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Abstract

Variations in chondrocyte density and organization in cartilage histology sections are

associated with osteoarthritis progression. Rapid, accurate quantification of these

two features can facilitate the evaluation of cartilage health and advance the un-

derstanding of their significance. The goal of this work was to adapt deep‐learning‐

based methods to detect articular chondrocytes and chondrocyte clones from

safranin‐O‐stained cartilage to evaluate chondrocyte cellularity and organization.

The U‐net and “you‐only‐look‐once” (YOLO) models were trained and validated for

identifying chondrocytes and chondrocyte clones, respectively. Validated models

were then used to quantify chondrocyte and clone density in talar cartilage from

Yucatan minipigs sacrificed 1 week, 3, 6, and 12 months after fixation of an intra‐

articular fracture of the hock joint. There was excellent/good agreement between

expert researchers and the developed models in identifying chondrocytes/clones

(U‐net: R2 = 0.93, y = 0.90x–0.69; median F1 score: 0.87/YOLO: R2 = 0.79, y = 0.95x;

median F1 score: 0.67). Average chondrocyte density increased 1 week after frac-

ture (from 774 to 856 cells/mm2), decreased substantially 3 months after fracture

(610 cells/mm2), and slowly increased 6 and 12 months after fracture (638 and 683

cells/mm2, respectively). Average detected clone density 3, 6, and 12 months after

fracture (11, 11, 9 clones/mm2) was higher than the 4–5 clones/mm2 detected in

normal tissue or 1 week after fracture and show local increases in clone density that

varied across the joint surface with time. The accurate evaluation of cartilage cel-

lularity and organization provided by this deep learning approach will increase ob-

jectivity of cartilage injury and regeneration assessments.
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1 | INTRODUCTION

In research settings, histological analysis is a commonly used tech-

nique for evaluation of cartilage health, determining severity of os-

teoarthritis (OA), and evaluating efficacy of therapeutic approaches.

It is common practice with this approach to evaluate cartilage cellu-

larity and chondrocyte organization. Chondrocyte density estimated

from histologic sections has been accepted as a measure of articular

cartilage health. Previous work indicates that optimal chondrocyte

density is necessary to maintain cartilage tissue, while declining

chondrocyte density is associated with degeneration of articular

cartilage in OA and with aging.1 In contrast, chondrocyte cloning—

formation of nonlinear clusters of chondrocytes—is considered one of

the markers of OA,1 although the significance and events responsible

for cloning are not well understood. Semi‐quantitative, subjective,

categorical evaluations of cartilage cellularity, such as those per-

formed during application of Mankin1 and OARSI2 scoring, have

limitations including uncertain accuracy and reproducibility.3 For

these reasons, the ability to rapidly quantitate chondrocyte density

and cloning could help advance understanding of these phenomena

in the pathophysiology of OA and in articular cartilage regeneration,

repair, and aging.

One previously reported approach uses image analysis algo-

rithms to automatically identify chondrocyte density and red in-

tensity values of pixels within the segmented cartilage and assigns

cellularity and PG depletion Mankin sub‐scores based on deviation of

those quantitative values from predefined normative values.4,5 While

that program achieved good agreement with human experts for the

Mankin structural sub‐score (linear regression; R2: 0.87, slope: 0.84)

and the PG depletion sub‐score (R2: 0.63, slope: 0.70), there was poor

agreement with human experts on the cellularity sub‐score (R2: 0.07,

slope: 0.21).4 This poor agreement may result from the simple

thresholding segmentation and edge detection used to identify

chondrocytes,4 two image analysis techniques which are far from

being robust to the huge variation in tissue appearance during car-

tilage degeneration. Erroneous chondrocyte density calculations

could artificially elevate the assigned cellularity subscore by classi-

fying it as either hypercellular or hypocellular.1 Furthermore, diffi-

culty in accurately segmenting chondrocytes substantially reduces

the ability to automatically identify chondrocyte cloning. To accu-

rately quantify cartilage cellularity and/or accurately assign cellularity

scores, more sophisticated image analysis algorithms that can ac-

commodate the wide variety of chondrocyte appearances and orga-

nization in degenerating cartilage are required.

