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1  | INTRODUC TION

Atherosclerosis is a multifactorial disease, which is characterized 
by the formation of fatty plaques in the arterial wall and chronic 
inflammatory response. Atherosclerosis leads to narrowing of the 
lumen of the affected vessel and increases the risk of thrombosis, 
which can be followed by lethal events, such as ischemic stroke 
and sudden cardiac death.1,2 It is well-known that atherosclerosis 

development can be a result of acquired and inherited factors. To 
date, numerous genetic variations and mutations have been shown 
to predispose humans to atherogenesis. Among the risk factors of 
atherosclerosis are dyslipidemia, arterial hypertension, diabetes 
mellitus, and old age.3 Monocytes and macrophages play leading 
roles at all stages of atherosclerosis development, contributing to 
the local inflammatory response, cholesterol accumulation, and 
plaque growth.4
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Abstract
Atherosclerosis with associated cardiovascular diseases remains one of the main 
causes of disability and death worldwide, requiring development of new solutions for 
prevention and treatment. Macrophages are the key effectors of a series of events 
involved in atherogenesis, such as inflammation, plaque formation, and changes in 
lipid metabolism. Some of these events were shown to be associated with mitochon-
drial dysfunction and excessive mitochondrial DNA (mtDNA) damage. Moreover, 
macrophages represent a promising target for novel therapeutic approaches that are 
based on the expression of various receptors and nanoparticle uptake. Lipid-based 
gene delivery to mitochondria is considered to be an interesting strategy for mtDNA 
damage correction. To date, several nanocarriers and their modifications have been 
developed that demonstrate high transfection efficiency and low cytotoxicity. This 
review discusses the possibilities of lipid-based gene delivery to macrophage mito-
chondria for atherosclerosis therapy.
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Modern advances of genetics and molecular biology have im-
proved our understanding of atherosclerosis pathogenesis and 
opened new perspectives for developing diagnostic and therapeutic 
approaches.5 It is evident that treatment of atherosclerosis requires 
implementation of complex approaches that employ a combination 
of physical, chemical, and biological methods, such as those pro-
vided by nanomedicine.6

Mitochondrial dysfunction caused by mitochondrial DNA 
(mtDNA) damage is a well-studied cause of cell dysfunction and death 
observed in atherosclerosis.7 Correspondingly, dysfunctional mtDNA 
is regarded as a promising target for atherosclerosis treatment strate-
gies. The latest tendencies of treatment of mitochondrial diseases in-
clude direct nucleic acid (NA) delivery into these organelles. Currently, 
specially developed nanocarriers for DNA delivery into the mitochon-
dria demonstrate sufficient efficacy and low cytotoxicity.9 Lipid-
based nanocarriers are currently well investigated and widely used 
in research and therapy.10 Being constantly improved and upgraded, 
liposomes often demonstrate biocompatibility and transfection effi-
ciency, which makes them an advantageous agent for immunostimula-
tion, drug, and NA delivery not only to cells but also to mitochondria.11 
The aim of this review is to summarize current knowledge on the use 
of lipid-based nanocarriers for targeted gene delivery to macrophage 
mitochondria and assess its role in future atherosclerosis therapy.

2  | CURRENT C ARDIOVA SCUL AR DISE A SE 
MANAGEMENT STR ATEGIES

Current approaches for treatment of atherosclerosis are mainly fo-
cused on lipid lowering with statins, reduction in risk of thrombosis 
with anticoagulants, and alleviation of inflammation by means of 
immunomodulation.12,13 During the recent years, substantial pro-
gress was made in the improvement of atherosclerosis treatment. 
Currently, a number of therapeutic agents applicable for athero-
sclerotic cardiovascular disease (ASCVD) treatment are being used. 
Having proved efficacy in atherosclerosis therapy, some of these 
agents can be associated with high residual cardiovascular risk, low 
cost-efficiency, various contraindications, and side effects. Among 
them, lipid lowering statin drugs, fibrates, PCSK-9 inhibitors, and ni-
acin can be highlighted as important therapeutic agents that deserve 
to be discussed in detail.

