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Abstract
Detecting spreading outbreaks in social networks with sensors is of great significance in ap-

plications. Inspired by the formation mechanism of humans’ physical sensations to external

stimuli, we propose a new method to detect the influence of spreading by constructing excit-

able sensor networks. Exploiting the amplifying effect of excitable sensor networks, our

method can better detect small-scale spreading processes. At the same time, it can also

distinguish large-scale diffusion instances due to the self-inhibition effect of excitable ele-

ments. Through simulations of diverse spreading dynamics on typical real-world social net-

works (Facebook, coauthor, and email social networks), we find that the excitable sensor

networks are capable of detecting and ranking spreading processes in a much wider range

of influence than other commonly used sensor placement methods, such as random, tar-

geted, acquaintance and distance strategies. In addition, we validate the efficacy of our

method with diffusion data from a real-world online social system, Twitter. We find that our

method can detect more spreading topics in practice. Our approach provides a new direc-

tion in spreading detection and should be useful for designing effective detection methods.

Introduction
Plenty of phenomena in various domains can be depicted by the spreading dynamics in social
networks, e.g., the outbreak of a contagious disease [1–4], the diffusion of a piece of informa-
tion [5–8], or the promotion of a commercial product [9–11]. The detection of spreading pro-
cesses in social networks is an important issue in many real-world applications, such as the
formulation of timely intervention measures during the spread of an epidemic, and the surveil-
lance of current trending topics in popular online social networks. In recent years, the global
outbreaks of seasonal influenza and the widespread use of online social media in political
movements are reminiscent of the vital role of spreading detection [12]. Because of its practical
value, designing effective detection methods has attracted much attention across disciplines. In
particular, several Internet-based surveillance systems for disease outbreaks have been pro-
posed [13–16]. By monitoring health-seeking behaviors in the form of online search engine
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queries or analyzing symptom-related terms appearing in online social media, these systems
can estimate the current level of spreading activity. Another approach is to deploy social net-
work sensors in the system. A heuristic algorithm for the optimal placement of sensors has
been proposed for spreading models [17], and it has been shown that properly placed sensors
can detect contagious outbreaks before they happen in large scale by taking advantage of the in-
formative properties of social networks [18]. Moreover, recent studies indicate that the origin
of a spreading process can be inferred by placing sensors in social networks [19, 20]. In addi-
tion, there exist extensive studies on predicting the evolution of spreading from a snapshot
[21–23]. All these approaches make contributions to the detection and prediction of spreading
processes in social networks.

Most of the existing detection methods focus on the objective of early detection. However,
considering the large numbers of spreading occurring simultaneously in social networks, it is
also important to detect and distinguish the influence of these spreading processes. In specific,
our goal is to detect as many spreading processes as possible and rank their relative influence at
the same time. This enables us to have an estimation of these spreading processes, which can
be applied to applications such as selecting and ranking blogs in a blog community. To achieve
this goal, we develop an alternative approach by making use of excitable sensors. In the field of
psychophysics, it has been well established that the cooperative effect of excitable elements can
be used to explain how physical stimuli (sound, light and pressure) transduce into psychologi-
cal sensations [24]. Although each single excitable node responds to stimuli with a small range,
the collective response of the entire excitable system can encode stimuli spanning several or-
ders of magnitude, yielding high sensitivity and a broad dynamic range (the range of stimulus
intensities resulting in distinguishable network responses) [24, 25]. Borrowing the property of
nonlinear amplification of stimuli, the excitable elements are suitable for detecting the influ-
ence of spreading in social networks: the stimuli can be regarded as infections, and the response
of the excitable system can be treated as the detected influence.

Following this idea, we propose a method to deploy excitable sensor networks in social sys-
tems. For both homogeneous and heterogeneous networks, we analytically derive the relation-
ship between the response and spreading influence. Through simulations on Erdös-Rényi (ER)
and Barabási-Albert (BA) networks, we verify our theoretical analysis for susceptible-infected-
recovered (SIR) model, susceptible-infected-susceptible (SIS) model, rumor spreading
(Rumor) model and susceptible-infected-recovered model with limited contacting ability
(SIRL) [26–30]. Then, we compare the performance of excitable sensor networks with several
commonly used sensor placement strategies. The simulation results of spreading models on
three typical social networks (including facebook, coauthor and email social networks) suggest
that excitable sensor networks outperform the other considered methods: excitable sensor net-
works can not only grasp small-scale spreading processes because of the amplifying effect of
collective dynamics, but also better distinguish large-scale diffusion instances due to the self-in-
hibition effect of excitable elements. Under the same circumstances, our method has a larger
dynamic range, which means it can detect spreading in a wider range of influence. In addition,
we discuss the impact of the construction method of excitable sensor networks. We find that
the homogeneous sensor networks perform better than heterogeneous ones, and the choice of
sensors’ number will not affect our results significantly. We also explore spreading processes
originating from different sources. The amplifying effect of excitable sensors is found to be
more effective for well-connected sources. Therefore, excitable sensor networks are more likely
to detect spreading instances from high-degree sources. Furthermore, we validate the efficacy
of our method using real diffusion data from Twitter. We track the spreading of 309 topics in
Twitter among selected users, and use each method to detect them. The results show that the
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excitable sensor network can detect more spreading topics than other strategies under the
same situations.

