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MYC and the unfolded protein response in cancer:
synthetic lethal partners in crime?
Tingting Zhang1, Ningning Li2, Chaoyang Sun3 , Yang Jin4 & Xia Sheng1,*

Abstract

The transcription factors of the MYC family play pivotal roles in
the initiation and progression of human cancers. High oncogenic
level of MYC invades low-affinity sites and enhancer sequences,
which subsequently alters the transcriptome, causes metabolic
imbalance, and induces stress response. The endoplasmic reticu-
lum (ER) not only plays a central role in maintaining proteostasis,
but also contributes to other key biological processes, including
Ca2+ metabolism and the synthesis of lipids and glucose. Stress
conditions, such as shortage in glucose or oxygen and disruption of
Ca2+ homeostasis, may perturb proteostasis and induce the
unfolded protein response (UPR), which either restores homeosta-
sis or triggers cell death. Crucial roles of ER stress and UPR signal-
ing have been implicated in various cancers, from oncogenesis to
treatment response. Here, we summarize the current knowledge
on the interaction between MYC and UPR signaling, and its contri-
bution to cancer development. We also discuss the potential of
targeting key UPR signaling nodes as novel synthetic lethal strate-
gies in MYC-driven cancers.
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The MYC family and cancer

MYC gene encodes the basic helix–loop–helix/leucine zipper

(bHLH-LZ) transcription factor c-Myc that belongs to the MYC

family, together with L-Myc and N-Myc (encoded by MYCL and

MYCN, respectively). These genes are differentially expressed

during development, but the MYC proteins are functionally equiva-

lent in most biological systems (Conacci-Sorrell et al, 2014). c-Myc

heterodimerizes with MAX, another bHLH-LZ protein, and the

complex binds DNA sequences enriched in the promoters and

enhancers to regulate gene expression. The canonical high-affinity

sites of c-Myc-MAX heterodimer are termed “E-boxes” with a

consensus sequence 50-CACGTG-30 (Blackwell et al, 1993; Fernan-

dez et al, 2003). In malignant cells where c-Myc expression exceeds

normal level, c-Myc can bind DNA sequences beyond E-boxes (Wolf

et al, 2015). Upon DNA binding, c-Myc-MAX recruits the positive

transcription elongation factor complex, which subsequently phos-

phorylates RNA polymerase II to increase transcription rate (Rahl

et al, 2010). In addition to its well-established role as a transcrip-

tional activator, c-Myc can also repress expression of numerous

target genes when transcriptional co-repressors are recruited to the

c-Myc-MAX complex (Kleine-Kohlbrecher et al, 2006).

As a global transcriptional regulator, c-Myc can bind to

approximately 10-15% of the genome and regulate the expres-

sion of both protein-encoding genes and non-coding RNAs,

which have been implicated in various cellular processes such

as proliferation, growth, apoptosis, energy metabolism, and

diverse biosynthetic pathways (Kress et al, 2015; Hsieh & Dang,

2016). By acting on RNA polymerases, c-Myc not only upregu-

lates target gene expression, but also promotes the synthesis of

rRNA and tRNA, thus stimulating both transcription and transla-

tion of various ribosomal proteins and eukaryotic translation

initiation factors. c-Myc thereby activates the entire protein

synthetic apparatus required for cancer cell growth (Dunn &

Cowling, 2015; Stine & Dang, 2015). Furthermore, c-Myc repro-

grams the metabolic landscape to generate building blocks (such

as amino acids and lipids) essential for increased biomass and

growth of cancer cells (Stine et al, 2015).

Alterations in MYC oncogene are a hallmark of many human

cancers (Beroukhim et al, 2010). Constitutive c-Myc activation

can result from diverse mechanisms, such as chromosomal

translocation and rearrangements, which frequently occur in

Burkitt’s lymphoma and multiple myeloma (Dalla-Favera et al,

1982; Shou et al, 2000). In tumors where MYC is not amplified,

loss of the tumor suppressor adenomatous polyposis coli and

activation of the WNT/b-catenin pathway lead to transcriptional

activation of MYC via TCF transcription factor, a phenomenon

occasionally observed in colorectal and prostate cancers (He

et al, 1998; Nandana & Chung, 2014). While wild-type c-Myc

has a half-life of 15-20 min, mutations in c-Myc residues (such

as Thr58 and Ser62) increase protein stability and contribute to
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in vivo tumorigenesis (Wang et al, 2011). c-Myc overexpression

is observed in up to 70% viral and alcohol-related hepatocellular

carcinoma and is associated with an aggressive phenotype (Sch-

laeger et al, 2008; Lin et al, 2010). Similarly, MYCN is frequently

deregulated in solid tumors of neuroendocrine and neuronal

origin. In neuroblastoma, the most common extracranial pedi-

atric solid tumor, MYCN amplification is an important clinical

biomarker associated with poor prognosis (Grimmer & Weiss,

2006). Furthermore, N-Myc is a critical driver of neuroendocrine

prostate cancer, a subtype of castration-resistant prostate cancer

with neuroendocrine features (Wyatt & Gleave, 2015; Dardenne

et al, 2016). Finally, L-Myc is the least understood member of

this oncoprotein family, with a much lower transforming capac-

ity than c-Myc or N-Myc (Birrer et al, 1988; Barrett et al, 1992).