Statins (HMG-CoA reductase inhibitors) are used for the first-
line treatment for ASCVD reduction. These drugs can be used 
in different groups of patients providing low-density lipopro-
tein-cholesterol (LDL-C) lowering effect of desirable intensity (low, 
medium, or high) with up to more than 50% LDL-C reduction.14 
While lipid lowering effect can be regarded as the primary effect 
of statins, they also have secondary effects (so-called pleiotropic 
effects) that can contribute to ASCVD management. Importantly, 
anti-inflammatory activity of statins is well-known. It was shown 
that statins reduce the levels of proinflammatory cytokines and 
C-reactive protein (CRP), which is a nonspecific, but highly sen-
sitive biomarker of inflammation.15,16 Moreover, clinical studies 

reported statins to stabilize the plaque and reduce vascular wall 
inflammation.17

However, statins are not free from adverse effects, drug in-
teractions, and intolerance in some patients.18 That is why clini-
cian-patient risk discussion as well as risk-benefit assessment are 
recommended before statin prescription.19 Despite this fact, in some 
cases it is still necessary to stop statin therapy, mainly because of 
statin-associated muscle symptoms (SAMS), which can vary from 
myalgia to rhabdomyolysis and associated disorders.20 Therapeutic 
alternatives to statins have been considered, and several other drug 
classes have been developed, some of them being able to potentiate 
the ongoing statin therapy.

Fibrates (agonists of peroxisome proliferator-activated recep-
tor-α (PPAR-α)) are another group of medications that belong to 
nonstatin therapy, mainly aimed on triglyceride level control.21 It has 
also been reported that fibrates can be used in combination with 
statins to correct dyslipidemia and residual cardiovascular risk.22 
The results of some studies have indicated anti-inflammatory po-
tential of fibrates.23 Nevertheless, the results of studies assessing 
the effect of fibrates on human lipid profile are sometimes contra-
dictory.24 Moreover, presence of adverse effects is also notable, in-
cluding nausea, myositis, and gallstones.25 Obviously, more studies 
are needed to assess the efficacy of fibrates and associated drug 
combinations in different groups of patients.

Recently, a new group of drugs, PCSK9 (proprotein convertase 
subtilisin/kexin type 9) inhibitors, came to clinical practice. The 
mechanism of action of these drugs relates to the reduction in the 
plasma level of PCSK9, therefore reducing its binding to low-density 
lipoprotein receptor (LDLR). Using of PCSK9 inhibitors opens new 
opportunities for high-risk patients, and is recommended in cases 
when general LDL-lowering therapy is not sufficient.26 However, 
these drugs have their limitations. Firstly, the relatively high price 
of treatment with PCSK9 inhibitors makes them cost ineffective 
and hinders their widespread use.27 Secondly, little is known to date 
about the long-term tolerance of these drugs due to their recent ap-
proval.28 Future studies will add more detail on the PCSK9 inhibitors 
safety and effectiveness, allowing for a better positioning of these 
drugs within the spectrum of antiatherosclerosis and antihyperlipid-
emia treatments.

Niacin was one of the first effective lipid-lowering agents that 
have been discovered, which acts through LDL and HDL lowering 
in the plasma.29 However, clinical trials did not confirm a beneficial 
effect on niacin on cardiovascular events incidence, while the drug's 
side effects, including skin, gastrointestinal, and musculoskeletal ef-
fects, have been observed. Thus, there are currently no medications 
with niacin approved in Europe, and no recommendations to use it in 
the US guidelines.30,31

Modern guidelines for cardiovascular disease prevention and 
therapy suggest low-lipid diet and active lifestyle as primary mea-
sures to reduce cardiovascular risk. Dietary supplements also have 
their place as risk-reducing agents helping to normalize the blood 
lipid profile. Omega-3 fatty acids, according to the results of sev-
eral trials, were shown to reduce plasma triglycerides, and were 
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associated with the reduction on fatal and nonfatal cardiovascular 
events.32,33 The most stable eicosapentaenoic acid, icosapent ethyl, 
is currently indicated to reduce overall cardiovascular risk and is 
used as adjuvant to statin and nonstatin therapy.34