Materials and Methods

Datasets
In the numerical simulations, we utilize three different typical social networks as the substrates
on which spreading processes occurs. Here we introduce the properties and statistics of each
adopted social network. Notice that we treat all the networks as undirected.

Facebook The social network of facebook contains all of the user-to-user links from the
Facebook New Orleans networks [31]. If one user is in the friend list of another user, then an
undirected social link is constructed between them. It contains 63731 nodes and 1545685 links,
resulting in an average degree of 48.5. This dataset is shared at http://socialnetworks.mpi-sws.
org/data-wosn2009.html.

Coauthor Based on the DBLP computer science bibliography which provides a comprehen-
sive list of research papers in computer science, a coauthorship network is constructed [32]. In
the network, two authors are connected if they publish at least one paper together. There are
317080 nodes and 1049866 links in the network, and the average degree is 6.7. Researchers can
download this dataset at http://snap.stanford.edu/data/com-DBLP.html.

Email In the Enron email communication network [33], nodes are email addresses. If an ad-
dress i sends at least one email to another address j, the graph contains an undirected edge con-
necting i to j. The network contains 36692 nodes and 183831 links, and the average degree is
10.0. The data source is http://snap.stanford.edu/data/email-Enron.html.

In the validation of excitable sensor networks, we use real diffusion data from the microblog
platform Twitter. The tweets are sampled between January 23rd and February 8th, 2011 and
are shared by Twitter (http://trec.nist.gov/data/tweets/). In Twitter, specific topics are usually
labelled by a “hashtag”, i.e., a word or an unspaced phrase prefixed with the number sign (“#”).
Therefore, we can use hashtags to track the spreading of a specific topic in Twitter. During the
collection period, there happened to be a mass protest on January 25th in Egypt, which was an
important event of the “Arab Spring”. In this event, Twitter was used by protesters to organize
the protest and recruit members. Many Twitter users discussed and shared information about
this protest using Twitter. The most used hashtag related to this protest is “#Jan25”. To obtain
the information spreading among users participating in this protest, we filtered 23712 tweets
containing “#Jan25” published by 7014 different users. Then, we checked all the available
tweets that were published by these users and found 309 distinct topics appearing more than
10 times. To reconstruct the social network of the selected users, we have extracted the mention
network, where two users are connected if one user has mentioned another user (“@user-
name”) at least once. Compared with the follower network, the mention network stands for
stronger social relations because mentions usually contain personal communications. In this
way, we obtain 10547 social links among 7014 users, and the average degree is 3.0.

Spreading Models
In this paper, we have applied four spreading models to verify the effectiveness of excitable sen-
sor networks. These models were frequently used in previous research works on spreading dy-
namics. We introduce the details of each model here.

SIR model The SIR model is suitable to describe the spreading of a disease with immunity.
In the SIR model, each individual is in one of three states: the susceptible (S), infected (I) and
recovered (R). At each time step, infected nodes infect their susceptible neighbors with proba-
bility β and then enter the recovered state with probability μ, where they become immunized
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and cannot be infected again. When there are no more infected individuals in the system, the
fraction of recovered person, or equivalently, the fraction of people who have ever been in-
fected, is denoted byM. Assume the densities of the susceptible, infected, and recovered at time
t are s(t), i(t), and r(t) respectively. In homogeneous random networks with average degree hki,
the dynamics of SIR model satisfies the following set of coupled differential equations

diðtÞ
dt

¼ bhkisðtÞiðtÞ � miðtÞ;

dsðtÞ
dt

¼ �bhkisðtÞiðtÞ;

drðtÞ
dt

¼ miðtÞ:

ð1Þ

8>>>>>>>><
>>>>>>>>:

SIS model The SIS model, in which only two states, susceptible (S) and infected (I), are con-
sidered, describes spreading processes that do not confer immunity on recovered individuals.
In the spreading process, infected individuals infect their susceptible neighbors with probability
β and return to S state with probability μ. As time evolves, the fraction of infected persons ρ
will become steady. We run SIS dynamics for 100 steps and take the average infected propor-
tion of last 30 steps as ρ. In ER random networks with average degree hki, the dynamics can be
described by the differential equation

diðtÞ
dt

¼ bhkiiðtÞð1� iðtÞÞ � miðtÞ: ð2Þ

Rumor model In Rumor model, each individual can be in three possible states: the spreader
(S), ignorant (I), and stifler (R). Spreaders represent nodes that are aware of the rumor and are
willing to transmit it. Ignorant people are individuals unaware of the rumor. Stiflers stand for
those that already know the rumor but are not willing to spread it anymore. In each time step,
the spreaders contact all their neighbors and turn the ignorant ones into spreaders with proba-
bility β. If the spreaders encounter spreaders or stiflers, they will turn to stiflers with probability
μ. The influence of the rumorM is defined as the fraction of stiflers when there are no more
spreaders in the system. In homogeneous networks with average degree hki, dynamics follows
the set of coupled differential equations

diðtÞ
dt

¼ �bhkiiðtÞsðtÞ;

dsðtÞ
dt

¼ bhkiiðtÞsðtÞ � mhkisðtÞ½sðtÞ þ rðtÞ�;

drðtÞ
dt

¼ mhkisðtÞ½sðtÞ þ rðtÞ�:

