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1  | INTRODUC TION

Atherosclerosis is a multifactorial disease, which is characterized 
by the formation of fatty plaques in the arterial wall and chronic 
inflammatory response. Atherosclerosis leads to narrowing of the 
lumen of the affected vessel and increases the risk of thrombosis, 
which can be followed by lethal events, such as ischemic stroke 
and sudden cardiac death.1,2 It is well-known that atherosclerosis 

development can be a result of acquired and inherited factors. To 
date, numerous genetic variations and mutations have been shown 
to predispose humans to atherogenesis. Among the risk factors of 
atherosclerosis are dyslipidemia, arterial hypertension, diabetes 
mellitus, and old age.3 Monocytes and macrophages play leading 
roles at all stages of atherosclerosis development, contributing to 
the local inflammatory response, cholesterol accumulation, and 
plaque growth.4
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Abstract
Atherosclerosis with associated cardiovascular diseases remains one of the main 
causes of disability and death worldwide, requiring development of new solutions for 
prevention and treatment. Macrophages are the key effectors of a series of events 
involved in atherogenesis, such as inflammation, plaque formation, and changes in 
lipid	metabolism.	Some	of	these	events	were	shown	to	be	associated	with	mitochon-
drial	 dysfunction	 and	 excessive	 mitochondrial	 DNA	 (mtDNA)	 damage.	 Moreover,	
macrophages represent a promising target for novel therapeutic approaches that are 
based	on	the	expression	of	various	receptors	and	nanoparticle	uptake.	Lipid-based	
gene delivery to mitochondria is considered to be an interesting strategy for mtDNA 
damage correction. To date, several nanocarriers and their modifications have been 
developed	that	demonstrate	high	transfection	efficiency	and	low	cytotoxicity.	This	
review discusses the possibilities of lipid-based gene delivery to macrophage mito-
chondria for atherosclerosis therapy.
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Modern advances of genetics and molecular biology have im-
proved our understanding of atherosclerosis pathogenesis and 
opened new perspectives for developing diagnostic and therapeutic 
approaches.5 It is evident that treatment of atherosclerosis requires 
implementation	of	complex	approaches	that	employ	a	combination	
of physical, chemical, and biological methods, such as those pro-
vided by nanomedicine.6

Mitochondrial dysfunction caused by mitochondrial DNA 
(mtDNA)	damage	is	a	well-studied	cause	of	cell	dysfunction	and	death	
observed in atherosclerosis.7 Correspondingly, dysfunctional mtDNA 
is regarded as a promising target for atherosclerosis treatment strate-
gies. The latest tendencies of treatment of mitochondrial diseases in-
clude	direct	nucleic	acid	(NA)	delivery	into	these	organelles.	Currently,	
specially developed nanocarriers for DNA delivery into the mitochon-
dria	 demonstrate	 sufficient	 efficacy	 and	 low	 cytotoxicity.9 Lipid-
based nanocarriers are currently well investigated and widely used 
in research and therapy.10	Being	constantly	improved	and	upgraded,	
liposomes often demonstrate biocompatibility and transfection effi-
ciency, which makes them an advantageous agent for immunostimula-
tion, drug, and NA delivery not only to cells but also to mitochondria.11 
The aim of this review is to summarize current knowledge on the use 
of lipid-based nanocarriers for targeted gene delivery to macrophage 
mitochondria and assess its role in future atherosclerosis therapy.

2  | CURRENT C ARDIOVA SCUL AR DISE A SE 
MANAGEMENT STR ATEGIES

Current approaches for treatment of atherosclerosis are mainly fo-
cused on lipid lowering with statins, reduction in risk of thrombosis 
with anticoagulants, and alleviation of inflammation by means of 
immunomodulation.12,13 During the recent years, substantial pro-
gress was made in the improvement of atherosclerosis treatment. 
Currently, a number of therapeutic agents applicable for athero-
sclerotic	cardiovascular	disease	(ASCVD)	treatment	are	being	used.	
Having proved efficacy in atherosclerosis therapy, some of these 
agents can be associated with high residual cardiovascular risk, low 
cost-efficiency, various contraindications, and side effects. Among 
them,	lipid	lowering	statin	drugs,	fibrates,	PCSK-9	inhibitors,	and	ni-
acin can be highlighted as important therapeutic agents that deserve 
to be discussed in detail.