Accumulating clinical evidence suggests that existing lipid-lower-
ing strategies alone may not be sufficient to eliminate the cardiovas-
cular risk. These results encouraged multiple studies to investigate 
the best treatment combinations (statin + nonstatin approaches) in 
order to lower the cardiovascular risk in a more reliable way.35,36 
Generally, various dyslipidemias that can occur in different groups of 
patients are mentioned as the main cause of residual cardiovascular 
events.37 At the same time, chronic inflammation, which plays a key 
role in atherosclerosis development, is likely to be a prominent risk 
factor of cardiovascular events. Despite the improvements achieved 
in clinical practice recently, atherosclerosis still remains a serious 
cause of disability and death.38 Future studies are needed to identify 
the optimal therapeutic strategies that allow for a more profound 
and stable reduction in cardiovascular risk in different groups of pa-
tients. Moreover, novel solutions are needed to combat the develop-
ment of atherosclerosis by effectively preventing the formation of 
new plaques and induce regression of the existing plaques.

3  | NANOTECHNOLOGIES FOR 
ATHEROSCLEROSIS THER APY

One of the most recent treatment strategies of atherosclerosis is nano-
medicine, which comprises chemical, biological, and physical techno-
logical applications.39 Several novel techniques, including nanoparticle 
(NP) target therapy, drug delivery, nanovisualization, have been intro-
duced and are being tested. As atherosclerosis is a multifactorial dis-
ease, there are number of possible targets for nanomedical methods in 
the atherosclerotic plaque: extracellular matrix, endothelial cells, and 
macrophages.40 Macrophages are considered to be a promising target 
mainly due to the possibility of effective NP targeting.10 NP design can 
provide combinative approaches for targeted treatment of atheroscle-
rosis by carrying therapeutic agents, such as lipid-lowering and anti-
coagulant drugs, siRNA, and DNA plasmids. Delivery of such agents 
directly into the target cells showed antiatherogenic effects in vitro as 
well as in vivo.41,42 In addition, NPs can be used for accurate visualiza-
tion of vessels and plaques.43

Novel drug delivery strategies include methods of selective tar-
geting of mitochondria with lipid-based carriers. This approach is 
aimed at reducing mitochondrial dysfunction and alleviating mtDNA 
damage, which contributes to the development of pathological con-
ditions in atherosclerosis.44

4  | ROLE OF MACROPHAGES IN 
ATHEROSCLEROSIS

Several recent studies conducted in vitro on animal models (mostly 
ApoE−/− and LDLR−/− mice) and human rupture plaques have 

determined the critical role of macrophages in atherosclerosis patho-
genesis.45 In growing atherosclerotic plaques, macrophages actively 
participate in lipid accumulation giving rise to foam cells and expand-
ing the plaque. Moreover, macrophages also contribute to the im-
mune response by releasing cytokines and chemokines providing the 
inflammatory component of atherosclerosis.46 In atherosclerosis, 
the heterogeneity of monocytes/macrophages is shifted toward the 
prevalence of proinflammatory activation.47 Proinflammatory or M1 
macrophages release tumor necrosis factor-alpha (TNF-α), interleu-
kins, and chemokines, and also produce high levels of ROS and nitric 
oxide (NO).48 At the same time, anti-inflammatory M2 macrophage 
phenotype is characterized by IL-10 and IL-1 receptor agonist secre-
tion and may induce plaque regression and tissue repair.49

