cystic kidney, as well as in the tumor and G3TM MEFs.

 
Figure  S2     A  heatmap  of  gene  expression  profiles  (ssGSEA

analysis results of the RNA-seq data using Hallmark, C2, and C5

datasets) in MEFs from G1DM, G2DM, G3DM, G1TM, G2TM, and

G3TM mice, as well as tumors and cystic kidneys from G3TM mice.

The pathways were ranked by scores showing the downregulation

in the cystic kidney, as well as in tumor and in G3TM MEFs.
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