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Abstract 

Retroperitoneal liposarcoma (RLPS) is the most common subtype of retroperitoneal soft tissue sarcoma, 
characterized by a high recurrence rate and insensitivity to radiotherapy and chemotherapy. The function 
of tumor microenvironmental components, especially tumor-associated fibroblasts (TAFs), remains 
unclear in RLPS. The crosstalk between tumor cells and stromal cells should be clarified for therapy target 
discovery in RLPS. In this study, we demonstrated that TAFs from dedifferentiated liposarcoma (DDLPS) 
could attract LPS cells and promote their proliferation and migration. However, although α-SMA is 
positively expressed in RLPS, its expression does not indicate prognosis. By screening differentially 
expressed genes, performing Oncomine visualization, TCGA gene expression correlation analysis and 
qPCR verification, we determined that thrombospondin-2 (THBS2) gene expression was related to TAFs. 
The expression of Tsp2 protein, which was encoded by THBS2, was correlated with α-SMA expression, 
and it was an independent predictive factor for disease-free survival and recurrence-free survival in 
patients with RLPS. In vitro, Tsp2 facilitated the transformation of bone marrow-derived fibroblasts 
(BMFs) to TAFs and promoted the malignant biological behaviors of LPS cells by activating the 
MAPK/MEK/ERK pathway. Therefore, suppression of Tsp2 is expected to be a promising treatment 
method for RLPS patients. 
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Introduction 
Retroperitoneal soft tissue sarcomas (RSTSs) are 

a group of rare mesenchymal malignancies [1]. 
Retroperitoneal liposarcoma (RLPS) is the most 
common subtype in RSTSs, and it is classified by 
morphological and genetic characteristics into well- 
differentiated liposarcoma (WDLPS), dedifferentiated 
liposarcoma (DDLPS), myxoid liposarcoma (MLPS), 
and pleomorphic liposarcoma (PLS) [2]. It is difficult 
to achieve complete resection in RLPS due to its 
location and characteristics of local infiltration, and 
local recurrence is common [3]. Incomplete resection 

and recurrence are correlated with poor prognosis [4]. 
Additionally, it remains controversial whether RLPS 
patients benefit from systemic chemotherapy and 
radiotherapy [5,6]. Therefore, it is necessary to explore 
new therapeutic targets from tumor cells or the tumor 
microenvironment (TME) so as to improve RLPS 
treatment. 

Tumor-associated fibroblasts (TAFs) are the 
most common cell type in the TME and are important 
for tumorigenesis and progression [7,8]. TAFs can 
secrete cytokines such as TGF-β, IL-6, CXCL12 [9] and 
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interact with other cells, thereby promoting malignant 
biological behavior of cancer cells, and the formation 
of immunosuppressive microenvironment [10-12]. On 
the other hand, TAFs secrete collagen, fibronectin 
(FN), matrix metalloproteinases (MMPs) and other 
substances to remodel extracellular matrix (ECM), 
and facilitate tumor progression [13,14]. TAFs are 
often considered as a type of activated normal 
fibroblasts, which are induced by TGF-β, PDGF, 
CCL2, and other cytokines secreted by tumor cells 
[15-17]. Activated TAFs have a typical spindle shape 
and can express markers such as α-smooth muscle 
actin (α-SMA) and fibroblast-activation protein (FAP) 
[17-19]. Resting fibroblasts are multi-derived and can 
be converted from bone marrow mesenchymal stem 
cells, adipose stem cells, epithelial and endothelial 
cells [11,19,20]. Therefore, it may be more effective to 
reduce TAFs formation and their cancer-promoting 
effects through inhibiting TAF-inducing factors than 
directly targeting TAFs. 

Harati et al. found that TAFs isolated from MLPS 
and PLS promoted cell proliferation and doxorubicin 
resistance in SW872 cells [21]. However, the effect of 
TAFs and the crosstalk between TAFs and tumor cells 
have not yet been clarified in RLPS. In this study, we 
aimed to reveal the role of TAFs in RLPS and to 
investigate the mechanisms by which Tsp2 promotes 
TAFs formation and tumor progression. Our findings 
are helpful to profile the TME in RLPS and 
demonstrate Tsp2 as a potential prognostic factor and 
therapeutic target. 

Materials and Methods 
Patients and samples 

Overall, 112 RLPS and four adipose samples 
from patients who underwent surgery at Peking 
University Cancer Hospital were included in 
immunohistochemical (IHC) staining experiments. 
These patients were pathologically diagnosed as RLPS 
by performing HE staining and observing the 
histological morphology. WDLPS resembles mature 
adipose tissue, but typically shows fibrous septa, 
nuclear atypia and nuclear enlargement. DDLPS 
typically presents as undifferentiated pleomorphic or 
spindle cells, and is usually non-adipose-derived 
sarcoma. The detailed clinicopathological information 
is shown in Table S1. Additionally, 40 DDLPS and 10 
adipose tissues were used in quantitative real-time 
PCR (qPCR) to evaluate mRNA expression. This 
study was approved by the Institutional Review 
Board of Peking University Cancer Hospital 
(2019KT19). Written informed consent was obtained 
from each patient. 

Isolation and characterization of TAFs 
TAFs were isolated from freshly resected 

WD/DDLPS tissues. All tissues were cut into 1-3-mm3 

blocks. After incubated with 1640 medium at 37 °C for 
1 day, sufficient medium was added. When a large 
number of cells can be observed, the tissues were 
removed, and the spindle cells were separated owing 
to the principle that fibroblasts are more sensitive to 
trypsin. Purified spindle cells were cultured in 
DMEM/F12 with 10% FBS. Immunofluorescence and 
qPCR were used to assess the expression of FAP and 
α-SMA. 

Immunofluorescence 
Liposarcoma (LPS) cells and TAFs were seeded 

in confocal chambers and fixed with 
paraformaldehyde for 20 min. The cells were blocked 
with 1% BSA for 1h, followed by incubation with 
anti-FAP antibody (AF5344, 1:200, Affinity), 
anti-α-SMA antibody (ab7817, 1 μg/ml, Abcam), or 
anti-MDM2 antibody (ab38618, 1:200, Abcam) 
overnight. Secondary antibodies were incubated with 
cells for 1 h and nucleus was stained with DAPI. 