Statins	(HMG-CoA	reductase	inhibitors)	are	used	for	the	first-
line	 treatment	 for	 ASCVD	 reduction.	 These	 drugs	 can	 be	 used	
in different groups of patients providing low-density lipopro-
tein-cholesterol	(LDL-C)	lowering	effect	of	desirable	intensity	(low,	
medium,	 or	 high)	with	 up	 to	more	 than	 50%	 LDL-C	 reduction.14 
While	lipid	lowering	effect	can	be	regarded	as	the	primary	effect	
of statins, they also have secondary effects (so-called pleiotropic 
effects)	that	can	contribute	to	ASCVD	management.	Importantly,	
anti-inflammatory activity of statins is well-known. It was shown 
that statins reduce the levels of proinflammatory cytokines and 
C-reactive	 protein	 (CRP),	which	 is	 a	 nonspecific,	 but	 highly	 sen-
sitive biomarker of inflammation.15,16 Moreover, clinical studies 

reported statins to stabilize the plaque and reduce vascular wall 
inflammation.17

However, statins are not free from adverse effects, drug in-
teractions, and intolerance in some patients.18 That is why clini-
cian-patient risk discussion as well as risk-benefit assessment are 
recommended before statin prescription.19 Despite this fact, in some 
cases it is still necessary to stop statin therapy, mainly because of 
statin-associated	 muscle	 symptoms	 (SAMS),	 which	 can	 vary	 from	
myalgia to rhabdomyolysis and associated disorders.20 Therapeutic 
alternatives to statins have been considered, and several other drug 
classes have been developed, some of them being able to potentiate 
the ongoing statin therapy.

Fibrates	 (agonists	 of	 peroxisome	 proliferator-activated	 recep-
tor-α	 (PPAR-α))	 are	 another	 group	 of	 medications	 that	 belong	 to	
nonstatin therapy, mainly aimed on triglyceride level control.21 It has 
also been reported that fibrates can be used in combination with 
statins to correct dyslipidemia and residual cardiovascular risk.22 
The results of some studies have indicated anti-inflammatory po-
tential of fibrates.23 Nevertheless, the results of studies assessing 
the effect of fibrates on human lipid profile are sometimes contra-
dictory.24 Moreover, presence of adverse effects is also notable, in-
cluding nausea, myositis, and gallstones.25 Obviously, more studies 
are needed to assess the efficacy of fibrates and associated drug 
combinations in different groups of patients.

Recently,	a	new	group	of	drugs,	PCSK9	(proprotein	convertase	
subtilisin/kexin	 type	 9)	 inhibitors,	 came	 to	 clinical	 practice.	 The	
mechanism of action of these drugs relates to the reduction in the 
plasma	level	of	PCSK9,	therefore	reducing	its	binding	to	low-density	
lipoprotein	 receptor	 (LDLR).	Using	of	PCSK9	 inhibitors	opens	new	
opportunities for high-risk patients, and is recommended in cases 
when general LDL-lowering therapy is not sufficient.26 However, 
these	drugs	have	 their	 limitations.	 Firstly,	 the	 relatively	high	price	
of	 treatment	 with	 PCSK9	 inhibitors	 makes	 them	 cost	 ineffective	
and hinders their widespread use.27	Secondly,	little	is	known	to	date	
about the long-term tolerance of these drugs due to their recent ap-
proval.28	Future	studies	will	add	more	detail	on	the	PCSK9	inhibitors	
safety and effectiveness, allowing for a better positioning of these 
drugs within the spectrum of antiatherosclerosis and antihyperlipid-
emia treatments.