Conveniently, modern deep‐learning‐based approaches have been

reported to have achieved great success in a variety of computer vision

tasks.6–10 A convolutional neural network (CNN) is one common deep

learning method in which the model is trained to analyze a given image

type by using pairs of similar input images and the corresponding correct

output data (ground truth)—a technique called supervised learning. With

this technique, a CNN model is able to learn inter‐related hierarchical

features from the image, which allows it to accurately classify, detect, and

segment objects with variable appearances.8,9 CNN‐based approaches

have previously been applied very successfully in orthopedic research to

perform tasks such as grading/classifying radiographic knee images11,12

and segmenting bone and soft tissues from MR images.13–15 CNN‐based

approaches have also achieved tremendous success in a variety of digital

pathology applications. For example, Bejnordi et al.16 have assessed dif-

ferent CNN models for detecting lymph node metastases in women with

breast cancer, and achieved a model that outperforms expert patholo-

gists. Similarly, Nagpal et al.17 developed and validated a CNN model to

stage prostate cancer, which resulted in higher accuracy than a group of

pathologists. There are also CNN‐based studies ranging from detecting

sub‐cellular (nuclei) components18,19 to segmentations of glandular

structures20,21 in histology images.

However, applications to cartilage analysis have been more lim-

ited. Recent work by Powel et al.22 describes using a CNN‐based

image classifier to automatically assign a Bern score to evaluate

chondrogenicity of engineered cartilage,23 and Rytky et al.24 has

developed a CNN model to automatically segment calcified cartilage

to study its modification during OA progression. Based on this pre-

vious success, our goal in this work was to develop and implement

methods to accurately map chondrocyte density and chondrocyte

cloning across the entire articular cartilage surface using a combi-

nation of CNN models and spatial information. We aimed to adapt

our previously trained U‐net model25 and a “you only look once”

(YOLO)8 model to segment individual chondrocytes and identify

chondrocyte clones in cartilage. We hypothesized that fully auto-

mated chondrocyte density and clone detection achieved with CNN

models would have excellent agreement with gold‐standard human

expert cell/clone identification. Further, we hypothesized that ap-

plication of the trained models would be able to identify subtle

progressive changes in chondrocyte cellularity and organization as-

sociated with development of posttraumatic OA after a joint injury.

2 | METHODS

2.1 | CNN models—U‐net and YOLO

To accurately identify individual chondrocytes through the full depth

of articular cartilage, we retrained our previously reported U‐net model

from scratch.25 The previous model had been developed by adding one

batch normalization layer26 between each convolutional layer and

its following ReLU activation function27 in the original U‐net archi-

tecture.9 Zero‐padding was used for all the convolutional layers, al-

lowing the output segmentation image to share the same size as the

input image. The sigmoid activation function27 was used after the last

convolutional layer to output values between 0 and 1 at each pixel.

Under this adaption, the model takes the input image of size

512 × 512 × 3 (pixel × pixel × RGB) and outputs a single channel prob-

ability image (512 × 512), with each output pixel representing the

probability of it being a chondrocyte. Pixels with predicted probability

values higher than 0.5 were labeled as cell pixels. To emphasize seg-

mentation accuracy for smaller and more closely packed cells, such as

would be found in the superficial zone or in a clone, additional images

2610 | YANG ET AL.



of superficial zone cartilage were included in the training set. The

previous U‐net model25 was then retrained to optimize a modified

binary cross entropy loss function that was weighted to emphasize

smaller superficial zone chondrocytes and chondrocytes that were

closely adjacent Figure 1.

To identify chondrocyte clones, the YOLO object detection model8

was used. YOLO predicts a set of bounding boxes to localize objects, with

a label for each box representing the “class” of the detected object. To

build our YOLO model, the contracting path of our retrained U‐net was

copied, which allowed the YOLO model to utilize previously learned

chondrocyte features (a method termed transfer learning). Additional

convolutional layers and max pooling layers were stacked after the copied

path to allow the YOLO model to learn local image context for the ex-

istence of a clone. To detect multiple clones that can appear within a

single image, our YOLOmodel was implemented to predict one bounding

box in each cell of an 8× 8 grid defined over the 512×512 pixel input

image (Figure 2). The bounding box information predicted in each grid cell

included bounding box size, centroid coordinates, and a probability value

(between 0 and 1) of detecting a clone centered within the grid cell

(Figure 2). Bounding boxes with a probability value >0.5 were considered

clones. Training the YOLO was achieved by optimizing a previously de-

scribed loss function8 which forces clone detection with high‐probability,

closely fitting bounding boxes.