However, MYCL amplification is detected in small-cell lung

cancer more frequently than MYC or MYCN amplification and is

believed to play a tumorigenic role therein (Kim et al, 2016).

ER stress and UPR signaling

The endoplasmic reticulum (ER) contributes to the proper

functioning of the secretory pathway by providing a complex

network of chaperones, foldases, cofactors, and quality control

mechanisms (Wang & Kaufman, 2014). It is also involved in

metabolic processes including lipid synthesis, gluconeogenesis,

and calcium metabolism (Schwarz & Blower, 2016). Perturba-

tions in ER homeostasis, such as disrupted proteostasis, lead

to accumulation of misfolded or unfolded proteins in the ER

lumen. This stress triggers an adaptive mechanism named the

unfolded protein response (UPR), which increases ER chaper-

one expression, improves the clearance of misfolded proteins

via ER-associated degradation (ERAD), and attenuates protein

translation (Walter & Ron, 2011; Ruggiano et al, 2014; Hetz

et al, 2015). On the other hand, the UPR initiates apoptotic

signaling when the damage is irremediable (Kim et al, 2008).

The canonical UPR is initiated by three ER transmembrane

stress sensors: inositol-requiring enzyme 1 (IRE1, IRE1a, and

IRE1b), protein kinase R-like ER kinase (PERK), and activating

transcription factor 6 (ATF6, ATF6a, and ATF6b) (Fig 1). They

are maintained inactive when their luminal domains are

bound to the glucose-regulated protein (GRP) 78 (Hotamisligil,

2010; Walter & Ron, 2011).

IRE1a comprises a kinase domain and an endoribonuclease

domain on its cytosolic region. In response to the accumulation

of unfolded or misfolded proteins in the ER lumen, IRE1a under-

goes dimerization and trans-autophosphorylation. This conforma-

tional change activates its RNase domain, which excises a 26-

nucleotide intron within the XBP1 mRNA (Yoshida et al, 2001;

Calfon et al, 2002). This results in the expression of spliced

XBP1 (XBP1s), a potent transcription factor that regulates numer-

ous genes involved in protein folding, quality control, ERAD, and

lipid synthesis (Karagoz et al, 2019). Under certain conditions,

IRE1a also cleaves mRNAs, rRNAs, and miRNAs through its

RNase domain via regulated IRE1a-dependent decay (RIDD),

which either preserves ER homeostasis or facilitates cell death

(Hollien et al, 2009; Coelho & Domingos, 2014). When faced

with unresolved stress, IRE1a may induce apoptosis by activating

Glossary

Apoptosis Controlled cell death that occurs in
response to a variety of cellular stressors
and as part of developmental programs
of multicellular organisms.

Autophagy Regulated mechanism used by the cells
to maintain homeostasis and normal
function through orderly degradation
and recycling of unnecessary or
dysfunctional components.

Autophosphorylation Phosphorylation of the protein kinase by
itself, which plays an important role in
the process of cell signal transduction.

Dimerization Chemical reaction that binds two
molecular subunits, resulting in the
formation of a single dimer.

ER stress (Endoplasmic
reticulum stress)

Stress caused by the accumulation of
misfolded and unfolded proteins in the
ER lumen or by Ca2+ balance
disorders.

ERAD (Endoplasmic
reticulum-associated
degradation)

Umbrella term that covers a range of
different mechanisms by which
misfolded proteins are retained in the ER
and delivered for proteasomal
degradation after retrotranslocation into
the cytosol.

GEMM (Genetically
engineered mouse
model)

Mouse model for research on human
diseases, in which the mouse genome is
altered through the use of genetic
engineering techniques.

Gluconeogenesis Metabolic process in which glucose is
formed from non-carbohydrate
precursors.

Metabolic
reprogramming

Molecular adjustments in metabolic
pathways that alter the bioenergetic
profile and metabolism of the cell.

PDX (Patient-derived
xenograft)

Mouse model based on transplantation
and serial propagation of fresh human
tumor biopsies in immunodeficient mice.

Proteostasis Homeostatic mechanisms controlling the
biogenesis, trafficking, and degradation of
proteins in cells. Its imbalances may lead
to the aggregation of misfolded proteins,
trigger stress responses, or excessive
protein degradation.