Niacin was one of the first effective lipid-lowering agents that 
have been discovered, which acts through LDL and HDL lowering 
in the plasma.29 However, clinical trials did not confirm a beneficial 
effect on niacin on cardiovascular events incidence, while the drug's 
side effects, including skin, gastrointestinal, and musculoskeletal ef-
fects, have been observed. Thus, there are currently no medications 
with	niacin	approved	in	Europe,	and	no	recommendations	to	use	it	in	
the	US	guidelines.30,31

Modern guidelines for cardiovascular disease prevention and 
therapy suggest low-lipid diet and active lifestyle as primary mea-
sures to reduce cardiovascular risk. Dietary supplements also have 
their place as risk-reducing agents helping to normalize the blood 
lipid profile. Omega-3 fatty acids, according to the results of sev-
eral trials, were shown to reduce plasma triglycerides, and were 
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associated with the reduction on fatal and nonfatal cardiovascular 
events.32,33 The most stable eicosapentaenoic acid, icosapent ethyl, 
is currently indicated to reduce overall cardiovascular risk and is 
used as adjuvant to statin and nonstatin therapy.34

Accumulating	clinical	evidence	suggests	that	existing	lipid-lower-
ing strategies alone may not be sufficient to eliminate the cardiovas-
cular risk. These results encouraged multiple studies to investigate 
the	best	treatment	combinations	(statin	+	nonstatin	approaches)	in	
order to lower the cardiovascular risk in a more reliable way.35,36 
Generally, various dyslipidemias that can occur in different groups of 
patients are mentioned as the main cause of residual cardiovascular 
events.37 At the same time, chronic inflammation, which plays a key 
role in atherosclerosis development, is likely to be a prominent risk 
factor of cardiovascular events. Despite the improvements achieved 
in clinical practice recently, atherosclerosis still remains a serious 
cause of disability and death.38	Future	studies	are	needed	to	identify	
the optimal therapeutic strategies that allow for a more profound 
and stable reduction in cardiovascular risk in different groups of pa-
tients. Moreover, novel solutions are needed to combat the develop-
ment of atherosclerosis by effectively preventing the formation of 
new	plaques	and	induce	regression	of	the	existing	plaques.

3  | NANOTECHNOLOGIES FOR 
ATHEROSCLEROSIS THER APY

One of the most recent treatment strategies of atherosclerosis is nano-
medicine, which comprises chemical, biological, and physical techno-
logical applications.39	Several	novel	techniques,	including	nanoparticle	
(NP)	target	therapy,	drug	delivery,	nanovisualization,	have	been	intro-
duced and are being tested. As atherosclerosis is a multifactorial dis-
ease, there are number of possible targets for nanomedical methods in 
the	atherosclerotic	plaque:	extracellular	matrix,	endothelial	cells,	and	
macrophages.40 Macrophages are considered to be a promising target 
mainly	due	to	the	possibility	of	effective	NP	targeting.10	NP	design	can	
provide combinative approaches for targeted treatment of atheroscle-
rosis by carrying therapeutic agents, such as lipid-lowering and anti-
coagulant drugs, siRNA, and DNA plasmids. Delivery of such agents 
directly into the target cells showed antiatherogenic effects in vitro as 
well as in vivo.41,42	In	addition,	NPs	can	be	used	for	accurate	visualiza-
tion of vessels and plaques.43

Novel drug delivery strategies include methods of selective tar-
geting of mitochondria with lipid-based carriers. This approach is 
aimed at reducing mitochondrial dysfunction and alleviating mtDNA 
damage, which contributes to the development of pathological con-
ditions in atherosclerosis.44