ð3Þ

8>>>>>>>><
>>>>>>>>:

SIRL model The SIRL model is a modified SIR model, in which each node is assigned with
an identical capability of active contacts, L. It stands for the type of spreading with limited con-
tacting ability. Compared with the standard SIR model, at each time step in SIRL model, each
infected individual will generate L contacts. Multiple contacts to one neighbor are allowed, and
contacts not between susceptible and infected ones are also counted just like the standard SIR
model. The parameters β and μ represent the infection rate and recover rate respectively. In ho-
mogeneous random networks with average degree hki, the dynamics can be calculated by the
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set of differential equations

diðtÞ
dt

¼ bLsðtÞiðtÞ � miðtÞ;

dsðtÞ
dt

¼ �bLsðtÞiðtÞ;

drðtÞ
dt

¼ miðtÞ:

ð4Þ

8>>>>>>>><
>>>>>>>>:

Results

Construction of the excitable sensor network
We now describe how to construct an excitable sensor network in a social network. Each excit-
able node has n states: si = 0 is the resting state, si = 1 corresponds to excitation, and the re-
maining si = 2, . . ., n − 1 are refractory states. In our study, we set n = 3. Given a social
network, we select f percent of nodes as sensors according to specific criteria. Then, we create
links between the selected sensors to form a network. In our case, we construct a homogeneous
random network among selected sensors. Assuming there are Ns nodes in the sensor network,
we assign Nshki/2 links to randomly chosen pairs of nodes, which produces an average degree
hki. Fig 1(a) illustrates an instance of a sensor network. The lower layer is the underlying social
network, while the upper layer is the sensor network.

There are two dynamical processes in the system: spreading dynamics in the social network
and signal transmission dynamics in the sensor network. In our study, we adopt four spreading
models that are frequently used in the research of spreading dynamics: SIR, SIS, Rumor and
SIRL models [26–30]. The SIR model is developed to describe the contagion process of diseases
with immunity. Once people recover from the disease, they will acquire permanent immunity.
The SIS model depicts the outbreaks of contagions that an individual can catch more than
once. The Rumor model considers the diffusion process of rumors among a population. The
SIRL model is a modified SIR model, in which each node has a limited capability of active con-
tacts L at each time step. The individual-level spreading mechanisms in these models confine
the diffusion processes within the underlying social networks, which makes them suitable for
exploring the interplay between the spreading dynamics and social network structures. Since
the early days of the research of complex networks, these models have been widely employed to
simulate the epidemic spreading of different types of diseases [3, 29, 30, 34–36], information
diffusion among individuals [27, 37–39], and rumor propagation in online social networks [28,
40]. The details of these models are explained in the Materials and Methods section.

In the following analysis, if an individual catches a contagious disease or becomes aware of a
piece of rumor, we define its state as infected. For SIR, Rumor and SIRL models, the influence
of a spreading instanceM is defined as the proportion of people who have ever been infected.
In contrast, in SIS model, because people can be infected repeatedly, we define the influence ρ
as the fraction of infected persons when the system reaches a steady state.

Signal transmission dynamics occur in sensor networks. The evolution dynamics of sensors
are shown in Fig 1(b). At each time step, sensors in resting state can evolve into active state
under two circumstances: infected in spreading dynamics or activated by active neighboring
sensors with probability s (coupling strength). The active sensors will update into refractory
state and then change back into resting state deterministically. In refractory state, sensors can
neither be activated nor activate other neighbors. To define the response of a sensor network to
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the spreading process, we assume that the observation time is T. Denote the activity level of
sensors Ft at time t as the proportion of active sensors. The response F is defined as the average

activity level during the observation time, F ¼ PT
t¼0 F

t=T .
For a spreading process with influenceM, the system will feedback a response F. As a func-

tion of the influenceM, response has a minimum value F0 and a maximum value Fmax. To
quantify the ability of excitable sensor networks to detect spreading, we define the dynamic
range Δ = 10log10(Mhigh/Mlow) as the range of influence that is distinguishable based on re-
sponse F, discarding diffusion processes that are too small to be distinguished from F0 or that
are too close to saturation [24]. The range [Mlow,Mhigh] is found from its corresponding re-
sponse interval [Flow, Fhigh], where Fx = F0 + x(Fmax − F0).

The dynamics of excitable sensor networks are highly related to the network topology and
coupling strength s. Many previous studies have shown that there exists a critical point in excit-
able networks. Only above the critical point, does self-sustained activity emerge in response to
external stimuli. It has been proved that the critical state occurs when the largest eigenvalue of
the interacting adjacency matrix is exactly 1 [25]. Particularly, a network of excitable elements
has its sensitivity and dynamic range maximized at the critical point [25, 41–43]. Therefore, we
select the coupling strength s to make the sensor network achieve a critical state. For random
networks with average degree hki and coupling strength s, the largest eigenvalue of the interact-
ing adjacency matrix is approximated by shki. Thus, in designing the excitable sensor networks,
we set the coupling strength s = 1/hki to optimize the dynamic range.