Macrophages are involved in lipid metabolism via cholesterol ef-
flux and oxidized LDL (oxLDL) uptake.50 OxLDL particles are internal-
ized through interaction with macrophage scavenger receptors (SR) 
(CD36, SR-A1, and lectin-like oxLDL receptor-1 (LOX)) and then pro-
cessed in the lysosomes. Subsequently, free cholesterol is released 
from the macrophages via ABC (ATP-binding cassette) transporters 
(ABCA1 and ABCG1) facilitating the formation of HDL and removing 
the excess cholesterol. However, when the cholesterol efflux system 
is dysregulated due to excess plasma lipid levels, foam cells develop, 
which is believed to be a hallmark of atherosclerosis.51 In the arterial 
wall, macrophages participate in the immune response via a number 
of cell receptors, such as Toll-like receptors (TLR), mannose-receptor 
(MR), SRs, and Fc receptors.52 Some of these molecules are currently 
considered as potential targets for atherosclerosis therapy.

5  | TARGETING OF MACROPHAGES 
RECEPTORS

A number of known macrophage surface receptors have been 
considered as potential targets for molecular therapeutic ap-
proaches.10,52,53 NPs containing ligands for these receptors 
demonstrate significantly higher selectivity and transfection ef-
ficiency.54–56 The mannose receptor (MR), which is a C-type lectin 
I transmembrane protein, is believed to be a promising target for 
nanocarriers.57 The MR is expressed on dendritic cells, tissue mac-
rophages, and liver sinusoidal endothelial cell.58 The MR plays an 
important role in antigen presentation, inflammatory response, and 
endocytosis, and can recognize the residues of mannose, fucose, 
and N-acetylglucosamine. Incorporation of this ligands into the li-
posomes was shown to demonstrate high transfection efficiency 
and low cytotoxicity.59 In atherosclerotic plaque, high expression 
of MR is present in macrophages of the fibrous cap, while in mac-
rophages of the lipid core, where the most of mtDNA alterations 
occur, expression is lower.60 Together, with presence of MR in other 
cell types, this target needs further investigation.

Another class of surface proteins that can be used for targeted 
drug delivery is integrins that play a crucial role in cell adhesion. 
Integrins can recognize proteins, components of extracellular ma-
trix, phospholipids, as well as various amino acid sequences.61 
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Integrins are heterodimeric proteins, with each subunit containing 
ligand-binding sites. Conjugation of certain peptides to nanocarriers 
demonstrated increased cellular uptake through integrin-mediated 
pathway.62,63

Pattern recognition receptors (PRRs) can be activated by dam-
aged cell fragments or debris (damage-associated molecular pat-
terns, or DAMP) and bacterial LPS or DNA (pathogen- associated 
molecular patterns, or PAMP) (Schiltze and Schmidt, 2015). Toll-like 
receptors (TLR) are one of the most studied family of receptors, 
which may be used for drug targeting and immunostimulating ther-
apy.64,65 However, the activation of PRRs is associated with inflam-
matory response and leads to T-cell activation and cytokine release, 
which is obviously an undesirable event in atherosclerosis.66

6  | MITOCHONDRIAL DNA DAMAGE

Mitochondria play a crucial role in regulating cell death, generat-
ing ROS, and maintaining cell metabolism and growth.67 The mito-
chondrial genome contains 2-10 copies of mtDNA, each of them 
consisting of 16  569 base pairs and encoding 37 genes, including 
ETC (electron transport chain) components, tRNAs and rRNAs.68 
Unlike nuclear DNA, mtDNA is not protected by histones and lacks 
efficient repair mechanisms, being therefore more susceptible for 
damage and accumulation of mutations, which increases with age. 
It is worth mentioning that mitochondrial dysfunction usually occurs 
only if more than 80% is damaged.69 One of the factors promot-
ing mtDNA damage is constant ROS generation during the oxidative 
phosphorylation in the inner mitochondrial membrane.