4  | ROLE OF MACROPHAGES IN 
ATHEROSCLEROSIS

Several	recent	studies	conducted	in	vitro	on	animal	models	(mostly	
ApoE−/− and LDLR−/−	 mice)	 and	 human	 rupture	 plaques	 have	

determined the critical role of macrophages in atherosclerosis patho-
genesis.45 In growing atherosclerotic plaques, macrophages actively 
participate	in	lipid	accumulation	giving	rise	to	foam	cells	and	expand-
ing the plaque. Moreover, macrophages also contribute to the im-
mune response by releasing cytokines and chemokines providing the 
inflammatory component of atherosclerosis.46 In atherosclerosis, 
the heterogeneity of monocytes/macrophages is shifted toward the 
prevalence of proinflammatory activation.47	Proinflammatory	or	M1	
macrophages	release	tumor	necrosis	factor-alpha	(TNF-α),	interleu-
kins,	and	chemokines,	and	also	produce	high	levels	of	ROS	and	nitric	
oxide	(NO).48 At the same time, anti-inflammatory M2 macrophage 
phenotype is characterized by IL-10 and IL-1 receptor agonist secre-
tion and may induce plaque regression and tissue repair.49

Macrophages are involved in lipid metabolism via cholesterol ef-
flux	and	oxidized	LDL	(oxLDL)	uptake.50	OxLDL	particles	are	internal-
ized	through	interaction	with	macrophage	scavenger	receptors	(SR)	
(CD36,	SR-A1,	and	lectin-like	oxLDL	receptor-1	(LOX))	and	then	pro-
cessed	in	the	lysosomes.	Subsequently,	free	cholesterol	is	released	
from	the	macrophages	via	ABC	(ATP-binding	cassette)	transporters	
(ABCA1	and	ABCG1)	facilitating	the	formation	of	HDL	and	removing	
the	excess	cholesterol.	However,	when	the	cholesterol	efflux	system	
is	dysregulated	due	to	excess	plasma	lipid	levels,	foam	cells	develop,	
which is believed to be a hallmark of atherosclerosis.51 In the arterial 
wall, macrophages participate in the immune response via a number 
of	cell	receptors,	such	as	Toll-like	receptors	(TLR),	mannose-receptor	
(MR),	SRs,	and	Fc	receptors.52	Some	of	these	molecules	are	currently	
considered as potential targets for atherosclerosis therapy.

5  | TARGETING OF MACROPHAGES 
RECEPTORS

A number of known macrophage surface receptors have been 
considered as potential targets for molecular therapeutic ap-
proaches.10,52,53	 NPs	 containing	 ligands	 for	 these	 receptors	
demonstrate significantly higher selectivity and transfection ef-
ficiency.54–56	The	mannose	receptor	 (MR),	which	 is	a	C-type	 lectin	
I transmembrane protein, is believed to be a promising target for 
nanocarriers.57	The	MR	is	expressed	on	dendritic	cells,	tissue	mac-
rophages, and liver sinusoidal endothelial cell.58 The MR plays an 
important role in antigen presentation, inflammatory response, and 
endocytosis, and can recognize the residues of mannose, fucose, 
and N-acetylglucosamine. Incorporation of this ligands into the li-
posomes was shown to demonstrate high transfection efficiency 
and	 low	 cytotoxicity.59	 In	 atherosclerotic	 plaque,	 high	 expression	
of MR is present in macrophages of the fibrous cap, while in mac-
rophages of the lipid core, where the most of mtDNA alterations 
occur,	expression	is	lower.60 Together, with presence of MR in other 
cell types, this target needs further investigation.