Quantitative real-time PCR 
Total RNA was extracted from cells and tissues 

using TRIzol (Thermo Fisher Scientific, USA). After 
reverse transcription, qPCR was performed to detect 
the relative mRNA expression of FAP, ACTA2, 
THBS2, and other genes in the samples. The primers 
are listed in Table S2. 

Cells culture and co-culture 
LPS cell lines were purchased from ATCC 

(Manassas, VA, USA). Bone marrow-derived 
fibroblasts (BMFs) were isolated from bone marrow 
stromal cells in adult volunteers without systemic 
disease by the method reported previously [22]. LPS 
cells and BMFs were cultured in RPMI 1640 with 10% 
FBS. TAFs were cultured in DMEM/F12 with 10% 
FBS. ①TAF and BMF-conditioned media (CM) and 
co-culture with LPS cells: TAFs and BMFs were plated 
to reach confluence before being cultured in 
DMEM/F12 for 24h, and the media was collected and 
filtered with sterile membrane (Millipore, PR05538). 
TAF-CM and BMF-CM were used to cultivate LPS 
cells for 24h, and then LPS cells were collected to 
evaluate biological behaviors. ②LPS-CM and 
co-culture with fibroblasts: LPS cells were plated to 
reach confluence before being cultured in RPMI 1640 
for 24h, and the media was filtered through sterile 
membrane. LPS-CM was used to cultivate BMFs for 
24h, and then fibroblasts were harvested to detect the 
expression of TAF-related genes. 
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Cell proliferation assay 
LPS cells treated under different conditions were 

seeded in 96-well plates. Then, 10 μl CCK8 reagent 
(Dojindo, Japan) was added into each well at 0, 24, 48, 
72, and 96 h. After 2-3 h of incubation, a microplate 
reader was used to measure absorbance at 450 nm. 

Cell migration assay 
LPS cells treated under different conditions were 

mixed in RPMI 1640 and seeded into the upper 
chamber (3422, Corning), and RPMI 1640 with 20% 
FBS was added to the lower chamber. After 24 h of 
migration at 37 °C, cells on the membrane of the 
upper chamber were fixed with 4% para-
formaldehyde and stained with 0.1% crystal violet. 
The stained cells were photographed in five fields, 
and the number of migrating cells was compared. 

Cell chemotaxis assay 
LPS cells were seeded into the upper chamber 

(3422, Corning) with DMEM/F12 containing 2% FBS, 
and BMFs or TAFs were added into the lower 
chamber with DMEM/F12 containing 20% FBS. 
DMEM/F12 with 20% FBS was added to the lower 
chamber as control. The ratio of the number of LPS 
and BMFs/TAFs was 1:1. After 24 h of chemotaxis at 
37 °C, the cells on the membrane were stained and the 
number was compared. 

IHC staining and evaluation 
The sections of tumor tissues or adipose tissues 

were deparaffinized in xylene, hydrated in gradient 
alcohol, and incubated in 3% hydrogen peroxide. 
Antigen retrieval was conducted under high pressure 
or microwave, followed by goat serum to block the 
slices. Slices were incubated with α-SMA antibody 
(ab7817, 0.05 μg/ml, Abcam), Tsp2 antibody 
(PA5-80123, 2 μg/ml, Invitrogen), and Ki67 antibody 
(ab15580, 1:100, Abcam) overnight and then incubated 
with secondary antibody. DAB was used to visualize 
the slices, and hematoxylin was used to stain the 
nuclei. 

All slices were examined and scored by two 
independent pathologists. Expression of α-SMA was 
defined as positive when the staining percentage was 
>10%. A small number of α-SMA positive smooth 
muscle cells in the vessel wall that can form tubular 
structures were not considered as positive results. The 
expression of Tsp2 was evaluated by the 
immunoreactivity score (IRS) according to the 
percentage of positive cells (PP) and staining intensity 
(SI). PP was scored as 0 (negative), 1 (<25%), 2 
(25%-75%), 3 (>75%). SI was scored as 0 (negative), 1 
(weak), 2 (moderate), 3 (strong). IRS=0/1 was defined 
as negative expression, and IRS>1 as positive 

expression. 

Differentially expressed genes screening, 
functional enrichment, expression correlation 
analysis and qPCR verification 

The GSE21122 dataset was downloaded from the 
Gene Expression Omnibus database (https:// 
www.ncbi.nlm.nih.gov/geo/). This dataset contained 
high-throughput gene expression data from 89 LPS 
specimens (46 DDLPS, 20 MLPS, 23 PLS) and nine 
adipose samples. The GEO2R module was used to 
screen the differentially expressed genes (DEGs) 
between DDLPS and adipose tissue. The screening 
criteria were FDR<0.05, and |log2 fold change|>2. 
DAVID online software (https://david.ncifcrf.gov/) 
was used to perform functional enrichment analysis 
based on Gene Ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
database. 

The Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING, https://www.string-db. 
org/) was used to analyze the interaction between 
proteins and construct protein-protein interaction 
(PPI) network. The MCODE plugin of Cytoscape was 
used to identify the gene modules. Oncomine 
(https://www.oncomine.or) was used to visualize the 
expression of key genes. Correlation analysis between 
gene expression in the Cancer Genome Atlas (TCGA) 
was performed using cBioPortal for Cancer Genomics 
(http://www.cbioportal.org/). Ten adipose and 40 
DDLPS tissues were tested by qPCR to clarify DEGs 
expression and verify the expression correlation. 

Cell transfection 
Three lentiviral shRNA vectors against Tsp2 and 

control lentivirus were transfected into SW872 cells to 
knockdown Tsp2 expression. 93T449 and 94T778 cells 
were infected with Tsp2 overexpression lentivirus 
and a control lentivirus. All lentiviruses were 
obtained from Shanghai Gene Chem Co., Ltd. The 
efficiency of knockdown or overexpression was 
verified by qPCR and western blotting. 