The U‐net and YOLO models were trained using previously gener-

ated Safranin‐O and fast green‐stained histological sections of rabbit ar-

ticular cartilage with varying degrees of arthritic changes induced by ACL

transection28 and medial meniscus destabilization.29 Sections were digi-

tized using a stage scanner microscope (Olympus VS110, Olympus

F IGURE 1 This figure illustrates the U‐Net model to developed to identify individual chondrocytes. The U‐Net was trained to predict the
segmentation image given an input histological section (top left). The difference between the predicted and ground truth segmentation image at
each pixel is quantified using the binary cross entropy loss function and weighted using the precomputed weight map (top right). Pixels of smaller
cells in the ground truth segmentation image were assigned higher weight values (warmer color), forcing the U‐Net to identify smaller
chondrocytes. Pixels between closely adjacent chondrocytes (distance less than 1.5 microns) in the ground truth segmentation image are also
assigned a higher weight value, which forced the U‐Net to learn to separate adjacent chondrocytes

F IGURE 2 This figure illustrates the YOLO model developed to identify chondrocyte clones. The YOLO implementation predicted a total of
64 bounding boxes, one at each cell of an 8 × 8 grid spanning the entire input image. This allowed the detection of multiple clones in a single
image. If the center of an annotated clone lies within a grid cell, only the associated bounding box (e.g., two thicker boxes in the prediction) in
that grid cell should be predicted by the model to match the coordinates of the ground truth box of that clone, and the predicted probability
value should approach 1; if a grid cell does not contain a clone's center, the associated box from that grid cell should be simply predicted with a
probability value of 0, and its coordinates do not matter. In practice, the probability value is a continuous number ranging between 0 and 1 and a
predicted bounding box with probability value larger than 0.5 is considered a clone
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America Inc.) at a resolution of 322.25 nm per pixel. 512 ×512‐pixel

images encompassing chondrocytes/clones of varying size, shape, ap-

pearance, and zonal origin were cropped from the digitized histology

sections. A total of 325 training images, consisting of our previous 235

training images25 and additional 90 images of superficial zone cartilage,

and a separate set of 24 validation images were used for retraining the

U‐net. A different set of 300 training images and 25 validation images

was used for training the YOLO model.

Training images were cropped using ImageJ (NIH, https://imagej.nih.

gov/ij/) software. All training and validation images for the U‐net were

manually segmented using MATLAB R2020a (The MathWorks) by a

single individual with >3 years experience identifying chondrocytes in

histological sections of cartilage. Clones in the training images were an-

notated (enclosed in a bounding box) in MATLAB by the same individual,

with a clone defined as a cluster that includes at least three different

chondrocytes encapsulated by the same lacuna. Cloning validation images

were developed from the consensus annotation by three expert cartilage

researchers. To replicate in‐practice variability of histology images, data

augmentation including image rotation, mirroring, and brightness adjust-

ment was applied to the training images for both models using the Python

scikit‐image library.30

The U‐net and YOLO were implemented using the open‐source

deep learning framework Keras (https://keras.io/) with the TensorFlow

backend. We would be willing to share elements of our codes with in-

terested researchers. Models were trained using an NVIDIA Tesla K80

GPU. The U‐net was trained for 100 epochs (requiring 120min), while the

YOLO was trained using 120 epochs (requiring 150min). Inference time

to analyze a 512×512 image was 0.1 s and 0.12 s for the U‐net and

YOLO, respectively. An F1 score,21 which evaluates the ratio of true

positive cell detections to all cell detections by the model, was calculated

for each validation image at each epoch. The final U‐net and YOLO

models were selected based on achieving the highest average F1 score

on the validation images in each training set. A secondary validation of the

selected U‐net and YOLO models was then conducted using 30 different

expert‐annotated testing images unseen by the algorithm during training.

Agreement between the trained CNN models and experts was evaluated

using F1 scores and linear regression to evaluate chondrocyte and clone

identification and intersection over union (IOU) to evaluate accuracy of

chondrocyte segmentation. These non‐normally distributed data (Shapiro‐

Wilk test; Prism 9, GraphPad Software LLC) are reported as medians with

95% confidence intervals (CIs).