Another class of surface proteins that can be used for targeted 
drug delivery is integrins that play a crucial role in cell adhesion. 
Integrins	 can	 recognize	 proteins,	 components	 of	 extracellular	ma-
trix,	 phospholipids,	 as	 well	 as	 various	 amino	 acid	 sequences.61 
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Integrins are heterodimeric proteins, with each subunit containing 
ligand-binding sites. Conjugation of certain peptides to nanocarriers 
demonstrated increased cellular uptake through integrin-mediated 
pathway.62,63

Pattern	recognition	receptors	 (PRRs)	can	be	activated	by	dam-
aged cell fragments or debris (damage-associated molecular pat-
terns,	 or	DAMP)	 and	 bacterial	 LPS	 or	DNA	 (pathogen-	 associated	
molecular	patterns,	or	PAMP)	(Schiltze	and	Schmidt,	2015).	Toll-like	
receptors	 (TLR)	 are	 one	 of	 the	 most	 studied	 family	 of	 receptors,	
which may be used for drug targeting and immunostimulating ther-
apy.64,65	However,	the	activation	of	PRRs	is	associated	with	inflam-
matory response and leads to T-cell activation and cytokine release, 
which is obviously an undesirable event in atherosclerosis.66

6  | MITOCHONDRIAL DNA DAMAGE

Mitochondria play a crucial role in regulating cell death, generat-
ing	ROS,	and	maintaining	cell	metabolism	and	growth.67 The mito-
chondrial genome contains 2-10 copies of mtDNA, each of them 
consisting	 of	 16	 569	 base	 pairs	 and	 encoding	 37	 genes,	 including	
ETC	 (electron	 transport	 chain)	 components,	 tRNAs	 and	 rRNAs.68 
Unlike nuclear DNA, mtDNA is not protected by histones and lacks 
efficient repair mechanisms, being therefore more susceptible for 
damage and accumulation of mutations, which increases with age. 
It is worth mentioning that mitochondrial dysfunction usually occurs 
only	 if	more	 than	 80%	 is	 damaged.69 One of the factors promot-
ing	mtDNA	damage	is	constant	ROS	generation	during	the	oxidative	
phosphorylation in the inner mitochondrial membrane.

Mitochondrial genome defects are well investigated and often 
associated with so-called mitochondrial diseases.70,71 However, 
mtDNA damage occurs in other diseases, including atherosclerosis, 
that can also be associated with mitochondrial dysfunction.72	Both	
animal and human studies showed that damaged mtDNA is more 
common in the sites of atherosclerotic lesions. Moreover, mitochon-
dria appear to be considerably affected in macrophages, thus con-
tributing to a number of atherogenesis events.73,74

7  | MITOCHONDRIAL DNA DAMAGE IN 
MACROPHAGES

Although	mtDNA	damage,	in	general,	believed	to	be	caused	by	ex-
cessive	ROS	generation	in	the	mitochondria,	recent	in	vivo	studies	
demonstrated occurrence of mtDNA defects in atherosclerosis in-
dependently	 from	oxidative	 stress.	These	 studies	were	conducted	
in apoE−/− mice with downregulated polymerase-γ	 (polG)	 proof-
reading activity. These mice showed high rate of mtDNA damage 
without	 increase	 in	 ROS	 and	 oxidative	 phosphorylation	 intensity.	
In comparison to classical apoE−/− models, polG-deficient mice had 
increased hyperlipidemia and atherosclerosis. Moreover, polG−/−/
apoE−/− monocytes were characterized by increased inflammatory 
cytokine secretion. These findings confirm possible development of 

atherosclerotic plaques and vessel damage promoted by damaged 
mtDNA	with	no	associated	ROS	increase.75

A number of studies reported apoptosis of macrophages and ves-
sel	smooth	muscle	cells	(VSMC)	induced	by	mitochondrial	dysfunc-
tion.76–78 As mentioned above, mitochondrial dysfunction can often 
be a result of accumulated mtDNA damage, subsequently leading to 
ROS	generation	and	membrane	defects.	These	conditions	can	stim-
ulate the release of cytochrome C, an important cell death regulator, 
and promote apoptosis.79 Macrophage apoptosis in atherosclerotic 
plaques contributes to the necrotic core formation thus reducing the 
plaque stability and promoting thrombogenesis.80