Fig 1. Illustrations of excitable sensor networks and the dynamics of sensors. (a) A schema of a sensor network. The lower layer is the underlying
social network and the upper layer represents the sensor network. Both blue and red balls are individuals in the social network and red balls are selected to
be sensors. The spreading dynamics and signal transmission occur in the lower and upper level separately. (b) The dynamics of excitable sensors. The
number 0, 1 and 2 stand for the resting, excitation and refractory state, respectively. Each sensor in resting state can be activated either by means of infection
in the spreading dynamics or by excited neighboring sensors with probability s independently. Once activated, the sensors will automatically turn into the
refractory state in the next time step, where they cannot be activated again and activate other sensors. Then, these sensors change back to resting state.

doi:10.1371/journal.pone.0124848.g001
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Dynamics of excitable sensors
The evolution dynamics of excitable sensors can be studied through theoretical analysis. For
each sensor i = 1, � � �, Ns, we denote the probability in active state at time t as pti . Then, the activ-

ity level of sensors is Ft ¼ PNs
i¼1 p

t
i=Ns. In the case of small-scale spreading, we assume that sen-

sors are activated independently by their neighboring active sensors. Therefore, the evolution
of pti follows

ptþ1
i ¼ ð1� pti � pt�1

i ÞðIti þ ð1� Iti Þ½1�
YNs

j¼1

ð1� ptj sAijÞ�Þ; ð5Þ

where Iti is the probability of sensor i being activated by infection at time t, s is the coupling
strength of sensors, and A is the adjacency matrix of the sensor network: Aij = 1 if sensor i and j
are connected, and Aij = 0 otherwise. The term ð1� pti � pt�1

i Þ is the probability that sensor i is
at resting state at time t, while the term ð1� Iti Þ½1�

QNs
j¼1ð1� ptj sAijÞ� is the probability of sen-

sor i being activated by its neighboring sensors at time t, rather than by infection.
To solve Eq 5, we need to know the infection intensity Iti . However, Iti is highly related to

sensor i’s topological property. For instance, hubs are more likely to be infected [35, 44]. To
eliminate the influence of topological structure, we first adopt ER random networks in simula-
tions, and select sensors randomly. Under this condition, we suppose the infection intensity Iti
for each sensor i is approximately the same. Because the sensor network is homogeneous, we
assume that the active probability pti is approximately the same for all the sensors, i.e.,

pt1 � � � � � ptNs
� Ft . In addition, using mean-field approximation, the term

QNs
j¼1ð1� ptj sAijÞ

can be estimated by (1 − Ft s)hki. Consequently, Eq 5 is simplified to

Ftþ1 ¼ ð1� Ft � Ft�1ÞðIt þ ð1� ItÞ½1� ð1� FtsÞhki�Þ: ð6Þ

Because the sensor network is at the critical state, we have hkis = 1. For small-scale spreading,
Ft is close to zero. To second order, the term [1 − (1 − Ft s)hki] can be approximated by Ft + (hki
− 1)(Ft)2/2hki. Then, Eq 6 is further reduced to

Ftþ1 ¼ It þ ð1� 2ItÞFt � ItFt�1 � Cð1� ItÞðFtÞ2 � ð1� ItÞFtFt�1; ð7Þ

where C = (3hki − 1)/2hki.
Eq 7 is an iterative updating function of Ft. In fact, Ft+1 depends on Ft, Ft−1 and It. The infec-

tion intensity It is governed by the spreading dynamics. In homogeneous networks, the evolu-
tion of It satisfies specific differential equations for SIR, SIS, Rumor and SIRL models, as shown
in the Materials and Methods section. By solving these equations, we can calculate the infection
intensity It. For SIR, SIS and SIRL spreading, It is the proportion of infected people i(t). For
Rumor model, It is the density of spreaders s(t). With this information, we calculate the re-
sponse of the sensor network by using the initial conditions F0 = 0, F1 = I0. In the cases of SIR,
Rumor and SIRL models, iterations continue until It becomes zero. For SIS model, iteration
stops after It becomes steady. The influence of spreading can also be obtained by these equa-
tions. For SIR, Rumor and SIRL models, the influenceM is the value of r(t) when there are no
infected people or spreaders. The influence ρ for SIS model is the value of i(t) in the
steady state.

To verify our theoretical analysis, we run simulations on ER random networks. We generate
ER random networks with size 105 and average degree 10. Then, we randomly choose 10% of
nodes as sensors, forming a random network with average degree hki = 10. In each simulation,
we randomly select a node as the spreading source. For each spreading model, we calculate the
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theoretical values of response and influence for different infection rates β as we have explained
above. In Fig 2, the theoretical lines agree well with the simulation results for all considered
spreading dynamics. Moreover, we find that the response F follows a power-law relation with
influence, which is displayed in the insets of Fig 2. Clearly, the power-law exponentm depends
on spreading dynamics.