2.2 | Cellularity changes after joint injury

The validated CNN models were then applied to existing sets of

histological sections of articular cartilage to document the natural

history of changes in chondrocyte density and organization after

an intra‐articular fracture (IAF) in a Yucatan minipig PTOA mod-

el.31 In this model, impact‐induced IAFs in the hock joint (ankle

analog) of skeletally mature minipigs (average 24 months of age

at fracture) are surgically fixed using open reduction internal

fixation. From previous31,32 and ongoing studies, 5‐μm‐thick

Safranin‐O/fast green/Wiegert's hematoxylin‐stained sagittal

histological sections of the medial talus were available from ani-

mals sacrificed 1 week, 3, 6, and 12 months after fracture

fixation. Histological tissue sections from joints of breed and age‐

matched healthy, unfractured pigs were also available. All

sections had been prepared according to the same histological

processing protocol2 and digitized as described above.

A continuous, 15‐mm cartilage span centered within the

weightbearing area was selected for analysis and segmented

using a previously developed semi‐automated segmentation al-

gorithm4 (Figure 3). A sliding‐window approach was then used to

automatically divide the entire 15‐mm cartilage span into

512 × 512‐pixel image tiles (Figure 3B), each of which was ana-

lyzed using the validated U‐Net and YOLO models to segment

individual chondrocytes and detect chondrocyte clones, respec-

tively. Given that a chondrocyte or a clone may be split into ad-

jacent image tiles by sliding‐window locations and hence missed

by the U‐Net or YOLO, the process was repeated on additional

image tiles of the same size acquired after shifting the sliding

window by an offset of half the window size in the horizontal and

then again in the vertical direction (Figure 3B). Cell segmentations

and clone bounding boxes in each image tile were projected back

to the associated window location within the full cartilage geo-

metry (Figure 3C). Chondrocyte segmentations from all the reg-

ular tiles were projected first, then segmentations from the

center span of the horizontally offset tiles were added, and finally

segmentations from the center span of the vertically offset tiles

were added. This method preserved the more accurate cell seg-

mentations from the center of each tile and covered the seams

between regular tiles (Figure 3B). In contrast, all chondrocyte

clone bounding boxes from both the regular and additional tiles

were projected back to the cartilage segmentation, and subjected

to non‐maximal suppression33 to remove any redundant, less

accurate bounding boxes.

Three different metrics were calculated to evaluate cartilage

cellularity: chondrocyte density, clone density, and percentage of

chondrocytes that reside in a clone. To calculate densities, the

number of chondrocytes or clones whose centroid was within

the segmented cartilage were divided by the cartilage area. Clone

chondrocytes were defined as those whose centroids were lo-

cated within the bounding box of a clone (Figure 3C). The number

of clone chondrocytes was divided by the total number of

chondrocytes identified in the cartilage. These three metrics were

calculated for the entire joint, as well as mapped in 1.5 mm in-

crements across the weightbearing cartilage. The 30%–40% po-

sitions articulated with the healing fracture line. These data were

normally distributed (Shapiro–Wilk test); and therefore, one‐way

analysis of variance (ANOVA) with post hoc Tukey's tests was

used to compare cellularity values between postoperative time-

points (normal, 1 week, 3, 6, and 12 months; n = 5 for all). Re-

peated measures two‐way ANOVA with post hoc Tukey's tests

was used to evaluate differences between joint locations and

postoperative timepoints (GraphPad Prism 9).
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3 | RESULTS

The optimal U‐net was selected at the 82nd epoch with a median

F1 score of 0.89 (95% CI: 0.88–0.93) on the training validation

images, and the optimal YOLO was selected at the 105th epoch

with a median F1 score of 0.80 (95% CI: 0.67–1.00) on the training

validation images. Those F1 score values indicated good detection

accuracy (good = 0.70–0.90)21 by each model. In the secondary

validation, the U‐net achieved an excellent agreement with

the average counts by the experts (Figure 4; R2 = 0.93,

y = 0.90x − 0.69) and a close‐to‐excellent median F1 score (median:

0.87; 95% CI: 0.84–0.89). The average IOU between the U‐net

segmentation and manual segmentation of each chondrocyte was

0.849, indicating high accuracy of U‐net chondrocyte segmenta-

tions.34 The three expert researchers' agreement identifying

clones was good (ICC = 0.76).35 Despite relatively a lower median

F1 score (median: 0.67; 95% CI: 0.57–0.89) for clone detection,

the YOLO still achieved good agreement with the average counts

by the experts (Figure 4; R2 = 0.79, y = 0.95x). Both models were

found to be able to identify chondrocytes/clones of variable size,

shape, and appearance (Figure 4).