Mitochondrial genome defects are well investigated and often 
associated with so-called mitochondrial diseases.70,71 However, 
mtDNA damage occurs in other diseases, including atherosclerosis, 
that can also be associated with mitochondrial dysfunction.72 Both 
animal and human studies showed that damaged mtDNA is more 
common in the sites of atherosclerotic lesions. Moreover, mitochon-
dria appear to be considerably affected in macrophages, thus con-
tributing to a number of atherogenesis events.73,74

7  | MITOCHONDRIAL DNA DAMAGE IN 
MACROPHAGES

Although mtDNA damage, in general, believed to be caused by ex-
cessive ROS generation in the mitochondria, recent in vivo studies 
demonstrated occurrence of mtDNA defects in atherosclerosis in-
dependently from oxidative stress. These studies were conducted 
in apoE−/− mice with downregulated polymerase-γ (polG) proof-
reading activity. These mice showed high rate of mtDNA damage 
without increase in ROS and oxidative phosphorylation intensity. 
In comparison to classical apoE−/− models, polG-deficient mice had 
increased hyperlipidemia and atherosclerosis. Moreover, polG−/−/
apoE−/− monocytes were characterized by increased inflammatory 
cytokine secretion. These findings confirm possible development of 

atherosclerotic plaques and vessel damage promoted by damaged 
mtDNA with no associated ROS increase.75

A number of studies reported apoptosis of macrophages and ves-
sel smooth muscle cells (VSMC) induced by mitochondrial dysfunc-
tion.76–78 As mentioned above, mitochondrial dysfunction can often 
be a result of accumulated mtDNA damage, subsequently leading to 
ROS generation and membrane defects. These conditions can stim-
ulate the release of cytochrome C, an important cell death regulator, 
and promote apoptosis.79 Macrophage apoptosis in atherosclerotic 
plaques contributes to the necrotic core formation thus reducing the 
plaque stability and promoting thrombogenesis.80

The inflammatory response associated with atherosclerosis can 
be stimulated by endogenous antigens such as damaged mtDNA.81 
According to the results of recent studies, a number of events can 
contribute to this process.82 The activation of TLRs under mitochon-
drial oxidative stress induces the NF-κB pathway, which facilitates 
further immune response. It was also shown that the NF-κB pathway 
in the atherosclerotic lesions’ macrophages promoted monocytes 
infiltration and plaque development.83 Moreover, oxidized mtDNA, 
which escaped degradation by autophagy, was reported to activate 
the NLRP3 inflammasome thus regulating the release of cytokines, 
such as IL-1β and IL-18.84,85 In addition, mitochondrial dysfunction 
was also shown to affect the cholesterol efflux in macrophages.86 
As this process is maintained by ATP-dependent ABCA1 and ABCG1 
transporters, the impaired ATP synthesis associated with mitochon-
drial dysfunction can inhibit the cholesterol efflux, therefore, dis-
turbing lipid metabolism.87 Moreover, ABC transporters were also 
shown to mediate about 70% of the cholesterol efflux from the 
foam cells,therefore, their inhibition further facilitates foam cells 
formation.88

8  | LIPID C ARRIERS FOR GENE DELIVERY 
TO MITOCHONDRIA

One of the latest nanomedical tendencies of targeted therapy of 
mitochondrial dysfunction is using nanocarriers for gene delivery 
directly to the mitochondrion. This strategy aims to correct the 
mtDNA damage.89 Implementation of this strategy requires over-
coming of several obstacles. First of them is the presence of two 
negatively charged mitochondrial membranes. While the outer 
membrane is quite similar to the cellular membrane by its composi-
tion, the inner membrane contains cardiolipin, which makes it im-
permeable for hydrophilic molecules. In order to pass this obstacle, 
the carrier must contain some hydrophobic and positively charged 
ligands.90,91 Another challenge for targeted drug delivery to the mi-
tochondria is endocytosis. To escape from the endosome, the carri-
ers must be designed to contain ligands facilitating such transport.92

As mentioned above, accumulation of mtDNA damage contrib-
utes greatly to mitochondrial dysfunction as well as in atherogene-
sis. As mitochondrial genome consists of only 37 genes, it becomes 
possible to identify the potential targets for gene therapy in athero-
sclerosis. According to studies on ruptured plaques, arterial intima, 
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and blood samples, a number of coding and noncoding mitochon-
drial genes, if mutated or damaged, were shown to cause various 
cell impairments and to be associated with atherogenesis. Among 
them are ETC proteins (NADH dehydrogenase, ATP synthase, cyto-
chrome b, and cytochrome c oxidase subunits) and tRNA genes.93–95 
Transfection of these genes may result in decrease in plaque pro-
gression and atherosclerotic lesion development.