RIDD (Regulated IRE1a-
dependent decay)

Degradation of mRNAs encoding mostly
ER-targeted proteins by IRE1a, to reduce
the load of incoming ER “client” proteins
during ER stress.

Tumor microenvironment Cellular environment in which tumor
cells reside. It consists of extracellular
matrix and different populations of
stromal cells, including endothelial cells,
fibroblasts, and immune cells.

UPR (Unfolded protein
response)

Collection of phylogenetically conserved
signaling pathways initiated by
transmembrane stress sensors of the
endoplasmic reticulum.
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the c-Jun N-terminal kinase (JNK) signaling (Urano et al, 2000;

Dhanasekaran & Reddy, 2008).

Once dissociated from GRP78, PERK undergoes dimerization and

autophosphorylation, which activates its cytosolic kinase domain

and phosphorylates Ser51 in eukaryotic translation initiation factor

2 (eIF2) a-subunit (Liu et al, 2000; Holcik & Sonenberg, 2005). This

transiently halts global translation and decreases the load of nascent

proteins entering the ER (Wang & Kaufman, 2016). Meanwhile, it

allows translation of a small subset of mRNAs with specific

upstream open reading frames, such as ATF4 (Harding et al,

2000a). ATF4 is a key transcription factor that promotes adaptive

response by regulating the expression of genes involved in protein

folding, autophagy, and redox homeostasis (Wortel et al, 2017). It

also transactivates the pro-apoptotic protein C/EBP homologous

protein (CHOP) under chronic ER stress and triggers apoptosis

(Averous et al, 2004). Three additional kinases, protein kinase R,

heme-regulated eIF2a kinase, and general control nonderepressible

2 (GCN2), phosphorylate eIF2a at the same residue, which are

collectively known as the “integrated stress response” (Pakos-

Zebrucka et al, 2016).

ATF6a translocates to the Golgi apparatus upon ER stress, where

it is proteolytically processed by the site-1 and site-2 proteases (S1P

and S2P), generating a cytosolic fragment that functions as a basic

leucine zipper transcription factor (Haze et al, 1999). ATF6a tran-

scriptionally upregulates the expression of many ER chaperones, as

well as key UPR component genes such as XBP1 (Yoshida et al,

2001; Shoulders et al, 2013). It also plays a role in ERAD, for

instance by forming heterodimers with XBP1s, and drives specific

gene expression programs (Yamamoto et al, 2007).

UPR signaling in cancer

The UPR is often co-opted by cancer cells to cope with the increased

protein synthesis or the hostile tumor microenvironment (such as

hypoxia and nutrient deprivation). Recently, several studies have
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Figure 1. The three arms of the UPR pathways.

Accumulation of misfolded or unfolded proteins in the ER lumen activates the three UPR pathways initiated by PERK, IRE1a, and ATF6a. This leads to either the recovery of ER
homeostasis by blocking protein translation and enhancing protein-folding capacity and clearance of misfolded proteins, or apoptosis upon unresolved ER stress.
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provided comprehensive insights on the role of UPR in promoting

different cancers (Clarke et al, 2014; Chevet et al, 2015; Storm et al,

2016; Urra et al, 2016; Madden et al, 2019; Wang et al, 2019).

For example, the IRE1a-XBP1s arm helps triple-negative breast

cancer cells (TNBC) overcome hypoxic conditions by interacting

with HIF1a and cooperatively regulating its transcriptional network

(Chen et al, 2014). IRE1a-XBP1s is also directly activated by andro-

gen receptor signaling in prostate cancer cells and promotes their

survival (Sheng et al, 2015). XBP1s rewires key metabolic path-

ways, which enables cancer cells to survive nutrient shortage condi-

tions via transcriptional regulation of several rate-limiting enzymes

involved in hexosamine biosynthesis (Wang et al, 2014; Madden

et al, 2019). In glioblastoma, XBP1 splicing promotes tumor stroma

remodeling, angiogenesis, and invasion, whereas IRE1a-mediated

RIDD for miR-17 displays anti-angiogenic and antimigratory effects,

suggesting a dual role of IRE1 RNase in glioblastoma aggressiveness

(Lhomond et al, 2018). The function of PERK is also dependent on

the context. PERK and eIF2a phosphorylation is suppressed in

proliferative prostate cancer cells stimulated by androgens (Sheng

et al, 2015), whereas ATF4 is essential for prostate cancer growth

and survival (Pallmann et al, 2019). PERK activation is also shown

to confer hypoxia tolerance and radiotherapy resistance to different

tumor cells by upregulating expression of autophagy-related genes

via ATF4 and CHOP (Rouschop et al, 2010). Pharmacological inhi-

bition of PERK kinase activity triggers robust antitumor effect in

multiple preclinical models of pancreatic cancer and multiple

myeloma (Atkins et al, 2013). ATF6a also appears to play a cyto-

protective role, such as in TP53 mutant tumor cells (Sicari et al,

2019). It is required for tumor cell dormancy and contributes to

resistance to chemotherapy and radiotherapy by activating mTOR

and NOTCH signaling, respectively (Schewe & Aguirre-Ghiso, 2008;