In terms of heterogeneous networks, we need to calculate Iti for each sensor i. Given the ad-

jacency matrix �A of the social network, one can obtain Iti for each spreading model by iterating
corresponding evolution equations, which are given in Supporting Information S1 File. Com-
bining the information of Iti and Eq 5, we are able to calculate the theoretical values of response
and influence. In simulations, we generate BA scale-free networks with size 105 and average de-
gree 10 [45]. The simulation results and theoretical values are presented in Figure A in S1 File.
The analytical analysis can well predict simulation results.

Fig 2. Theoretical analysis of the dynamics of excitable sensors. For SIR, SIS, Rumor and SIRL models, we display the relationship between the
response and influence in (a), (b), (c) and (d) respectively. We adopt ER random networks with size 105 and average degree 10. 10% of nodes are randomly
selected to be sensors, which are connected in a homogeneous random network with average degree hki = 10. Solid lines are theoretical predictions and
cross symbols represent simulation values. In simulations, we vary infection rate β and keep μ = 1 for all models. The contacting ability L in SIRL model is set
to be 5. Insets show the power-law fit of the data, wherem is the power-law exponent.

doi:10.1371/journal.pone.0124848.g002
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Performance on spreading models
There are several commonly used strategies to place sensors in social networks. We introduce
four of them to test the efficacy of excitable sensor networks. The most straightforward method
is to randomly select nodes as detecting sensors. Another heuristic alternative is to select hubs
as sensors. It has been shown that hubs are easily infected during an outbreak because they pos-
sess large numbers of connections to other nodes [35, 44]. Therefore, we can pick nodes with
degree ranking in top f percent as sensors to catch spreading instances of small influence. The
third method is to monitor the friends of randomly selected individuals [18]. It is known that
individuals located in the center of networks are more likely to be infected [37, 46]. Generally
speaking, the neighbors of a randomly chosen person tend to have larger number of connec-
tions and higher k-shell indices [18]. Moreover, this strategy is applicable even when we lack
complete information about the topological structures. Apart from these sensor placing strate-
gies, another important approach is based on the distance centrality or the Jordan center of a
graph [19, 47–49]. For a graph G, the distance centrality of node i 2 G, D(i, G), is defined as D
(i, G) = ∑j2G d(i, j), where d(i, j) is the shortest path distance from node i to node j[49]. Intui-
tively, nodes with smaller distance centrality are closer to other nodes. Consequently, nodes
with small distance centrality are selected as sensors in this strategy. After placing the sensors,
we monitor the statuses of these sensors during a spreading process. The influence of spreading
is detected as the proportion of infected sensors in the cases of SIR, Rumor and SIRL models or
the fraction of sustained infection in the steady state for SIS model. In the following analysis,
we refer to these four strategies as random, targeted, acquaintance and distance
methods, respectively.

To compare the efficacy of excitable sensor networks with other methods, we apply spread-
ing dynamics on three different types of real-world social networks: an online social network—
facebook [31], a coauthorship network of scientific publications [32], and a communication
network of emails [33]. Explanations and details of the networks can be found in the Materials
and Methods section. The selected networks are representative in their corresponding do-
mains, and are widely used in previous studies of social networks. Therefore, these networks
can reflect the characteristics of social networks in real life. In simulations, because nodes with
more connections have a larger chance to be infected [35, 44], we select nodes ranking in top f
percent in degree as sensors in the excitable sensor network.

Fig 3(a) displays the responses of random and targeted sensors to SIR epidemic spreading.
By varying the infection probability β, we can create diffusion instances with various influence.
We select 10% of nodes in facebook social network as sensors. The response of random sensors
follows a linear relationship with influence. In the range of small influence, random sensors fail
to detect some small-scale spreading and, more importantly, cannot distinguish the influence
clearly. This phenomenon is better illustrated in the inset of Fig 3(a). Many spreading processes
have response F = 0, and large numbers of diffusion processes with distinct influence produce
same response. In contrast to random strategy, targeted sensors perform better for small influ-
ence. The response is amplified because of the topological property of sensors, and the influ-
ence range that can trigger distinguishable responses is extended to the left by at least one
order of magnitude. However, in the range of large influence, the response of targeted sensors
saturates only when approximately 20% of individuals are infected. For spreading processes
with influence larger than 20%, the response of targeted sensors is always 1. This dramatically
diminishes the effective detecting range in which we can rank the influence correctly.