Western blotting 
Total protein was extracted from cells, and the 

concentration was determined using a BCA kit 
(Thermo Fisher Scientific, USA). Proteins were 
separated by SDS-PAGE and transferred onto PVDF 
membranes. Membranes were blocked with 
Tris-buffered saline-Tween solution containing 5% 
skim milk. Next, the PVDF membranes were 
incubated with primary antibodies (Table S3) 
overnight and secondary antibodies for 1h. Finally, a 
chemiluminescence detection system was used to 
detect protein bands. 
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ELISA 
A double-antibody sandwich ELISA kit 

(cat.TAE-890h, Anoric Bio-tech, China) was used. 
According to the manufacturer’s instructions, Tsp2 
protein levels in conditioned medium of LPS cells 
with Tsp2 overexpression or Tsp2 knockdown was 
assayed by ELISA. After the antibody-antigen 
complex was formed, the substrate was added for the 
color reaction. Finally, stopping solution was added, 
and the staining product was measured by a 
microplate reader at 450 nm. 

Cell apoptosis assay 
According to the manufacturer’s instructions, 5 

μL each of Annexin V and PI solution (Annexin V, 633 
Apoptosis Detection Kit, Dojindo, Japan) was added 
to the cell suspension prepared with 1×Annexin V 
binding buffer. Two single positive controls and a 
negative control were also prepared to adjust for 
compensation. After 15 min of staining, flow 
cytometry was used to measure the proportion of 
apoptotic cells. 

Xenograft model 
SW872 shCtrl and SW872 shTsp2 cells were 

resuspended to 1×108 cells/ml and injected 
subcutaneously into the back of NOD/SCID mice 
(each injection was 100 μL). Each group included 5 
mice. The tumor volume was calculated according to 
the formula V=1/2 length × width2 twice a week, and 
the tumor growth curve was drawn. After 60 days, the 
mice were sacrificed, and tumors were removed and 
photographed. Tumor tissues were tested by qPCR or 
IHC to analyze the expression of molecules. All 
studies were conducted in compliance with the 
animal ethics and welfare requirements (ethics 
approval number: EAEC2018-06). 

Protein microarray analysis 
According to the manufacturer's instructions, the 

Proteome ProfilerTM Array-Human Phospho-Kinase 
Array Kit (ARY003B, R&D Systems) was used to 
assess the changes in key targets in tumor-related 
signaling pathways after Tsp2 overexpression. 

Statistical analysis 
Statistical analysis were performed using SPSS 

17.0 and GraphPad Prism 8. Continuous variables are 
represented as mean±SD, and categorical variables 
are represented as numbers and percentages. 
Student’s t-test, Mann-Whitney U test, and ANOVA 
test were used to compare continuous variables, and 
chi-square test was used to compare categorical 
variables. Spearman method was used to analyze the 
correlation between continuous variables that do not 

conform to the normal distribution. 
Eight patients lost to follow-up and 4 patients 

died of intraoperative, perioperative or postoperative 
complications, so 100 patients were included for 
survival analysis. Kaplan-Meier survival curves were 
analyzed using the log-rank test. Univariate and 
multivariate analysis were performed using the Cox 
proportional hazard regression model to identify 
independent prognostic factors affecting overall 
survival (OS), disease-free survival (DFS), and 
recurrence-free survival (RFS). Differences were 
considered significant at p<0.05. 

Results 
Isolation and characterization of TAFs from 
RLPS 

Two WDLPS and 2 DDLPS tissues were used to 
isolate TAFs. The clinicopathological characteristics of 
the patients and the culture results of TAFs are shown 
in Table S4. After 30 days of culture, spindle cells were 
observed around the DDLPS tissues, but most cells 
that migrated from the WDLPS tissues were round 
(Fig. 1A). Spindle cells isolated from DDLPS can be 
purified and stably cultured to the fifth generation 
(Fig. 1B). No stable spindle cells were purified from 
cells that migrated from the WDLPS tissues. Spindle 
cells isolated from 2 DDLPS tissues were named as 
TAF1 and TAF2. 

Immunofluorescence staining showed that LPS 
cells (93T449, 94T778, and SW872) did not express 
α-SMA, and they expressed FAP weakly, while TAFs 
were FAP- and α-SMA-positive (Fig. 1C). MDM2 
expression was observed in 93T449 and 94T778 cells, 
whereas TAFs had no MDM2 protein expression, 
suggesting that the purified TAFs did not contain 
RLPS tumor cells. Quantitative real-time PCR analysis 
showed that compared with BMFs, the relative 
mRNA levels of FAP and ACTA2 in TAFs increased 
significantly (Fig. 1D). Therefore, we successfully 
isolated and identified primary TAFs from RLPS. 
TAF1 was used in the subsequent experiments. 

TAFs from DDLPS promoted proliferation, 
migration and chemotaxis of three LPS cell 
lines 

Co-culture experiments were conducted to 
investigate the effect of TAFs on the biological 
behaviors of 93T449, 94T778, and SW872 cells. After 
24h of co-culture, three LPS cell lines cultured in 
TAF-CM had a higher proliferation rate (Fig. 2A, 
p<0.05) and stronger migration ability (Fig. 2B, 
p<0.05) than LPS cells cultured in DMEM/F12 or 
BMF-CM. Compared with the control and BMFs, 
TAFs significantly promoted the chemotaxis of the 
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three LPS cell lines (Fig. 2C, p<0.05). These results 
indicated that TAFs derived from DDLPS could 
promote the proliferation and migration of LPS cells 
and could attract LPS cells through chemotaxis. 

TAF biomarker expression in RLPS and its 
clinical relevance 

Since FAP expression was observed in some LPS 
cells, α-SMA was chosen as a suitable marker for 

TAFs and stained in RLPS and adipose tissues. The 
typical expression of α-SMA in adipose and different 
subtypes of RLPS are shown in Fig. 3A. Of the 112 
tumor specimens, 71 were α-SMA-positive (63.4%), 
while four adipose tissues were α-SMA negative. As 
shown in Fig. 3B and Table 1, positive α-SMA 
expression was related to tumor diameter (p=0.002), 
grade (p=0.004), and subtype (p=0.005). 