Dadey et al, 2016). Additional critical functions of UPR signaling

consist of reshaping the tumor stroma (Tyekucheva et al, 2017),

especially that of cancer-associated immune cells (Cubillos-Ruiz

et al, 2017). For instance, persistent activation of the IRE1a-XBP1s
axis in tumor-associated dendritic cells and T cells disrupts their

metabolic homeostasis, which results in impaired immunosuppres-

sion in ovarian cancer models (Cubillos-Ruiz et al, 2015, 2017;

Song et al, 2018).

Therefore, and contrary to what was originally thought, UPR

signaling in cancer cells has a profound and complex impact on

tumor initiation, progression, metastasis, and tumor microenviron-

ment (Clarke et al, 2014; Dufey et al, 2015). Over the last few years,

small molecules modulating the activity of specific UPR branches or

components have been developed, and some of them are currently

under clinical evaluation (Hetz et al, 2013, 2019; Jin & Saatcioglu,

2020). In line with this effort, identification of cancers potentially

responsive to drugs targeting the UPR will be of great importance.

Interaction between MYC and UPR in cancer

During tumor development, protein synthesis rate is tightly regu-

lated to sustain cell survival. Increased protein synthesis requires

concomitant increased folding capacity to avoid proteotoxicity

(Harding et al, 2000b). MYC activation constitutes an intrinsic stress

that places further weight on protein synthesis and secretion

(Tameire et al, 2015). While the ER constitutes a link between these

intracellular processes and the changes in cellular biomass and

growth, it has been underappreciated in the context of MYC-hyper-

activated cancers until recently.

We summarize below the direct and indirect connections found

between MYC and UPR activation in different cancers and propose

that MYC and UPR activation may work together to foster tumor

progression. We also discuss the therapeutic potential of targeting

UPR signaling in cancers with MYC overexpression.

Indirect regulation of UPR by MYC

Remarkably, UPR is induced in tumors with MYC alterations. For

example, PERK-eIF2a pathway is selectively activated in a mouse

model of prostate cancer with MYC hyperactivation and is believed

to hijack global protein synthesis required for cancer progression

(Nguyen et al, 2018). Similarly, c-Myc-enhanced protein synthesis

induces an adaptive ER stress response in mice with malignant

rhabdoid tumors of the liver, while c-Myc depletion decreases the

levels of GRP78, ATF4, and CHOP (Carugo et al, 2019).

As a vital piece of the proteostasis system, autophagy is

frequently activated to clear misfolded proteins following MYC-

induced proteotoxicity (Levy et al, 2017). In lymphoma cells, both

c-Myc and N-Myc activate PERK-eIF2a-ATF4 signaling, which

induces cytoprotective autophagy and attenuates ER Ca2+ release to

support malignant transformation and survival (Hart et al, 2012). In

Drosophila, Myc induces autophagy and cell overgrowth by activat-

ing another PERK effector, nuclear factor erythroid 2-related factor 2

(Nrf2), a master transcription factor mediating the antioxidant

responses (Cullinan et al, 2003; Ma, 2013; Nagy et al, 2013).

Furthermore, MYC direct targets also contribute to the regulation

of ER stress and autophagy. As an example, N-myc downstream-

regulated gene 1 (NDRG1) is transcriptionally repressed by both N-

Myc and c-Myc, and inhibits PERK-mediated autophagic pathway

(Okuda & Kondoh, 1999; Sahni et al, 2014). A recent study further

shows that NDRG1 inhibits IRE1a arm while facilitating ATF6a
cleavage and inducing the expression of GRP78, calreticulin, and

calnexin (Merlot et al, 2019). Thus, NDRG1 provides another molec-

ular hub linking MYC with activation of UPR and autophagy.

On the other hand, MYC may suppress autophagy to induce ER

stress. In non-small-cell lung cancer models, c-Myc transcriptionally

activates miR-150, which blocks the fusion of autophagosomes and

lysosomes through direct inhibition of EPG5. The miR-150-mediated

autophagy defect further induces ER stress and promotes tumor

growth (Li et al, 2019). Bioinformatics analysis predicts that miR-

214-3p is c-Myc-regulated and likely controls the expression of

XBP1 in B-cell lymphoma, yet its function remains to be determined

(Malpeli et al, 2018).