We now examine the performance of excitable sensor networks. In Fig 3(b), the response
curve of the excitable sensor network is displayed. The sensors are capable of detecting small-
scale epidemic spreading and distinguishing large-scale diffusion. This can be explained by Fig
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3(c) and 3(d). In the case of small influence, we set the infection probability β = 0.001. Com-
pared with other strategies, the fraction of active sensors Ft for the excitable sensor network is
greatly amplified because of the signal transmission among sensors. The random strategy re-
flects the real proportion of infected people at each time step. Targeted, distance and acquain-
tance strategies exploit sensors’ relatively central locations in the social network, thus
enhancing the infected population of sensors. The excitable sensor network relies on both sen-
sors’ topological advantages and signal transmission processes. In this way, small-scale spread-
ing instances are more likely to be detected by the excitable sensor network. When the
response is amplified, it makes the influence more distinguishable. For large-scale diffusion
shown in Fig 3(d), where we set β = 0.1, a peak of infection appears. The fraction of active sen-
sors for targeted strategy becomes the largest, which produces the early saturation of targeted
sensors. In contrast, oscillations emerge in the excitable sensor network because of the self-

Fig 3. Response of sensor networks to SIR epidemic spreading.Here we run SIR model on facebook social network and select 10% of nodes as
sensors. The average degree of sensor network is set as hki = 4, so the coupling strength of excitable sensors is s = 0.25. We set μ = 0.2 in simulations. The
source is selected as a hub with degree k = 1089. (a) The random sensors fail to detect small-scale epidemic spreading and targeted sensors saturate only
after the spreading occupies about 20% of population. (b) The excitable sensor network is capable of detecting small-scale epidemic spreading and
distinguishing large-scale spreading. Straight lines indicate relevant parameters to calculate the dynamic range Δ. (c) and (d) display the fraction of active
sensors Ft for different methods when we set β = 0.001 and β = 0.1 in SIR modeling respectively.

doi:10.1371/journal.pone.0124848.g003
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inhibition effect. Once a large fraction of sensors are activated, they update into refractory
state. Therefore, in the next time step, Ft will drop dramatically. After these sensors changing
back to resting state, they can be activated again and create another crest. This phenomenon
prevents the early saturation of sensor networks. As a consequence, the excitable sensor net-
work can correctly detect the influence of large-scale spreading.

To evaluate the results for other types of social networks, we also apply SIR model on coau-
thor and email social networks. Fig 4 displays the comparison of the performances of different
strategies in response to SIR spreading dynamics for facebook, coauthor and email networks.
In simulations, we select 10% of nodes as sensors and choose hubs as diffusion sources. We
construct an excitable sensor network with average degree hki = 4, and set μ = 0.2. To compare
the response curves directly, we normalize the response for each strategy to the unit interval

Fig 4. Comparison of performances of different strategies in response to SIR spreading dynamics.We apply SIR model on facebook (a), coauthor (b)
and email (c) social networks, and display the response curve for each strategy. 10% of nodes are selected as sensors. We construct an excitable sensor
network with average degree hki = 4, and set μ = 0.2 in simulations. The sources are selected as hubs with degree k = 1089, 343 and 1383 respectively. The
response curves for all cases are normalized to the unit interval [0, 1]. The insets show the dynamic range for each case when we vary the calculation interval
[Fx, F1−x] from x = 0.01 to x = 0.15.

doi:10.1371/journal.pone.0124848.g004
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[0, 1]. For all considered social networks, the response curves share common properties: in the
range of small influence, the response of excitable sensors stays larger than those of other meth-
ods, while it is suppressed for large-scale diffusion. This leads to a broader effective detection
range in which spreading processes can be detected and ranked reliably. We calculate the dy-
namic range for each case by varying the interval [Fx, F1−x] from x = 0.01 to x = 0.15. The insets
show that the dynamic range of the excitable sensor network is considerably higher than those
of random, targeted, acquaintance and distance strategies. This fact directly indicates the better
performance of excitable sensor networks in detecting the influence of SIR spreading. In addi-
tion, random sensors perform worst because they are incapable of amplifying small-
scale spreading.

Although we have tested the efficacy of the excitable sensor network for SIR spreading dy-
namics, it is still desirable to evaluate its performance for other spreading mechanisms. In S1
File, we perform SIS, Rumor and SIRL dynamics on facebook, coauthor and email social net-
works, obtaining similar results in Figures B-D in S1 File. All evidence supports that the excit-
able sensor network outperforms random, targeted, acquaintance and distance strategies. A
general conclusion we obtain from the analysis is that the dynamic range of the excitable sensor
network is higher for all considered spreading dynamics (SIR, SIS, Rumor and SIRL) and social
networks (facebook, coauthor and email networks). The consistency of the results stems from
the inherent property of excitable media. According to the dynamics of excitable elements, ex-
citable networks can amplify weak stimuli and suppress intense one as well. This functional
characteristic is independent of which spreading dynamics or social networks we adopt. Conse-
quently, it is potentially applicable to various spreading dynamics and topological structures.

After we have verified the effectiveness of excitable sensor networks for various spreading
models and social networks, we evaluate how excitable sensors respond to spreading processes
originating from different sources. We select four distinct nodes in facebook social network as
spreading origins. The selected nodes have degrees k = 1089, 309, 82 and 10, representing dis-
tinct groups of users. We run SIR, SIS and Rumor models on facebook social network originat-
ing from these sources. The relationship between the responses of excitable sensor networks
and spreading influence is presented in Fig 5. Obviously, the response curves for sources with
smaller degrees stay lower. The amplifying effect of excitable sensors is more effective for hubs
in the region of small influence and decreases as the degree of source diminishes. The disparity
in the amplifying effect can be explained by the property of infected nodes in spreading dynam-
ics. Despite the fact that the spreading processes have same number of infected people, the
property of these individuals varies significantly for different sources. In Fig 5(d), we plot the
average degree of infected individuals versus spreading influence for SIR model originating
from four selected spreading sources. Clearly, in the region of small influence, the average de-
gree of infected people for a well-connected source is far higher than that for a low-degree
source. As the spreading influence increases, this difference is narrowed because more nodes
are infected. Fig 5(d) indicates that for a spreading process originating from a high-degree
source, the infected people are also inclined to possess large numbers of connections. This will
cause more sensors to be activated because we pick highly connected nodes as sensors. In this
way, the response for a high-degree source will become higher. Because of this effect, excitable
sensor networks are more likely to detect spreading instances from high-degree sources under
same circumstances.