 

 
Figure 1. Isolation and characterization of TAFs from RLPS. (A-B) Morphology and growth of cells migrated from WDLPS and DDLPS. Magnifications: ×50. (C) 
Immunofluorescence staining of LPS cells and TAFs with FAP (green), α-SMA (red), MDM2 (green) and counterstained with DAPI (blue). Magnifications: ×200. (D) qPCR analysis 
of FAP and ACTA2 expression in BMFs and TAFs. Statistical tests: Student’s t tests. 
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Figure 2. TAFs from DDLPS promoted proliferation, migration and chemotaxis of LPS cells. (A-B) LPS cells cultured in TAF-CM had a higher proliferation rate 
and stronger migration ability than cultured in DMEM/F12 or BMF-CM (p<0.05). (C) Compared with the controls and BMFs, TAFs significantly promoted the chemotaxis of LPS 
cells (p<0.05). Statistical tests: Student’s t tests. 
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Figure 3. α-SMA expression and clinical relevance in RLPS. (A) Typical expression of α-SMA in adipose and RLPS tissues. (B) Correlations between α-SMA expression 
and clinicopathological features in RLPS patients. (C) α-SMA positive expression had no correlation with OS, DFS and RFS of RLPS. Statistical tests: Chi-square test and 
Kaplan-Meier survival analysis. 

 

Table 1. Correlation between α-SMA expression and 
clinicopathological features in 112 RLPS patients 

Clinicopathological 
features 

a-SMA Positive 
Expression (n, %) 

a-SMA Negative 
Expression (n, %) 

p-value 

Gender   0.697  
Male 41 (65.1) 22 (34.9)  
Female 30 (61.2) 19 (38.8)  
Age   0.843  
<60 41 (62.1) 25 (37.9)  
≥60 30 (65.2) 16 (34.8)  
Diameter   0.002** 
≤22 45 (77.6) 13 (22.4)  
>22 26 (48.2) 28 (51.8)  
Grade   0.004** 
Low (G1)  9 (37.5) 15 (62.5)  
High (G2, G3)  62 (70.5) 26 (29.5)  
Tumor subtype   0.005** 
WDLPS 9 (37.5) 15 (62.5)  
DDLPS 54 (72.0) 21 (28.0)  
PLS 7 (77.8) 2 (22.2)  
MLPS 1 (25.0) 3 (75.0)  
Vascular invasiona   0.551  
No 67 (63.2) 39 (36.8)  
Yes 3 (100.0) 0  
Lymph node metastasisa   0.531  
No 67 (62.6) 40 (37.4)  
Yes 2 (100.0) 0  
Organs invasiona   0.280  
No 17 (54.8) 14 (45.2)  
Yes 51 (66.2) 26 (33.8)  
Primary/recurrence   0.846  
Primary 33 (62.3) 20 (37.7)  
Recurrence 38 (64.4) 21 (35.6)  

**P<0.01; a Patients without relevant information were not included in statistics. 

 
One hundred RLPS patients received 

postoperative follow-up and were divided into two 
groups based on α-SMA expression for survival 
analysis (Fig. 3C). The median OS time was 32.6 
months and 52.3 months in patients with positive 
α-SMA or negative α-SMA expression, respectively. 
The median DFS and RFS time in the positive α-SMA 
group was 14.9 months and 18.0 months, and was 24.6 
months and 38.9 months in the negative α-SMA 
expression group. The OS, DFS, and RFS in the 
α-SMA positive group were poorer, though the 
differences were not statistically significant (p=0.714, 
p=0.350, p=0.166, respectively). Therefore, α-SMA 
was highly expressed in RLPS, but it did not 
effectively suggest the prognosis. 

Screening and validation of DEGs related to 
TAFs 

To investigate the DEGs related to TAFs, we 
compared the gene expression profile data of 46 
DDLPS and 9 adipose samples in the GSE21122 
dataset. Overall, 193 DEGs were identified, wherein 
47 were upregulated and 146 were downregulated in 
DDLPS (Fig. 4A). GO analysis showed that DEGs 
were enriched in categories such as collagen fibril 
organization, smooth muscle cell proliferation 
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regulation, extracellular matrix structural constituent, 
extracellular space, and collagen trimer (Fig. 4B). 
KEGG analysis showed that DEGs were enriched in 
pathways such as PPAR, regulation of lipolysis in 

adipocytes, and ECM-receptor interaction (Fig. 4C). 
All DEGs were used to construct a PPI network. And 
the key cluster, including 27 nodes, was calculated 
using Cytoscape (Fig. 4D). 

 

 
Figure 4. DEGs between DDLPS and adipose samples. (A) Volcano map of DEGs between DDLPS and adipose tissues. (B-C) GO and KEGG analysis of DEGs by 
DAVID online software (https://david.ncifcrf.gov/). (D) PPI network and the key cluster in DEGs. Implemented by STRING website (https://www.string-db.org/) and Cytoscape 
software. 
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Figure 5. Screening and validation of DEGs related to TAFs. (A) Visualization of THBS2 expression in LPS by Oncomine database (http://www.oncomine.org/). (B-C) 
THBS2 expression was positively correlated with ECM-related genes and TAFs-related genes (p<0.05). Data sets and analysis can be found on cBioPortal for Cancer Genomics 
(www.cbioportal.org). (D) Compared with adipose, the relative mRNA expression of THBS2, COL1A1, COL1A2, COL5A1, FN1, VCAN, FAP, MMP2 and MMP9 was higher in 
DDLPS (p<0.05). (E) The expression of THBS2 was positively correlated with the expression of ECM-related genes COL1A1, COL1A2, COL5A1, FN1, VCAN, and was 
positively correlated with the expression of TAFs secretase PLAU and MMP11 (p<0.05). Statistical tests: Mann-Whitney U test and Spearman correlation analysis. 