Another link between MYC and UPR in cancer is the rewired

metabolism. Elevated ATF4 expression is a common feature of

neuroblastoma cells with MYCN amplification and is responsible for

the activation of the serine–glycine synthesis pathways essential for

cell survival (Locasale, 2013; Liu et al, 2016). MYC also alters mito-

chondrial metabolism in these cells, making them vulnerable to

glutamine deprivation. In this context, ATF4 is activated by GCN2-

eIF2a axis and promotes apoptosis by inducing PUMA, NOXA, and

TRB3 expression (Qing et al, 2012). Likewise, blockade of essential

amino acid transport triggers the GCN2-eIF2a-ATF4 pathway and
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inhibits neuroblastoma tumor growth, which is concomitant with

attenuated translation of MYC and MYCN mRNAs (Yue et al, 2017).

Therefore, the role of ATF4 in neuroblastoma cells with elevated

MYC varies depending on the condition.

Notably, GCN2-eIF2a-ATF4 activation by MYC was recently

described. By generating excess uncharged tRNAs, c-Myc induces

an optimal expression of ATF4. Then, c-Myc and ATF4 cooperate to

regulate a specific program of c-Myc target genes, mainly involved

in amino acid and protein synthesis (Tameire et al, 2019). One of

these targets is eIF4E-binding protein 1 (4E-BP1), a repressor of

eIF4F complex and mRNA translation (Gingras et al, 1999). Thus,

these results provide additional mechanisms by which eIF2a phos-

phorylation regulates translation rate and maintains proteostasis in

malignant cells with MYC overexpression.

In addition, both the RNase and kinase activities of IRE1a have

been implicated in MYC-hyperactivated tumors. In c-Myc-overex-

pressing endocrine-resistant breast cancer cells, IRE1a activation

turns on either JNK signaling for apoptosis or XBP1 splicing for

survival (Shajahan-Haq et al, 2014). In pancreatic ductal adenocar-

cinoma cells with activated c-Myc, IRE1a induces the MKK4-JNK

signaling and the ATF2 transcriptional program, driving an adaptive

response to the increased protein metabolism (Genovese et al,

2017). In contrast, XBP1s transactivates SIRT7 in liver cancer cells,

which represses translation by cooperatively inhibiting transcription

of genes encoding ribosomal proteins with c-Myc (Shin et al, 2013).

Therefore, indirect interaction between c-Myc and IRE1a may also

mitigate proteotoxicity and ER stress.

Direct regulation of UPR by MYC

Beside indirect regulation, recent studies have also shed light on the

direct regulation of UPR by MYC. Zhao and colleagues have shown

that c-Myc is required for the activation of the IRE1a-XBP1s path-

way in TNBC models: Genetic knockdown of c-Myc leads to a

marked decrease in IRE1a and XBP1s, rescued by ectopic expression

of c-Myc. Chromatin immunoprecipitation (ChIP) and luciferase

reporter assays further demonstrate that c-Myc transactivates ERN1

gene expression by directly binding to multiple sites in its proximal

promoter and enhancer (Zhao et al, 2018). Along these lines,

another study in Burkitt’s lymphoma cells reports that c-Myc binds

the E-box sequences in the promoters of both ERN1 and XBP1 genes

(Xie et al, 2018), establishing c-Myc as a direct upstream regulator

of the IRE1a-XBP1s pathway.

At the protein level, c-Myc physically interacts with XBP1s and

enhances its transcriptional activity in TNBC models (Zhao et al,

2018). Furthermore, while the mechanism remains unknown, c-Myc

is crucial for IRE1a protein stability in Burkitt’s lymphoma cells (Xie

et al, 2018). As an example, IRE1a-XBP1s mediates the oncogenic

effect of c-Myc by upregulating the expression of stearoyl-CoA

desaturase 1 (SCD1), which generates unsaturated lipids to maintain

ER membrane homeostasis despite c-Myc-dependent proteotoxicity

(Xie et al, 2018).

Several recent studies have also shed light on the direct regula-

tion of PERK pathway components by MYC. c-Myc binds and acti-

vates ATF4 promoter, which plays a role in anoikis resistance in

human osteosarcoma cells (Mo et al, 2018) and in response to

bortezomib in Elt3 rat leiomyoma cells (Babcock et al, 2013).