The inflammatory response associated with atherosclerosis can 
be stimulated by endogenous antigens such as damaged mtDNA.81 
According to the results of recent studies, a number of events can 
contribute to this process.82 The activation of TLRs under mitochon-
drial	oxidative	stress	 induces	the	NF-κB	pathway,	which	facilitates	
further	immune	response.	It	was	also	shown	that	the	NF-κB	pathway	
in the atherosclerotic lesions’ macrophages promoted monocytes 
infiltration and plaque development.83	Moreover,	oxidized	mtDNA,	
which escaped degradation by autophagy, was reported to activate 
the	NLRP3	inflammasome	thus	regulating	the	release	of	cytokines,	
such as IL-1β and IL-18.84,85 In addition, mitochondrial dysfunction 
was	also	shown	to	affect	 the	cholesterol	efflux	 in	macrophages.86 
As	this	process	is	maintained	by	ATP-dependent	ABCA1	and	ABCG1	
transporters,	the	impaired	ATP	synthesis	associated	with	mitochon-
drial	 dysfunction	 can	 inhibit	 the	 cholesterol	 efflux,	 therefore,	 dis-
turbing lipid metabolism.87	Moreover,	ABC	 transporters	were	also	
shown	 to	 mediate	 about	 70%	 of	 the	 cholesterol	 efflux	 from	 the	
foam cells,therefore, their inhibition further facilitates foam cells 
formation.88

8  | LIPID C ARRIERS FOR GENE DELIVERY 
TO MITOCHONDRIA

One of the latest nanomedical tendencies of targeted therapy of 
mitochondrial dysfunction is using nanocarriers for gene delivery 
directly to the mitochondrion. This strategy aims to correct the 
mtDNA damage.89 Implementation of this strategy requires over-
coming	of	 several	 obstacles.	 First	 of	 them	 is	 the	 presence	of	 two	
negatively	 charged	 mitochondrial	 membranes.	 While	 the	 outer	
membrane is quite similar to the cellular membrane by its composi-
tion, the inner membrane contains cardiolipin, which makes it im-
permeable for hydrophilic molecules. In order to pass this obstacle, 
the carrier must contain some hydrophobic and positively charged 
ligands.90,91 Another challenge for targeted drug delivery to the mi-
tochondria is endocytosis. To escape from the endosome, the carri-
ers must be designed to contain ligands facilitating such transport.92

As mentioned above, accumulation of mtDNA damage contrib-
utes greatly to mitochondrial dysfunction as well as in atherogene-
sis.	As	mitochondrial	genome	consists	of	only	37	genes,	it	becomes	
possible to identify the potential targets for gene therapy in athero-
sclerosis. According to studies on ruptured plaques, arterial intima, 
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and blood samples, a number of coding and noncoding mitochon-
drial genes, if mutated or damaged, were shown to cause various 
cell impairments and to be associated with atherogenesis. Among 
them	are	ETC	proteins	(NADH	dehydrogenase,	ATP	synthase,	cyto-
chrome	b,	and	cytochrome	c	oxidase	subunits)	and	tRNA	genes.93–95 
Transfection of these genes may result in decrease in plaque pro-
gression and atherosclerotic lesion development.