Differences in cellularity were found between the normal and

the different postoperative timepoints. Average chondrocyte den-

sity 1 week after fracture (mean: 856 cells/mm2; 95% CI: 748–963

cells/mm2) was slightly higher than normal chondrocyte density

(mean: 774 cells/mm2; 95% CI: 742–806 cells/mm2; p = 0.573) and

significantly higher than at 3 months (mean: 610 cells/mm2; 95% CI:

491–729 cells/mm2; p = 0.006), 6 months (mean: 638 cells/mm2;

95% CI: 470–806 cells/mm2; p = 0.016), and 12 months (mean:

683 cells/mm2; 95% CI: 556–810 cells/mm2; p = 0.077) after frac-

ture (Figure 5A). Clone density and percentage of chondrocytes in

clones 3, 6, and 12 months after fracture was higher than in normal

cartilage or at 1‐week postoperatively, however, these differences

did not reach statistical significance (Figure 5B,C; p > 0.1 for all pair‐

wise comparisons).

Local cellularity differences were noted among the different

postinjury timepoints. At the anterior positions, chondrocyte den-

sities were lower 3, 6, and 12 months after fracture than after 1 week

or in normal tissue. Cell density was the lowest 3 months after

fracture and was significantly lower than densities in normal tissue or

1 week after fracture at the 10% (p = 0.032/0.012), 20% (p = 0.107/

0.024), and 30% (p = 0.006/0.039) positions (Figure 6A). One week

after fracture, chondrocyte densities in the posterior locations were

higher than in normal tissue and significantly higher than at 3, 6, and

12 months: 60% (p = 0.137, 0.049, 0.649 for 3, 6, 12 months, re-

spectively), 70% (p = 0.164, 0.096, 0.556), 80% (p = 0.108, 0.010,

0.428), 90% (p = 0.023, <0.0001, 0.046), and 100% (p = 0.002,

<0.0001, 0.067). Chondrocyte densities 3, 6, and 12 months after

fracture were also lower than the normal group at the posterior

positions, although these differences did not reach statistical

significance (Table 1).

Locally, significantly higher clone density/percentage of chon-

drocytes in clones was found 3, 6, and 12 months after fracture

(Figure 6B,C and Table 2). Local clone density at 3 months was

F IGURE 3 This figure illustrates the method to analyze the weightbearing area of the minipig talus cartilage. (A) For a given digitized
histological section, the center of the weightbearing area was determined (vertical dash line), and 15‐mm horizontal span of cartilage (7.5 mm for
both the anterior and posterior) was segmented (blue boundaries) to be analyzed. (B) Illustration of the sliding window approach to cover the
segmented cartilage in an example cartilage segmentation (white region). A window slides from top to bottom in a column‐by‐column‐basis with
the stride of the window side length to cover the whole segmented cartilage. These regular windows are offset by half of window side length in
vertical and horizontal direction to cover the seams between regular windows. Image tiles are cropped from all the window locations and
analyzed by the U‐net and YOLO models. (C) Resulting cell segmentations and clone detections on cartilage by the U‐net and YOLO projected
back to the cartilage. Individual chondrocytes segmentations from the U‐net were compared to the clones (green bounding boxes) detected by
the YOLO to divide chondrocytes into clone chondrocytes (yellow segmentations) and regular chondrocytes (cyan segmentations)
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significantly higher than the normal group at the 70% position

(p = 0.013) which is moving into weightbearing tissue that was not

directly affected by the fracture. By 6 and 12 months after fracture,

significantly higher clone densities than in the normal and/or 1‐week

groups were found more peripherally in the joint (the 20% and 80%

positions). Clone density at 6 months was significantly higher than in

normal or 1 week at the 20% position (p = 0.026, 0.021) and at

12 months clone density was higher than in the normal (p = 0.057)