Similarly, N-Myc and ATF4 collectively drive the metabolic repro-

gramming in neuroblastoma cells, leading to dependency on the

serine–glycine–one-carbon metabolic pathway. Mechanistically, N-

Myc transactivates ATF4 expression while ATF4 contributes to the

stabilization of N-Myc protein by antagonizing its ubiquitination in

a positive feedback loop (Xia et al, 2019). In addition, ATF3, an

ATF4 target with critical functions in cell fate determination under

stress conditions, is also directly regulated by c-Myc and plays a role

in mediating its proliferative effect (Tamura et al, 2005). c-Myc-

mediated transcriptional repression plays a critical role in prevent-

ing cells from exiting cell cycle and in facilitating proliferation via

inhibition of growth arrest and DNA damage (GADD) gene expres-

sion, such as GADD153 that encodes CHOP (Chen et al, 1996;

Amundson et al, 1998). c-Myc-MAX complex binds to the minimal

promoter region of GADD153 in vivo, where it prevents transcrip-

tional activator c-Myc-interacting zinc finger protein 1 (Miz-1) activ-

ity and impairs gene expression (Barsyte-Lovejoy et al, 2004; Wiese

et al, 2013). Taken together, these studies suggest that UPR signal-

ing is tightly regulated by MYC and plays a key role in mediating its

oncogenic effect.

Indirect regulation of MYC by UPR

Importantly, the link between MYC and UPR does not appear to be

only one way, as ER stress signaling has also been shown to affect

MYC expression. The calcium-dependent serine/threonine phos-

phatase calcineurin is activated upon disruption in calcium home-

ostasis and ER stress, and activates a number of transcription

factors, one of them being the nuclear factor of activated T cell

(NFAT) (Bonilla et al, 2002). Activated NFAT directly binds to the

proximal MYC promoter and stimulates its transcription, ultimately

resulting in enhanced anchorage-dependent and anchorage-inde-

pendent growth of pancreatic cancer cells (Buchholz et al, 2006).

In multiple myeloma cells, c-Myc protein level is maintained

despite global decreased protein synthesis mediated by PERK-eIF2a
activation, owing to the upregulated activity of the MYC mRNA

internal ribosome entry site upon ER stress (Shi et al, 2016).

Direct regulation of MYC by UPR

One of the most intriguing findings is that XBP1s also directly regu-

lates MYC expression. Exogenous XBP1s has previously been shown

to dose-dependently enhance the reporter activity driven by MYC

promoter (Chae et al, 2016). A similar phenomenon is also observed

in colon cancer cells co-transfected with XBP1s expression vector

and MYC luciferase reporter. This is significantly reversed when

Fbw7, a substrate recognition component of the SKP1-Cullin-F-box-

type E3 ligase, is introduced, as Fbw7 interacts with XBP1 and facili-

tates its ubiquitination and degradation (Chae et al, 2019).

Consistently, our recent study in prostate cancer cells demon-

strates that XBP1s directly transactivates MYC expression. Strik-

ingly, c-Myc and XBP1s transcriptional activities are positively

correlated in multiple prostate cancer patient cohorts, underscoring

the fact that these two critical transcription factors are often concur-

rently activated in prostate cancer (Sheng et al, 2019). Furthermore,

a recent study shows that activities of c-Myc and AR pathways are
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significantly correlated in prostate cancer, while c-Myc depletion

leads to decreased expression of full-length AR, as well as of several

AR splice variants involved in AR-targeted therapy resistance (Bai

et al, 2019). Therefore, androgen signaling, IRE1a-XBP1s pathway,

and c-Myc may form a dynamic trio to support prostate cancer

progression. Interestingly, this direct regulation of MYC by IRE1a-
XBP1s is not restricted to cancer cells, as a recent study reports that

XBP1s also upregulates MYC expression to promote proliferation of

natural killer cells (Dong et al, 2019). Taken together, these data

reinforce the hypothesis of a positive feedback loop between MYC

and IRE1a-XBP1s pathway, which may be a critical driver of various

MYC-dependent cancers. The major findings on the interactions

between MYC and PERK or IRE1 are summarized in Figs 2 and 3,

respectively.

Comparatively, much less is known about the interaction

between MYC and ATF6a in malignant conditions. Indirect

evidence suggests that ATF6a promotes MYC activity. Indeed,

ATF6a transcriptionally induces the expression of cancerous inhi-

bitor of PP2A (CIP2A), which directly interacts with and stabilizes

c-Myc protein (Liu et al, 2018). ATF6a also induces XBP1 expres-

sion, which is capable of activating c-Myc expression (Yoshida

et al, 2001; Sheng et al, 2019). Furthermore, protein–protein inter-

action databases (such as BioGRID) indicate that the known ATF6a
interactor Yin Yang 1 transcription factor associates with c-Myc

(Shrivastava et al, 1993; Li et al, 2000). Thus, it is worth investigat-

ing whether these proteins form a complex, and what would then

be its functional significance (Fig 4). Lastly, it is reasonable to spec-

ulate that ATF6a-mediated elevation in chaperone expression and
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Figure 2. Interaction between MYC and PERK pathway.