Currently, a wide diversity of transport systems is known, in-
cluding physical, chemical, biological, and combinatorial approaches. 
Several	 comparative	 analyses	 have	 been	 conducted	 to	 assess	 the	
toxicity,	 efficiency,	 and	 specificity	 of	 different	 methods	 of	 gene	
delivery into the mitochondria. Although all of them were far from 
implementation into the clinical practice, some of the methods 
demonstrate	 low	 cytotoxicity	 and	 high	 efficiency.96–98 The most 
promising technology is probably the use of lipid-based nanocarri-
ers.	Such	 lipid	carriers	can	be	extensively	modified	 to	 lower	cyto-
toxicity	and	increase	selectivity	of	delivered	NA.99,100 As well as in 
classical concept, any liposome contains lipid bilayer and aqueous 
core, which allow the carrier to fuse with cell membrane and subse-
quently release its content.101 However, this mechanism is obviously 
not enough for mitochondrial delivery. According to that, firstly en-
docytosis should be involved, followed by endosome formation and 
further endosomal escape. Only after being released from the en-
dosome, the carrier will be able to go through both outer and inner 
mitochondrial membranes.102 Thus, successful gene delivery to mi-
tochondria must include: 1 adsorption of liposomes on the cell sur-
face,2 carrier endocytosis with endosome formation; 3 endosomal 
escape and migration to mitochondrion; and 4 mitochondrial mem-
brane	fusion	and	therapeutic	agent	release	(Figure	1).103

Successful	 gene	 delivery	 to	 the	 mitochondria	 by	 lipid-based	
nanocarriers depends on the proper design of the carriers, including 
the appropriate molar ratio of liposome components, adequate size, 
molecular	weight,	and	N/P	ratio	(the	ratio	of	cationic	amine	groups	
to	anionic	phosphates	of	NA).104 These parameters were shown to 
influence	both	the	transfection	efficacy	and	cytotoxicity.	While	the	
molecular weight of a carrier can be increased through incorporation 
of ligands thus enhancing its specificity and serum resistance, large 

liposomes demonstrate low transfection rate and relatively high cy-
totoxicity.105,106	High	N/P	ratio	was	reported	to	improve	carrier-cell	
interaction	(due	to	high	positive	charge	of	the	 liposome),	however,	
such	 lipids	 showed	 increased	 cytotoxicity.107,108 To date, various 
types of lipid carriers have been described that are characterized by 
different lipid composition and parameters of transfection efficacy. 
The	next	step	in	improving	the	nanocarrier	design	will	be	the	use	of	
specific mitochondria-targeting molecules.89,109,110

9  | CURRENT MITOCHONDRIAL GENE 
DELIVERY APPROACHES

Notably, there are currently other potential strategies for gene 
therapy	being	developed,	 such	as	viral	 vectors,	CRISPR/Cas9,	 and	
stem cells–based therapy. In spite of significant efficacy and con-
venience for some purposes, these methods are not flawless and 
have obstacles to overcome before application to mitochondria.111 
Viral-based	methods,	although	demonstrate	high	transfection	effi-
ciency, are prone to initiate host immune response and have a limit 
in size of delivered genes.112	CRISPR/Cas9,	which	 is	 a	well-known	
method of nuclear genome editing, still remains uncertain for the mi-
tochondrial genome. There is complication of guide RNA import to 
these organelles as well as unwanted total mtDNA reduction under 
action of cleaving enzymes.113	Stem	cells	are	 frequently	discussed	
in cardiovascular disease treatment and can be observed in many 
studies as an effective therapeutic approach. However, obviously 
more researches in this area are needed because of wide diversity 
of stem cell available with unknown signaling pathways and genetic 
instability.114 Moreover, a lot of complications are related to high 
costs and difficulties in maintaining cell culture.115 In comparison to 
abovementioned strategies, lipid-based gene delivery has the main 
advantage of various design facilities, thus making it available to be 
customized and structured according to the purpose and also suit-
able for mitochondria targeting.