F IGURE 4 (Upper) The trained U‐net was able to accurately detect chondrocytes of different size, shape, appearance and zonal origin. It has
achieved an excellent agreement with expert researchers on counting chondrocytes. (Lower) The trained YOLO model was able to accurately detect
clones of different sizes and geometry, with few false positives (red box) or false negatives (blue boxes). The trained YOLO model achieved good
agreement with expert researchers on identifying clones on 30 images not used to train the model

F IGURE 5 This figure shows the plots of chondrocytes density, clone density, and percentage of chondrocytes in clones at different
postoperative timepoints from the entire cartilage region. (A) Chondrocyte densities in the entire cartilage span demonstrated a slight increase 1
week after fracture and then decreased after 3 months. The asterisk (*) indicates level of significance: * for p < 0.05 and ** for p < 0.01. (B,C)
Clone densities/percentages of chondrocyte in clone were low in the normal and early (1 week) after fracture and increased after 3 months,
although this increase was not significant
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F IGURE 6 Maps of chondrocyte density, clone density, and percentage of chondrocytes in clones plotted in 1.5mm increments along the
weightbearing cartilage surface. The gray bar indicates the part of the talus in direct contact with the fracture line during the fracture‐inducing impact.
The curve for each timepoint represents the mean cellularity metric value among the five different animals at that timepoint. Color‐filled circles represent
pair‐wise comparisons with p<0.05. (A) Chondrocyte densities in normal and 1‐week postfracture tissue were higher than at later postfracture
timepoints, particularly the 3‐month time point and along the anterior portion of the weightbearing cartilage. (B,C) Significantly higher values of clone
density and the percentage of chondrocytes in clones were found 3, 6, and 12 months after fracture. Compared to the relative uniformity of clone
distribution over the weightbearing cartilage in the normal and 1‐week postfracture groups, the local increases in clone density adjacent to the tissue
damaged by the fracture indicate the pathological nature of the clones detected by our model

TABLE 1 This table summarizes chondrocyte density values (cells/mm2) at different postoperative timepoints

Anterior Posterior
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Entire surface

Normal

Mean 868 848 903 814 708 701 673 729 719 730 774

Lower 1035 987 1149 914 797 886 789 798 824 876 742

Upper 701 709 656 715 618 517 557 660 615 584 806

1 Week

Mean 899 903 846 795 810 837 816 864 923 918 856

Lower 1027 979 942 936 966 997 933 959 1015 977 748

Upper 772 826 750 654 654 678 698 768 830 859 963

3 Months

Mean 583 609 568 600 626 609 595 625 627 545 610

Lower 661 694 715 716 772 891 822 823 807 958 491

Upper 506 524 421 483 479 327 368 426 447 131 729

6 Months

Mean 782 795 769 669 731 568 572 540 505 470 638

Lower 862 975 1135 947 1151 730 774 776 701 818 470

Upper 701 615 402 391 311 405 369 304 310 121 806

12 Months

Mean 759 745 739 685 643 704 668 696 650 660 683

Lower 1048 991 888 821 803 1122 861 832 815 818 556

Upper 470 498 590 548 483 285 475 560 486 502 810

Note: Values are mapped in 10% increments across the weightbearing articular cartilage surface and shown as a mean with lower and upper 95%
confidence interval bounds. The articular surface between 30% and 40% (bolded columns) was the portion of the talus that articulated with the fracture
line in the tibia.
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and 1‐week (p = 0.047) groups at the 80% position. Variations in the

percentage of chondrocytes in a clone were very similar to the local

variations of clone density (Figure 6C).

4 | DISCUSSION

Histological analysis remains among the most commonly used

research techniques to evaluate the health of cartilage. In this

work, we trained, validated, and implemented two different CNN

models to quantify the progressive chondrocyte cellularity changes

after joint/cartilage injury. The trained U‐net and YOLO models

developed for this purpose were validated to be accurate for

identifying chondrocytes and clones by achieving good agreement

with manual assessment by expert researchers. These algorithms

proved to be extensible for use identifying chondrocytes and

chondrocyte clones in degenerating minipig cartilage, and they

were able to identify progressive cellularity changes with time after

joint injury.