 
The Oncomine database was used to visualize 

the expression of 27 key genes (e.g., PPARG, CEBPA, 
THBS2, COL1A1, FN1, and VCAN) in LPS. Compared 
with adipose tissue, thrombospondin-2 (THBS2) gene 

was highly expressed in DDLPS and PLS, and weakly 
expressed in MLPS, consistent with α-SMA 
expression in RLPS tissues (Fig. 5A). To clarify 
whether THBS2 expression was related to TAFs, 
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cBioportal was used to analyze the correlation of gene 
expression in 50 DDLPS patients in the Adult Soft 
Tissue Sarcomas (TCGA, Cell2017) dataset. THBS2 
expression was positively correlated with the 
expression of ECM-related genes COL1A1, COL1A2, 
COL5A1, FN1 (p<0.05, Fig. 5B) and TAF-related genes 
FAP, MMP2, PLAU, POSTN, and DES (p<0.05, Fig. 
5C). Next, we performed qPCR on ten adipose tissues 
and 40 DDLPS tissues to verify the database results. 
Compared with adipose tissues, the relative mRNA 
expression of THBS2, COL1A1, COL1A2, COL5A1, 
FN1, VCAN, FAP, MMP2, and MMP9 increased in 
DDLPS tissues (p<0.05, Fig. 5D), but the increase of 
PLAU (p=0.08) and MMP11 (data not shown) was not 
significant (Fig. 5D). Spearman correlation analysis 
revealed that the expression of THBS2 was positively 
correlated with the expression of ECM-related genes 
COL1A1, COL1A2, COL5A1, FN1, VCAN, and was 
positively correlated with the expression of TAFs 
secretase PLAU and MMP11 (p<0.05, Fig. 5E). These 
results indicated that THBS2 was correlated with the 
expression of TAF-related genes and ECM-related 
genes in DDLPS. THBS2 may be related to the high 
infiltration of TAFs in DDLPS. 

Tsp2 protein expression in RLPS and its 
clinical relevance 

Next, Tsp2 protein, which was encoded by 
THBS2, was stained in RLPS and adipose tissues, and 
its clinical relevance was assessed. The typical 
expression of Tsp2 was shown in Fig. 6A. Tsp2 was 
mainly expressed in liposarcoma cells, and also 
expressed in a small proportion of TAFs. Tsp2 was 
positive in 61.6% (69/112) of RLPS patients, while 
four adipose tissues were Tsp2 negative. As shown in 
Table S5, Tsp2 expression was higher in patients with 
tumors diameter ≤22 cm and high-grade RLPS, but 
the difference was not significant (p=0.052, p=0.073, 
respectively). 

Among patients with positive Tsp2 expression, 
84.1% (58/69) were α-SMA-positive, and 15.9% 
(11/69) were negative. Among patients with negative 
Tsp2 expression, 30.2% (13/43) were α-SMA positive 
and 69.8% (30/43) were negative (Fig. 6B). The 
expression of Tsp2 and α-SMA were significantly 
related (p<0.0001). The correlation coefficient between 
the IRS score of Tsp2 and the percentage of α-SMA 
positive cells was 0.473 (p<0.0001, Fig. 6B). Therefore, 
Tsp2 expression was positively correlated with 
α-SMA expression (p<0.0001). 

 

 
Figure 6. Tsp2 expression and clinical significance in RLPS. (A) Typical expression of Tsp2 in adipose and RLPS tissues. (B) Tsp2 expression was positively correlated 
with α-SMA (p<0.0001). (C) Positive Tsp2 expression was correlated with poorer DFS and RFS in RLPS (p<0.05). Statistical tests: Chi-square test, Spearman correlation analysis 
and Kaplan-Meier survival analysis. 
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In the survival analysis (Fig. 6C), the median OS 
time was 28.7 months in Tsp2-positive patients and 
53.0 months in negative patients. The median DFS and 
RFS were 14.0 months and 17.4 months in Tsp2- 
positive patients and 27.0 months and undefined 
(accumulate survival rate >50%) in Tsp2-negative 
patients. Positive Tsp2 expression was markedly 
correlated with poorer DFS and RFS (p=0.027 and 
p=0.019, respectively). 

Univariate survival analysis showed Tsp2 
expression (p=0.030), higher (G2 or G3) grade tumors 
(p=0.033, p=0.014), DDLPS (p=0.030), MLPS 
(p=0.018), and organ invasion (p=0.004) were 
predictive factors for DFS. Cox multivariate survival 
analysis further revealed that Tsp2 expression 
(p=0.0497) and organ invasion (p=0.008) were 
independent predictive factors for DFS (Table 2). 

 

Table 2. Cox proportional hazards regression model analysis of 
DFS in RLPS patients 

Clinicopathological 
features 

Univariate Analysis Multivariate Analysis 
HR (95%CI) p-value HR (95%CI) p-value 

Tsp2     
Negative 1  1  
Positive 1.815 (1.061-3.106) 0.030* 1.715 (1.001-2.941) 0.0497* 
a-SMA     
Negative 1    
Positive 1.281 (0.760-2.160) 0.352   
Gender     
Male 1    
Female 1.113 (0.673-1.842) 0.676   
Age(years) 1.013 (0.992-1.035) 0.222   
Diameter (cm)  1.013 (0.997-1.028) 0.106   
Grade     
G1 1    
G2 2.375 (1.073-5.255) 0.033*   
G3 2.667 (1.218-5.838) 0.014*   
Tumor type     
WDLPS 1    
DDLPS 2.294 (1.083-4.861) 0.030*   
PLS 1.845 (0.668-5.094) 0.237   
MLPS 6.704 (1.389-32.351) 0.018*   
Vascular invasion     
No 1    
Yes 1.343 (0.326-5.524) 0.683   
Lymph node 
metastasis 

    

No 1    
Yes 3.052 (0.736-12.663) 0.124   
Organs invasion     
No 1  1  
Yes 2.385 (1.313-4.331) 0.004** 2.248 (1.235-4.092) 0.008** 
Primary/recurrence     
Primary 1    
Recurrence 1.396 (0.855-2.279) 0.182   

*P<0.05; **P<0.01. 
 
 
Univariate survival analysis suggested that Tsp2 

positive (p=0.022), G3 grade tumors (p=0.022), MLPS 
(p=0.008), lymph node metastasis (p=0.040), and 
organ invasion (p=0.006) were predictive factors for 
RFS. Cox multivariate survival analysis showed that 
Tsp2 (p=0.033) and lymph node metastasis (p=0.009) 

were independent predictive factors for RFS (Table 3). 
 