Early	techniques	of	mitochondria-specific	lipid-based	NA	carriers	
creation	included	the	use	of	DQAsome	(dequalimium	chloride),	early	
MITO-porter,	 and	STPP-L	 (stearyl	 triphenylphosphonium-modified	
liposomes).	 These	 approaches	 demonstrated	 relatively	 low	 speci-
ficity,	substantial	cytotoxicity,	and,	in	some	cases,	low	transfection	
efficacy, which considerably limited their use.116–118	Further	devel-
opment of nanocarriers employed modifying their biocompatibility 
and incorporating certain mitochondria-specific molecules.119

In order to improve biocompatibility, new variations in liposomes 
were	designed	 and	 tested	 in	 vitro	 and	 in	 vivo.	 TPP-based	 carriers	
were	 incorporated	with	PGE-PE	 (polyethylene	glycol-phosphatidyl	
ethanolamine)	 polymers	 which	 managed	 to	 decrease	 cytotoxicity	
and increase the lifetime of the carriers in blood serum.120 MITO-
Porter	 was	modified	with	 S2	 peptide	 (Dmt-D-Arg-FK-Dmt-D-Arg-
FK-NH2)	 and	 showed	 improved	 cell	 viability	 rate.121 At the same 
time, attempts were made to increase specificity of the carriers by 
supplementing them with mitochondria-fusogenic lipids and target-
ing molecules.103

F I G U R E  1   Lipid-based mitochondria gene delivery mechanism. 
1 – absorption of lipid carrier on macrophage surface; 2 – receptor-
mediated endocytosis of the carrier; 3 – endosome formation; 
4 – endosomal escape and migration to mitochondrion; 5 – 
mitochondrial membrane fusion and cargo DNA release
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Currently, lipid-based carriers for gene delivery can provide for 
a wide range of therapeutic effects for mtDNA damage correction 
in different states, including atherosclerosis. Moreover, these parti-
cles are characterized by specific and accurate action in comparison 
to currently approved treatment methods, thus avoiding adverse 
effects. In relation to atherosclerosis, such targeted therapy may 
correct the mtDNA damage, which currently cannot be repaired 
with any other available tools, and thus alleviate the mitochondrial 
dysfunction.

Although lipid-based gene delivery to macrophage mitochon-
dria represents a novel technology in atherosclerosis prevention 
and treatment, there is still a serious lack of studies further char-
acterizing this approach in vivo. It is also worth mentioning that li-
posome-based atherosclerosis therapy had been discussed before. 
However, no clinical trial results are available to be observed at the 
moment because of problems needed to be solved first. Most nota-
bly, the problem of inequality between cell cultures, animal model 
and human, hence there is always a difference in structure, mor-
phology, and biochemistry of the plaque.122,123 This fact, on the one 
hand,	 can	alter	expected	cytotoxicity,	 and,	on	 the	other	hand,	ex-
plains the importance of searching for efficient plaque macrophage 
targets. Another problem is distribution and plaque targeting due 
to interactions with plasma proteins and high hemodynamics in the 
arteries.	Unlike	NP-based	cancer	therapy,	the	carriers	targeting	ath-
erosclerotic plaques cannot be administered locally due to plaques 
presence in many vessels. That is why DNA vector and the carrier 
must remain intact from serum components to achieve proper bio-
availability, reach mitochondria, and interact with mtDNA. In this 
case, a number of solutions in carrier design have been suggested, 
and some of them are currently being tested in models. Moreover, 
there is always a question of cost effectiveness related to nanoma-
terials and carrier preparation.124 Today we can conclude that more 
preclinical studies are needed to reach the step of clinical approval 
of this promising therapeutic approach.

10  | CONCLUSION

Converging evidence identifies macrophages as key players in ath-
erosclerosis pathogenesis and, consequently, as potential thera-
peutic targets. Macrophage mitochondria, in particular, appear 
to be interesting from the point of view of future therapies de-
velopment, as mtDNA damage is associated with the pathology 
development. Lipid-based nanocarriers may provide a solution for 
targeted gene delivery into macrophage mitochondria to alleviate 
atherosclerosis-associated	mitochondrial	 dysfunction	 and	 oxida-
tive stress. These agents are characterized by high transfection 
efficacy	and	low	cytotoxicity.	More	studies	are	needed,	however,	
to	translate	the	results	obtained	in	in	vitro	experiments	to	clinical	
practice.
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