Effect of the construction method of excitable sensor networks
After examining the performance of excitable sensor networks through simulations, we would
like to discuss the impact of the construction method of sensor networks. First, we explain why
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the sensor network is constructed as a homogeneous random network. It has been found that
homogeneous networks enhance the dynamic range more than heterogeneous networks [24,
25]. In ref [25], the dynamic range at critical state Δ can be predicted by

D ¼ 10 log 10

2

3F2
�
� 10 log 10

hvu2i
hvihui2 ; ð8Þ

where F� is the lower threshold response, u and v are the right and left dominant eigenvectors

of sensor network’s adjacency matrix. Here hvu2i ¼ Pi¼Ns
i¼1 viu

2
i =Ns, hvi ¼

Pi¼Ns
i¼1 vi=Ns, and

hui ¼ Pi¼Ns
i¼1 ui=Ns. Given a fixed lower threshold response F�, only the term −10log10(hvu2i/

(hvihui2)) can affect the dynamic range Δ. In our case of undirected networks where ui = vi, the
second term becomes −10log10(hu3i/hui3). Since the entries of the dominant eigenvector are
first-order approximations to the degrees of corresponding nodes (ui� ki) [25], the second
term suggests that Δ should increase as the degree distribution becomes more homogeneous.

Fig 5. Response curves of excitable sensor networks for different spreading sources. The SIR (a), SIS (b) and Rumor (c) spreading models are
applied on facebook social network. Four distinct nodes are selected as diffusion sources. The selected sources have degree k = 1089, 309, 82 and 10. The
relationship between the response and spreading influence is presented. In (d) we plot the average degree of infected people versus the spreading influence
for SIR model originating from different sources.

doi:10.1371/journal.pone.0124848.g005
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In addition to theoretical analysis, we also compare the performances of ER random and BA
scale-free sensor networks through simulations in Supporting Information S1 File. In facebook
social network, we select 10% of nodes as sensors and construct ER and BA networks with
same average degree hki = 10. The coupling strength s is adjusted to achieve the critical state
for both cases. Results in Figure E in S1 File indicate that for all considered spreading dynam-
ics, ER sensor networks have higher dynamic ranges consistently, which justifies our choice of
homogenous structure of sensor networks.

Apart from the impact of network structure, we also need to check the effect of number of
sensors, or the fraction of sensors f. We conduct a sensitivity analysis on the number of sensors.
Specifically, we run SIR, SIS, Rumor and SIRL models on facebook social network for f ranging
from 0.01 to 0.1. For all spreading dynamics, the shape of response curves does not dramatical-
ly change along with the number of sensors (see Figure F in S1 File). Meanwhile, the dynamic
ranges almost remain unchanged for different fractions of sensors f. This indicates that the
choice of sensor numbers would not affect our result significantly.

Validation by real diffusion data
While we have verified the effectiveness of excitable sensor networks for diverse spreading
models, it still remains unknown how our method performs for real-world spreading instances.
There is evidence showing that the spreading processes in reality cannot be fully characterized
by theoretical models [50]. Additionally, the spreading dynamics in social networks are also
greatly affected by other human-related factors, such as homophily [51, 52], activity [53, 54],
social reinforcement [55], and social influence bias [56]. Under these circumstances, many re-
searchers turn to explore empirical diffusion data in various platforms. Here, we investigate
some empirical spreading instances from Twitter [57], an online social networking and micro-
blogging service that has gained worldwide popularity. We intend to validate the efficacy of ex-
citable sensors using real-life information spreading in Twitter. Details about the Twitter data
can be found in the Materials and Methods section.

To extract the information diffusion in Twitter, we examine the contents of tweets. In Twit-
ter, users usually include hashtags (a word or an unspaced phrase prefixed with the number
sign “#”) in their tweets when they refer to specific topics. Therefore, tracking the appearance
of hashtags is a reliable method to infer the information diffusion in Twitter. To be concrete,
we examine the tweets of 7014 users who have participated in discussions about the protest in
Egypt on January 25th, 2011. During a time window of 17 days, we filter 309 distinct hashtags
appearing more than 10 times among these users. We put a cutoff to omit small personal dis-
cussions that rarely diffuse among users. The frequency of these hashtags’ appearing is dis-
played in Fig 6(a), where hashtag ids are ranked chronologically. The intensity of hashtags
spans several orders of magnitude. This property is suitable for testing the performance of sen-
sors in response to spreading instances that vary by several orders of magnitude in influence.