Oncogenic MYC upregulates the expression of genes involved in protein synthesis, such as ATF4, which may result in proteotoxicity. PERK-eIF2a-ATF4 pathway is often
activated upon this intrinsic stress, which subsequently induces cytoprotective autophagy. Alternatively, PERK may activate autophagy by phosphorylating NRF2.
Meanwhile, GCN2-eIF2a-ATF4 axis can be activated by c-Myc-induced excess tRNAs, resulting in metabolic reprogramming and enhanced protein synthesis. In addition,
MYC mediates transcriptional repression on NDRG1 and DDIT3, which leads to enhanced cytoprotective autophagy and suppressed apoptosis, respectively. Red arrows
indicate direct transcriptional regulation of PERK arm by MYC.
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ERAD is required for coping with the increased nascent protein load

driven by MYC.

Interestingly, a direct connection between MYC and ERAD was

recently established, as c-Myc activates ubiquitin fusion degradation

1 (UFD1) to promote progression of T-cell acute lymphoblastic

leukemia (Huiting et al, 2018). UFD1 is an E2 component of the

ERAD complex and facilitates the elimination of misfolded proteins

from the ER, whereas UFD1 knockdown exacerbates ER stress, acti-

vates PERK-CHOP pathway, and induces apoptosis (Wolf & Stolz,

2012; Huiting et al, 2018). Nevertheless, the potential crosstalk

between MYC and ATF6a signaling as well as ERAD remains to be

explored.

Targeting UPR in MYC-driven cancers

Building upon these critical findings, targeting the UPR has been

proposed as a novel therapeutic strategy in tumors with

hyperactivated MYC. Here, we highlight the application and efficacy

of targeting UPR signaling in MYC-hyperactivated cancers (Table 1).

Genetic ablation of PERK significantly attenuates the growth of

transformed mouse embryonic fibroblasts (MEFs) with induced c-

Myc expression allografted in immunodeficient mice (Hart et al,

2012). Similarly, PERK depletion prevents Myc-induced overgrowth

of fat body cell clones in Drosophila (Nagy et al, 2013). Further-

more, ATF4 ablation significantly reduces in vitro clonogenic

survival of MEFs with high c-Myc level and extends tumor-free and

overall survival in syngeneic mouse model of lymphoma with

hyperactive c-Myc (Tameire et al, 2019). PERK inhibition with an

optimized kinase inhibitor, GSK2606414 (Axten et al, 2013),

reduces autophagy in MYCN-amplified neuroblastoma cells and

further enhances the efficacy of GLI inhibitor in repressing the

growth of these cells in vitro and in vivo (Wang et al, 2018). ISRIB

is a small-molecule compound that enhances the guanine nucleo-

tide-exchanging activity of eIF2B and its interaction with eIF2a, and
thus re-activates protein synthesis despite of eIF2a phosphorylation

(Tsai et al, 2018). ISRIB impairs cancer development, prolongs

survival of different prostate cancer mouse models, and decreases

metastatic progression in an advanced castration-resistant prostate

cancer patient-derived xenograft (PDX) model (Nguyen et al, 2018).

In parallel, genetic silencing of XBP1 selectively blocks the

growth of c-Myc-hyperactivated TNBC cells. Pharmacological

c-Myc

Enhanced
transcriptional

activity

XBP1s

XBP1s

XBP1u

IRE1α

ER lumen

JNK
P

MYC

ERN1

XBP1

Cytoplasm

Nucleus

Apoptosis

PP

Misfolded or unfolded proteins

c-MycXBP1s

XBP1s
c-Myc

©
 E

M
B

O

Figure 3. The positive feedback loop between MYC and IRE1a pathway.
In MYC-hyperactivated tumors, IRE1a-XBP1s signaling and MYC likely engage in
a positive feedback loop, as XBP1s transcriptionally upregulatesMYCwhile c-Myc
directly induces ERN1 (encoding IRE1a) and XBP1 expression. c-Myc also
physically interacts with XBP1s and enhances its transcriptional activity. MYC is
further shown to contribute to IRE1a protein stability via unknown mechanisms
(denoted as dashed line). Red arrows indicate direct transcriptional regulation
between MYC and IRE1a arm.
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Figure 4. The interaction between MYC and ATF6a pathway.
ATF6a directly induces the expression of CIP2A, which interacts with and
stabilizes c-Myc protein. As a direct target of ATF6a, XBP1 also contributes to
sustain c-Myc expression. Meanwhile, ATF6a interactor Yin Yang 1 transcription
factor has been shown to associate with c-Myc, but whether these two proteins
interact with each other is not known (denoted as red dashed line).
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inhibition of IRE1a RNase activity using an optimized hydroxy-

aryl-aldehyde compound MKC8866 counteracts the growth of c-

Myc-overexpressing TNBC tumors in both PDX and genetically

engineered mouse models (Sanches et al, 2014; Zhao et al, 2018).