Table 3. Cox proportional hazards regression model analysis of 
RFS in RLPS patients 

Clinicopathological 
features 

Univariate Analysis Multivariate Analysis 
HR (95%CI) p-value HR (95%CI) p-value 

Tsp2     
Negative 1  1  
Positive 2.107 (1.115-3.983) 0.022* 2.000 (1.056-3.786) 0.033* 
a-SMA     
Negative 1    
Positive 1.545 (0.829-2.879) 0.170   
Gender     
Male 1    
Female 1.026 (0.572-1.840) 0.931   
Age (years) 1.013 (0.989-1.038) 0.298   
Diameter (cm)  1.002 (0.983-1.022) 0.811   
Grade     
G1 1    
G2 2.156 (0.854-5.441) 0.104   
G3 2.856 (1.165-7.002) 0.022*   
Tumor type     
WDLPS 1    
DDLPS 1.855 (0.821-4.195) 0.138   
PLS 1.733 (0.582-5.160) 0.323   
MLPS 8.807 (1.764-43.966) 0.008**   
Vascular invasion     
No 1    
Yes 0.875 (0.120-6.379) 0.895   
Lymph node 
metastasis 

    

No 1  1  
Yes 4.518 (1.072-19.045) 0.040* 2.537 (1.256-5.125) 0.009** 
Organs invasion     
No 1    
Yes 2.694 (1.337-5.428) 0.006**   
Primary/recurrence     
Primary 1    
Recurrence 1.343 (0.763-2.362) 0.306   

*P<0.05; **P<0.01. 
 

Tsp2 promoted BMFs transformation to TAFs 
in vitro 

To further investigate whether Tsp2 in RLPS 
promtes TAFs formation, we constructed LPS cells 
with stable Tsp2 expression to perform co-culture 
experiments with BMFs. Specifically, Tsp2 expression 
was tested by qPCR and western blotting, revealing 
low Tsp2 expression in 93T449 and 94T778 cells and 
high Tsp2 expression in SW872 (Fig. 7A). Next, three 
Tsp2 lentiviral shRNA and control lentivirus were 
transferred into SW872, and Tsp2 overexpression 
lentivirus and control vectors were transferred into 
93T449 and 94T778. Real-time PCR and western 
blotting showed that Tsp2 in SW872 was stably 
knocked down, and Tsp2 in 93T449 and 94T778 was 
overexpressed (Fig. 7B). SW872 infected with 
Lenti-shTsp2-2 with the highest knockdown efficiency 
was used in subsequent experiments. 

Tsp2 can be secreted by cells into the matrix for 
cell-cell interactions. We determined Tsp2 protein 
levels in CM of LPS cells with Tsp2 overexpression or 
Tsp2 knockdown by ELISA. The results revealed that 
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compared with control cells, 93T449 and 94T778 with 
Tsp2 overexpression secreted more Tsp2 to the 
medium. And SW872 with Tsp2 knockdown secreted 
less Tsp2 (Fig. 7C). The CM of 93T449 overexpressing 
Tsp2 (93T OE-Tsp2), 94T778 overexpressing Tsp2 (94T 
OE-Tsp2), SW872 with Tsp2 knockdown (SW872 
shTsp2) and control LPS cells (93T Ctrl, 94T Ctrl and 
SW872 shCtrl) was collected and co-cultured with 
BMFs for 24h. The expression levels of TAF markers 
and secretase in BMFs with or without co-culture with 
LPS-CM were measured by qPCR. As shown in Fig. 
7D, co-culture with CM derived from 93T Ctrl and 
SW872 shCtrl elevated α-SMA expression in BMFs 
(p<0.0001). CM of 93T OE-Tsp2 and 94T OE-Tsp2 

further promoted α-SMA expression in BMFs (p<0.05, 
p<0.0001). Compared with SW872 shCtrl, the CM of 
SW872 shTsp2 reduced the effect of promoting BMFs 
to express α-SMA (p<0.001). Similarly, after co-culture 
with CM derived from 93T Ctrl, 94T Ctrl, and SW872 
shCtrl, the relative mRNA levels of COL1A1, PLAU, 
MMP2, MMP9, FN1, VCAN, and TGFB in BMFs 
enhanced. 93T OE-Tsp2 and 94T OE-Tsp2 promoted 
the transformation of BMFs into TAFs, and SW872 
shTsp2 inhibited this transformation (Fig. 7D). These 
results indicated that Tsp2 promoted the conversion 
of TAFs in vitro and plays an important role in the 
formation of TAFs. 

 

 
Figure 7. Tsp2 promoted BMFs transform to TAFs in vitro. (A) Tsp2 expression was lower in 93T449, 94T778 and higher in SW872. (B) LPS cells with Tsp2 
overexpression or knockdown were constructed and identified (p<0.05). (C) Tsp2 protein levels in conditioned medium of LPS cells with Tsp2 overexpression or knockdown 
were determined by ELISA assay. (D) 93T OE-Tsp2 and 94T OE-Tsp2 promoted the transformation of BMFs to TAFs, and SW872 shTsp2 inhibited this transformation (p<0.05). 
Statistical tests: Student’s t tests. 
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Figure 8. Tsp2 facilitated malignant behaviors of LPS cells. (A) Tsp2 downregulation reduced cell proliferation of SW872, and Tsp2 up-regualation enhanced cell 
proliferation of 93T449 and 94T778 (p<0.05). (B) SW872 shTsp2 cells had more apoptotic cells than controls, and LPS cells with Tsp2 overexpression had less apoptotic cells 
(p<0.05). (C) SW872 shTsp2 cells had a lower migration rate, and Tsp2 up-regulation promoted the migration of 93T449 and 94T778 (p<0.05). Statistical tests: Student’s t tests. 