Currently, a wide diversity of transport systems is known, in-
cluding physical, chemical, biological, and combinatorial approaches. 
Several comparative analyses have been conducted to assess the 
toxicity, efficiency, and specificity of different methods of gene 
delivery into the mitochondria. Although all of them were far from 
implementation into the clinical practice, some of the methods 
demonstrate low cytotoxicity and high efficiency.96–98 The most 
promising technology is probably the use of lipid-based nanocarri-
ers. Such lipid carriers can be extensively modified to lower cyto-
toxicity and increase selectivity of delivered NA.99,100 As well as in 
classical concept, any liposome contains lipid bilayer and aqueous 
core, which allow the carrier to fuse with cell membrane and subse-
quently release its content.101 However, this mechanism is obviously 
not enough for mitochondrial delivery. According to that, firstly en-
docytosis should be involved, followed by endosome formation and 
further endosomal escape. Only after being released from the en-
dosome, the carrier will be able to go through both outer and inner 
mitochondrial membranes.102 Thus, successful gene delivery to mi-
tochondria must include: 1 adsorption of liposomes on the cell sur-
face,2 carrier endocytosis with endosome formation; 3 endosomal 
escape and migration to mitochondrion; and 4 mitochondrial mem-
brane fusion and therapeutic agent release (Figure 1).103

Successful gene delivery to the mitochondria by lipid-based 
nanocarriers depends on the proper design of the carriers, including 
the appropriate molar ratio of liposome components, adequate size, 
molecular weight, and N/P ratio (the ratio of cationic amine groups 
to anionic phosphates of NA).104 These parameters were shown to 
influence both the transfection efficacy and cytotoxicity. While the 
molecular weight of a carrier can be increased through incorporation 
of ligands thus enhancing its specificity and serum resistance, large 

liposomes demonstrate low transfection rate and relatively high cy-
totoxicity.105,106 High N/P ratio was reported to improve carrier-cell 
interaction (due to high positive charge of the liposome), however, 
such lipids showed increased cytotoxicity.107,108 To date, various 
types of lipid carriers have been described that are characterized by 
different lipid composition and parameters of transfection efficacy. 
The next step in improving the nanocarrier design will be the use of 
specific mitochondria-targeting molecules.89,109,110

9  | CURRENT MITOCHONDRIAL GENE 
DELIVERY APPROACHES

Notably, there are currently other potential strategies for gene 
therapy being developed, such as viral vectors, CRISPR/Cas9, and 
stem cells–based therapy. In spite of significant efficacy and con-
venience for some purposes, these methods are not flawless and 
have obstacles to overcome before application to mitochondria.111 
Viral-based methods, although demonstrate high transfection effi-
ciency, are prone to initiate host immune response and have a limit 
in size of delivered genes.112 CRISPR/Cas9, which is a well-known 
method of nuclear genome editing, still remains uncertain for the mi-
tochondrial genome. There is complication of guide RNA import to 
these organelles as well as unwanted total mtDNA reduction under 
action of cleaving enzymes.113 Stem cells are frequently discussed 
in cardiovascular disease treatment and can be observed in many 
studies as an effective therapeutic approach. However, obviously 
more researches in this area are needed because of wide diversity 
of stem cell available with unknown signaling pathways and genetic 
instability.114 Moreover, a lot of complications are related to high 
costs and difficulties in maintaining cell culture.115 In comparison to 
abovementioned strategies, lipid-based gene delivery has the main 
advantage of various design facilities, thus making it available to be 
customized and structured according to the purpose and also suit-
able for mitochondria targeting.