To deploy sensors, we also require the structure of a social network. In our case, we recon-
struct the mention network of users from the tweets to approximate the social network in real
life. In Twitter, mentions (“@username”) usually convey personal conversations between users.
Thus, we expect that the tie strength of mentions is stronger than that of following relations
[58]. We do not track the follower network because Twitter has imposed a strict limit on the ac-
cess rate of Twitter API, where we can obtain the list of followers for a given user. Moreover,
even though we can track the followers of these users, the network structure may have changed
significantly since the time of data collection, and some users may have even closed their ac-
counts in Twitter. Considering all these limitations, we choose to use the mention network,
which can represent contemporary social relations during the observation.

Detecting the Influence of Spreading with Excitable Sensor Networks

PLOS ONE | DOI:10.1371/journal.pone.0124848 May 7, 2015 14 / 19



In detecting the topics in Twitter, we select 10% of users as sensors according to different
strategies and form a sensor network with average degree hki = 4 for excitable sensors. We re-
gard each time step as a one-day interval. The state of a user at each time step is determined by
the content of his/her tweets. If a user posts at least one tweet containing a specific hashtag dur-
ing one time step, we assume that this user is infected by this hashtag. Otherwise, we assume
that he/she is uninfected. During each time step, in the excitable sensor network, sensors can
be activated either by infection, or by active neighboring sensors with the probability of
s = 0.25 independently. The evolution dynamics remain the same as the above simulations, but
the spreading model in the underlying social network is replaced by real diffusion instances.
Here, we note that how we construct the social network cannot affect the spreading processes.
All the information we use is “at what time, who has published a specific hashtag”. This infor-
mation is independent of the network topology. Therefore, our choice of social network can
only affect the selection of sensors and will not strongly change our detection results.

Fig 6. Validation of real diffusion instances in Twitter. The appearance frequency of selected 309 hashtags is shown in (a). Hashtag ids are ranked
chronologically. In (b) we present the normalized response of different detecting strategies to these hashtags. We also display the detection rate r (the
fraction of detected hashtags) if we consider a topic is detected only when the response is above a threshold Fp in (c).

doi:10.1371/journal.pone.0124848.g006

Detecting the Influence of Spreading with Excitable Sensor Networks

PLOS ONE | DOI:10.1371/journal.pone.0124848 May 7, 2015 15 / 19



Fig 6(b) shows the responses of different detection strategies. The influence of a hashtag is
defined as the proportion of users who have ever posted the hashtag during the observation
time. Each dot represents a response value for a specific hashtag. Instead of following a smooth
curve, the response dots are scattered for all methods we consider. This phenomenon can be
partially explained by the distinction of spreading sources. Another factor may be that multiple
sources or independent spreaders exist in the diffusion of hashtags [59]. In spite of this, the re-
sponse shows an increasing trend as the influence increases, which makes large-scale diffusion
distinguishable from small-scale ones. More importantly, in the range of small influence, the
response of the excitable sensor network is higher on the whole. These results are in accordance
with our prediction through simulations.

To quantify the performance of each method, we define the detection rate r to measure how
many spreading instances a method can detect. Given a value p 2 [0, 1], the detection rate r(p)
is defined as the proportion of spreading instances whose responses are larger than Fp, where
Fp = F0 + p(Fmax − F0). In other words, if we assume that a topic is detected only when the re-
sponse is above Fp, the detection rate r(p) quantifies the fraction of topics that sensors can de-
tect. A higher detection rate means a better performance in detecting spreading. We present
the detection rate r for p 2 [0.01, 0.1] in Fig 6(d). Obviously, the detection rate of the excitable
sensor network is the highest among all the methods. This indicates that excitable sensor net-
works are capable of detecting more spreading hashtags in real diffusion in Twitter.

Discussion
The detection of spreading influence in social networks is an important issue both in theory
and practice. Inspired by the mechanism by which the physical sensations of external stimuli
emerge, we propose a method to construct excitable sensor networks in social networks. We
study the dynamics of excitable sensors analytically, and find the relationship between the re-
sponse and spreading influence. To compare the performance of our method with other sensor
placement strategies, we conduct SIR, SIS, Rumor and SIRL simulations on three typical social
networks. Because the nonlinear amplification property of excitable elements is independent of
spreading dynamics, we obtain consistent conclusions: under the same circumstances, excitable
sensor networks exhibit larger dynamic ranges, which implies that our method can react to
spreading processes in a wider range of influence. Excitable sensor networks can not only de-
tect small-scale spreading processes but also better distinguish large-scale diffusions. In addi-
tion, if the spreading processes originate from different sources, the average degree of infected
nodes is higher for high-degree origins. Because of this fact, the excitable sensor network is
more likely to detect spreading instances originating from well-connected sources. Moreover,
we also validate the effectiveness of excitable sensor networks with real diffusion data in Twit-
ter. The detection result shows that our method is capable of detecting more spreading topics.
Our approach provides a new route for designing effective detection strategies.

Supporting Information
S1 File. Additional analysis of the dynamics and performance of excitable sensor networks.
(PDF)
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