 

Tsp2 facilitated malignant behaviors of LPS 
cells 

Cell proliferation, apoptosis, and migration 
assays were performed to investigate the effect of 
Tsp2 expression on the biological behaviors of LPS 
cells. As shown in Fig. 8A, Tsp2 downregulation 
significantly reduced the proliferation of SW872 cells, 
while upregulation of Tsp2 enhanced the proliferation 
of 93T449 and 94T778 cells (p<0.05). Flow cytometry 
analysis showed that SW872 shTsp2 cells had more 
apoptotic cells compared with control cells, and LPS 
cells overexpressing Tsp2 had fewer apoptotic cells 

(p<0.05, Fig. 8B). The migration assay demonstrated 
that SW872 shTsp2 had a lower migration rate, and 
Tsp2 upregulation promoted the migration of 93T449 
and 94T778 cells (p<0.05, Fig. 8C). 

Additionally, Tsp2 downregulation suppressed 
xenograft tumor growth in vivo (Fig. 9A). On day 60, 
the xenograft tumors formed by SW872 shTsp2 cells 
were smaller than those formed by SW872 shCtrl cells 
(p<0.05, Fig. 9A). The expression of Tsp2 were lower, 
Ki67 expression was weaker and α-SMA positive cells 
decreased in SW872 shTsp2 cell-derived xenografts, 
suggesting that Tsp2 downregulation inhibited the 
growth of tumors and TAFs infiltration (Fig. 9B-C). 
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Figure 9. Tsp2 downregulation suppressed xenograft tumor growth in NOD/SCID mice and the potential mechanism was elucidated by protein 
microarray. (A) On day 60, the volume of xenograft tumors formed by SW872 shTsp2 cells were smaller than tumors formed by SW872 shCtrl cells (p<0.05, each group 
included 5 mice). (B) Relative mRNA level of Tsp2 in tumors formed by SW872 shTsp2 cells were decreased (p<0.05) by qPCR. (C) Tsp2 and Ki67 expression was weaker, and 
α-SMA positive cells decreased in SW872 shTsp2 cells derived xenografts. (D) The results of protein microarray analysis. (E) Western blotting confirmed the variation of 
pMEK1/2, pERK1/2 and p-p38 expression in Tsp2 overexpression or knockdown cells. Statistical tests: Student’s t tests. 

 

Tsp2 activated MAPK/MEK/ERK pathway in 
LPS cells 

A protein microarray was used to evaluate the 
changes in key targets in tumor-related signaling 
pathways after Tsp2 overexpression. Compared with 
control cells, the expression of pCREB, pERK1/2, 
pMSK1/2, and p-p38alpha were upregulated, and the 
expression of pAkt1/2/3 and pSTAT1/3 was 
down-regulated in 94T OE-Tsp2 (Fig. 9D). Western 

blotting confirmed that Tsp2 upregulation promoted 
pMEK1/2, pERK1/2, and p-p38 expression in 93T449 
and 94T778 cells, while MEK1/2, ERK1/2, and p38 
remained unchanged. Knockdown of Tsp2 attenuated 
pMEK1/2 and pERK1/2 expression in SW872 cells, 
while the expression of MEK1/2, ERK1/2, p-p38, and 
p38 was stable (Fig. 9E). Therefore, Tsp2 might 
activate the MAPK/MEK/ERK pathway to promote 
the malignant behaviors of LPS cells, and Tsp2 might 
act as a potential therapeutic target. 
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Discussion 
Currently, surgical resection remains the most 

effective treatment for RLPS [23], but postoperative 
recurrence of RLPS is common, and unresectable local 
recurrence is associated with tumor-related death 
[24]. The efficacy of radiotherapy and chemotherapy 
for LPS are controversial [5,6], and targeted therapy 
has been performed to improve the prognosis of 
patients. For example, MDM2 inhibitors and CDK4 
inhibitors have shown promising prospects, both of 
which can keep LPS disease stable [25-27]; in a phase 2 
clinical trial, 44% of 41 RLPS patients (excluding 
WDLPS) treated with pazopanib showed partial 
response or stable disease [28]. However, Regorafenib 
and Sunitinib did not show efficacy in LPS [29,30], 
and the clinical trial results of Aurora kinase A 
inhibitor alisertib was also unsatisfactory [31]. 
Therefore, it is essential to explore novel therapeutic 
targets for RLPS and the TME. 

The TME is a matrix environment, which consist 
of stromal cells such as fibroblasts, immune cells, and 
non-cellular components such as cytokines and 
extracellular matrix. The supportive effect of TME is 
essential during cancer progression [32]. TAFs are the 
most important cellular components of the TME and 
play important roles in tumor development [33]. For 
example, TAFs in gastric cancer and pancreatic cancer 
secrete CXCL12 and activate the CXCL12/CXCR4- 
pathway to promote tumor growth [34,35]. CCL5 
secreted by TAFs can interact with the CCR5 receptor 
to promote breast cancer metastasis [36]. TAFs also 
secrete collagen, fibronectin, and TGF-β to promote 
matrix stiffness, release MMPs to modify ECM, and 
promote the migration and invasion of cancers [37,38]. 
Harati et al. found that TAFs isolated from MLPS and 
LPS promoted proliferation, viability, and adriamycin 
resistance of SW872 [21], but the role of TAFs and the 
cross-talk between TAFs and tumor cells are still 
unclear in RLPS. In our study, we successfully 
isolated TAFs from retroperitoneal DDLPS and found 
that they contributed to proliferation and migration of 
LPS cells and could effectively chemoattract LPS cells. 

Surprisingly, unlike the results from colon 
cancer [7], pancreatic cancer [39] and breast cancer 
[40], α-SMA expression cannot predict the prognosis 
of RLPS. Additionally, stable TAFs cannot be isolated 
from WDLPS, suggesting there might exist special 
initiating factors of TAFs in DDLPS. Therefore, 
bioinformatics methods were used to identify the key 
molecules involved in TAF formation in DDLPS. A 
total of 193 DEGs were screened, and they were 
enriched in collagen tissue, smooth muscle cell 
proliferation, extracellular matrix, and ECM-receptor 
interaction pathway, demonstrating that there are 
indeed a group of genes related to TAF formation and 

ECM proliferation in DDLPS. Using Oncomine 
database visualization, gene correlation analysis, and 
qPCR verification, we initially found that THBS2 gene 
expression was related to TAFs. 