Early techniques of mitochondria-specific lipid-based NA carriers 
creation included the use of DQAsome (dequalimium chloride), early 
MITO-porter, and STPP-L (stearyl triphenylphosphonium-modified 
liposomes). These approaches demonstrated relatively low speci-
ficity, substantial cytotoxicity, and, in some cases, low transfection 
efficacy, which considerably limited their use.116–118 Further devel-
opment of nanocarriers employed modifying their biocompatibility 
and incorporating certain mitochondria-specific molecules.119

In order to improve biocompatibility, new variations in liposomes 
were designed and tested in vitro and in vivo. TPP-based carriers 
were incorporated with PGE-PE (polyethylene glycol-phosphatidyl 
ethanolamine) polymers which managed to decrease cytotoxicity 
and increase the lifetime of the carriers in blood serum.120 MITO-
Porter was modified with S2 peptide (Dmt-D-Arg-FK-Dmt-D-Arg-
FK-NH2) and showed improved cell viability rate.121 At the same 
time, attempts were made to increase specificity of the carriers by 
supplementing them with mitochondria-fusogenic lipids and target-
ing molecules.103

F I G U R E  1   Lipid-based mitochondria gene delivery mechanism. 
1 – absorption of lipid carrier on macrophage surface; 2 – receptor-
mediated endocytosis of the carrier; 3 – endosome formation; 
4 – endosomal escape and migration to mitochondrion; 5 – 
mitochondrial membrane fusion and cargo DNA release
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Currently, lipid-based carriers for gene delivery can provide for 
a wide range of therapeutic effects for mtDNA damage correction 
in different states, including atherosclerosis. Moreover, these parti-
cles are characterized by specific and accurate action in comparison 
to currently approved treatment methods, thus avoiding adverse 
effects. In relation to atherosclerosis, such targeted therapy may 
correct the mtDNA damage, which currently cannot be repaired 
with any other available tools, and thus alleviate the mitochondrial 
dysfunction.

Although lipid-based gene delivery to macrophage mitochon-
dria represents a novel technology in atherosclerosis prevention 
and treatment, there is still a serious lack of studies further char-
acterizing this approach in vivo. It is also worth mentioning that li-
posome-based atherosclerosis therapy had been discussed before. 
However, no clinical trial results are available to be observed at the 
moment because of problems needed to be solved first. Most nota-
bly, the problem of inequality between cell cultures, animal model 
and human, hence there is always a difference in structure, mor-
phology, and biochemistry of the plaque.122,123 This fact, on the one 
hand, can alter expected cytotoxicity, and, on the other hand, ex-
plains the importance of searching for efficient plaque macrophage 
targets. Another problem is distribution and plaque targeting due 
to interactions with plasma proteins and high hemodynamics in the 
arteries. Unlike NP-based cancer therapy, the carriers targeting ath-
erosclerotic plaques cannot be administered locally due to plaques 
presence in many vessels. That is why DNA vector and the carrier 
must remain intact from serum components to achieve proper bio-
availability, reach mitochondria, and interact with mtDNA. In this 
case, a number of solutions in carrier design have been suggested, 
and some of them are currently being tested in models. Moreover, 
there is always a question of cost effectiveness related to nanoma-
terials and carrier preparation.124 Today we can conclude that more 
preclinical studies are needed to reach the step of clinical approval 
of this promising therapeutic approach.

10  | CONCLUSION

Converging evidence identifies macrophages as key players in ath-
erosclerosis pathogenesis and, consequently, as potential thera-
peutic targets. Macrophage mitochondria, in particular, appear 
to be interesting from the point of view of future therapies de-
velopment, as mtDNA damage is associated with the pathology 
development. Lipid-based nanocarriers may provide a solution for 
targeted gene delivery into macrophage mitochondria to alleviate 
atherosclerosis-associated mitochondrial dysfunction and oxida-
tive stress. These agents are characterized by high transfection 
efficacy and low cytotoxicity. More studies are needed, however, 
to translate the results obtained in in vitro experiments to clinical 
practice.
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