Similarly, pharmacological and genetic inhibition of XBP1 induce

c-Myc-dependent apoptosis of Burkitt’s lymphoma models, which is

alleviated by exogenous unsaturated fatty acids (Xie et al, 2018). In

the mesenchymal pancreatic ductal adenocarcinoma mouse models

with activated c-Myc, constitutive knockdown of Ern1 potently

impairs 3D clonogenic cell growth and suppresses tumorigenicity in

orthotopic transplants in vivo (Genovese et al, 2017). Likewise,

disruption of the IRE1a-XBP1s pathway by either RNA interference

or small molecules targeting IRE1a RNase results in significant

repression in the growth of multiple prostate cancer xenografted

tumors (Sheng et al, 2015, 2019).

Of note, these studies also unanimously demonstrate that IRE1a
RNase inhibition augments the effect of chemotherapy, a strategy

with inferior therapeutic efficacy in MYC-high tumors (Savage et al,

2009; Emadali et al, 2013; Lee et al, 2017). IRE1a RNase inhibition

enhances the cytotoxic effect of doxorubicin or vincristine in dif-

ferent c-Myc-overexpressing Burkitt’s lymphoma cells in vitro (Xie

et al, 2018). In prostate cancer xenograft models, a strong synergis-

tic tumor growth inhibition is observed when MKC8866 treatment

is combined with cabazitaxel (Sheng et al, 2019). In TNBC, the

same IRE1a RNase inhibitor substantially enhances the efficacy of

docetaxel in PDX as well as syngeneic p53-null transgenic mouse

models with c-Myc hyperactivation (Zhao et al, 2018). These find-

ings coincide with a recent TNBC study showing that MKC8866

increases the effectiveness of xenografted tumors to paclitaxel,

which may be due to the modulation of the tumor cell secretome

(Logue et al, 2018). Nevertheless, these data certainly underline the

potential of targeting IRE1a either as a monotherapy in MYC-high

tumors or in combination with chemotherapy in the future.

Conclusions

Direct pharmacological inhibition of MYC has proven to be challeng-

ing. Thus, alternative means, such as targeting MYC synthetic lethal

partners, have raised interest. The reprogrammed growth, prolifera-

tion, and metabolism driven by oncogenic MYC render cancer cells

more vulnerable to the disruption of certain biological processes on

which they rely. MYC activation has been shown to be synthetically

lethal with inhibition of translation, spliceosome, cell cycle, and

metabolism (Stine & Dang, 2015; Hsieh & Dang, 2016). The ER

stress response now takes its place among these synthetic lethal

targets. However, despite exciting recent progress, further preclini-

cal and clinical evaluation will be needed to establish rational thera-

peutic design. Importantly, biomarkers should also be identified to

help discriminating patients that may benefit from different UPR

inhibitors.
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Table 1. Strategies and outcomes of targeting UPR in MYC-hyperactivated cancer models.

UPR
branch

Compound/
Intervention Target Experimental models Effect Synergy References

PERK GSK2606414 PERK
kinase

Multiple neuroblastoma
cell lines and xenografts

Reduce autophagy and inhibit
growth

With GLI
inhibitor
GANT-61

Axten et al (2013), Wang
et al (2018)

ISRIB eIF2B PCa mouse models and
PDX

Impair cancer development,
prolong survival, and inhibit
metastases

/ Tsai et al (2018), Nguyen
et al (2018)

Genetic
depletion

PERK Transformed MEFs
allografted in
immunodeficient mice

Inhibit growth / Hart et al (2012)

Genetic
depletion

PERK Drosophila fat body cells Inhibit overgrowth / Nagy et al (2013)

Genetic
depletion

ATF4 MEFs and lymphoma
mouse models

Induce apoptosis and prolong
tumor-free and overall survival

/ Tameire et al (2019)

IRE1a MKC8866 IRE1a
RNase

TNBC PDX and GEMM Inhibit growth With
docetaxel

Sanches et al (2014), Zhao
et al (2018), Logue et al
(2018)

MKC8866 IRE1a
RNase

Multiple PCa cell lines and
xenografts

Inhibit growth With
cabazitaxel

Sheng et al (2019)

B-I09 IRE1a
RNase

Multiple BL cell lines and
xenografts

Inhibit growth and induce
apoptosis

With
doxorubicin or
vincristine

Xie et al (2018)

Genetic
depletion

ERN1 3D PDAC cell growth and
orthotopic transplants

Inhibit growth and suppress
tumorigenicity

/ Genovese et al (2017)

BL, Burkitt’s lymphoma; GEMM, genetically engineered mouse model; MEFs, mouse embryonic fibroblasts; PCa, prostate cancer; PDAC, pancreatic ductal
adenocarcinoma; TNBC, triple-negative breast cancer.
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