Tsp2 protein, which was encoded by THBS2, is a 
member of the Ca2+-binding glycoprotein family of 
stromal cells, and it interacts with cell receptors and 
ECM proteins to promote cell adhesion, proliferation, 
and apoptosis [41]. In recent studies, THBS2 has been 
considered as oncogene or biomarker in tumor 
development and progression. High Tsp2 expression 
was significantly related to TNM staging and lymph 
node metastasis in colon cancer, and it is also a new 
prognostic indicator of colon cancer [42,43]. In lung 
cancer, gastric cancer, and melanoma, patients with 
positive Tsp2 expression have poorer prognosis 
[44-46]. However, it is not fully understood whether 
the effect of Tsp2 in promoting tumor progression and 
ECM hyperplasia is related to the activation of TAFs. 
It is only found in breast cancer that tumor-initiating 
cells activate fibroblasts by secreting Tsp2 to enhance 
metastasis [47]. Bornstein et al. knocked-out Tsp2 in 
mice, and then observed apoptosis of fibroblasts and 
abnormal structure of collagen fiber [48]. Here, 
consistent with the results of other tumor types, Tsp2 
expression is an independent predictive factor of DFS 
and RFS in RLPS. Tsp2 expression was also positively 
correlated with α-SMA expression in RLPS patients. 
In addition, Tsp2 promoted the conversion of BMFs to 
TAFs in vitro and enhanced the expression of α-SMA, 
TAFs secretase, and ECM components. Reduction of 
Tsp2 in the co-culture environment inhibited TAF 
formation induced by LPS cell lines. α-SMA positive 
cells also decreased in SW872 shTsp2 cell-derived 
xenografts. Therefore, Tsp2 might participate in 
transformation to TAFs and be an effective marker for 
TAFs infiltration and prognosis prediction in RLPS. 

The bidirectional effect between TAFs and tumor 
cells plays a key role in the development and 
progression of LPS. Firstly, tumor cells secrete Tsp2 to 
induce the transformation of normal fibroblasts to 
TAFs, and TAFs remodel the extracellular matrix by 
secreting COL1A1, COL1A2, COL5A1, FN1, and 
VCAN. Proliferating stroma cells and deposited 
collagen may form a tough barrier around the tumor 
cells to prevent immune cell infiltration and drug 
arrival [49,50]. MMPs and other proteases secreted by 
TAFs dissolve the proliferating extracellular matrix 
and provide channels for tumor invasion, 
implantation and metastasis [9,51]. Secondly, TAFs 
could regulate the malignant biological behavior of 
tumor cells directly [52,53], which consistent with the 
results observed in this study. Thirdly, RLPS tumor 
tissue is difficult to completely resected and prone to 
recurrence repeatedly [3], TAFs in the resection 
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margin or adjacent tissues may promote the 
proliferation of residual tumor cells and thus lead to 
tumor recurrence. Patricia P et al found that detecting 
THBS2 and other gene expression at negative surgical 
margins could predict the recurrence of oral 
squamous cell carcinoma [54]. In this study, we 
confirmed that RLPS patients with high Tsp2 
expression had shorter DFS and RFS, and the 
expression of TAFs-related genes and THBS2 at the 
resection margin of RLPS should be further evaluated 
to support this hypothesis. Thus, the crosstalk 
between TAFs and LPS cells forms a positive 
feedback. At present, it is difficult to determine the 
sequence of tumorigenesis and TAFs formation, but 
once the positive feedback is initiated, it will lead to 
malignant changes of tumor cells and the tumor 
microenvironment as a whole. 

Here, the function of Tsp2 in LPS cells was 
investigated. Similar to previous studies in gastric 
cancer cells and melanoma cells [46,55], knockdown 
of Tsp2 suppressed the malignant biological 
behaviors of LPS cells and reduced the volume of 
SW872 derived xenograft tumors. Unlike the 
discovery that Tsp2 deletion inhibited the AKT/PI3K 
pathway in gastric cancer and melanoma, we found 
that pCREB, pERK1/2, pMSK1/2, and p-p38alpha 
were up-regulated, pAkt1/2/3 and pSTAT1/3 were 
down-regulated in 94T OE-Tsp2 through the protein 
microarray analysis. MSK and CREB are downstream 
kinases of the MEK/ERK pathway, which mediate 
downstream gene transcription and participate in 
regulating biological events. JNK and p38 signaling 
pathways are important in stress responses, such as 
inflammation and apoptosis. Western blotting 
confirmed that Tsp2 upregulation promoted 
pMEK1/2, pERK1/2, and p-p38 expression, while 
Tsp2 knockdown attenuated pMEK1/2 and pERK1/2 
expression. Therefore, we defer that Tsp2 can activate 
the MAPK/MEK/ERK pathway to facilitate tumor 
progression. Currently, single or combined therapies 
of MAPK inhibitors Trametinib, Abrafenib, and 
Vemurafenib have been used in BRAF V600-mutated 
melanoma [56-58], BRAF-mutated non-small cell lung 
cancer [59,60] and anaplastic thyroid cancer [61]. 
Other drugs targeting MAPK such as ERK1/2 
inhibitor ulixertinib have also shown potent activity 
in clinical trials including colon cancer, gallbladder 
adenocarcinoma, glioblastoma and other solid tumors 
[62]. Therefore, MAPK inhibitors might be an effective 
therapy for RLPS, and the specific application 
methods and possible effect need to be determined by 
clinical trials. 

Since Tsp2 is a type of secreted protein, 
assessment of Tsp2 in serum might also indicate the 
grade and prognosis of tumor, or increase the 

detection rate of patients with high-risk tumors 
[63,64]. However, limited to the number of blood 
samples, we did not evaluate Tsp2 expression in the 
serum of patients, although this may be a more 
convenient and effective inspection method. 
Additionally, the specific mechanism by which Tsp2 
promotes TAF formation remains to be elucidated, 
and we will elucidate these problems in future 
studies. 

In summary, we isolated and identified TAFs 
from retroperitoneal DDLPS and determined its 
cancer-promoting effect. Tsp2 promoted TAF 
formation and tumor progression and was an 
independent predictive factor for DFS and RFS in 
RLPS. Therefore, Tsp2 may be a promising 
therapeutic target for RLPS patients. 
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