While there are several CNN models that could be suitable for

chondrocyte identification,7,10 the U‐net was selected for chon-

drocyte detection because it has demonstrated state‐of‐art perfor-

mance on a similar cell detection task,9 and it provides boundary

information from chondrocyte segmentation that can be useful for

future studies related to co‐localization of functional cellular stains

and specific morphological structures. In contrast, as relatively little is

known about the importance of the morphology of clones, a simple

bounding‐box‐based detection method was used for clone detection

in this work. TheYOLO was selected over other bounding‐box‐based

methods for its developmental and implementation simplicity. Spe-

cifically, it is a single CNN model that can be developed and trained

end‐to‐end to predict bounding box probability and coordinates si-

multaneously.8 Similar methods have two stages, requiring in-

dependent development of a bounding box generator and an image

classifier,7,36 which can be more laborious and slower. If clone mor-

phology, rather than simple detection, becomes more important in

future work, adapting the U‐net trained to segment chondrocytes

using transfer learning would likely be successful for that purpose.

TABLE 2 This table summarizes clone density (clone count), with values expressed as clones/mm2 (number clones) at different
postoperative timepoints

Anterior Posterior
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Entire surface

Normal

Mean 5 (2) 4 (1) 4 (2) 4 (2) 5 (2) 6 (2) 2 (1) 2 (1) 3 (1) 5 (2) 5 (14)

Lower 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (1) 1 (5)

Upper 12 (4) 12 (3) 10 (5) 15 (7) 11 (4) 15 (5) 5 (2) 5 (2) 6 (3) 8 (3) 8 (23)

1 Week

Mean 2 (1) 4 (1) 2 (1) 3 (1) 2 (1) 4 (1) 6 (2) 1 (0) 3 (1) 7 (3) 4 (11)

Lower 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (4)

Upper 8 (3) 12 (4) 8 (2) 10 (3) 5 (2) 7 (3) 14 (3) 4 (1) 9 (3) 16 (6) 5 (19)

3 Months

Mean 10 (6) 8 (5) 9 (5) 5 (3) 2 (1) 21 (9) 20 (12) 10 (5) 11 (6) 8 (5) 11 (58)

Lower 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (3)

Upper 21 (12) 21 (13) 20 (11) 18 (11) 6 (3) 44 (19) 51 (30) 21 (11) 27 (14) 18 (10) 21 (113)

6 Months

Mean 12 (7) 21 (12) 13 (7) 7 (5) 9 (6) 11 (7) 9 (5) 9 (6) 6 (5) 8 (7) 11 (68)

Lower 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (3) 2 (2) 0 (0) 0 (0) 0 (0) 5 (44)

Upper 31 (17) 42 (26) 28 (18) 18 (13) 20 (15) 19 (11) 16 (9) 18 (12) 17 (14) 18 (15) 16 (92)

12 Months

Mean 9 (4) 9 (3) 8 (3) 8 (4) 7 (4) 6 (4) 11 (7) 17 (13) 8 (5) 11 (8) 9 (58)

Lower 0 (0) 0 (0) 2 (1) 0 (0) 3 (3) 2 (0) 0 (0) 0 (0) 2 (1) 1 (0) 3 (12)

Upper 18 (7) 21 (4) 13 (8) 16 (5) 11 (8) 11 (8) 22 (16) 36 (29) 14 (9) 20 (17) 15 (98)

Note: Values are mapped in 10% increments across the weightbearing articular cartilage surface and shown as a mean with lower and upper 95%
confidence interval bounds. The articular surface between 30% and 40% (bolded columns) was the portion of the talus that articulated with the fracture

line in the tibia.
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The U‐net model reported here is a retrained version of our

previously reported model which had been selected based on pro-

viding the lowest average loss value during training.25 However, that

model, chosen to minimize weighted loss at each pixel, did not cor-

respond to the highest detection accuracy at the cell level. Therefore,

in addition to modifications made to emphasize detection of small,

closely packed chondrocytes, the retrained model was selected based

on providing the highest F1 score, which reflected the best cell de-

tection accuracy as compared with the gold‐standard manual seg-

mentations. To maximize functional accuracy, a similar process was

followed during the training of the YOLO. This approach of selecting

a model based on performance was used to avoid choosing an overfit

model, while the secondary validation of the selected model (on

different testing images) was intended to assess generalizability to

unseen image data.

Estimated chondrocyte densities in pig cartilage were close in

magnitude to previously reported values in a large animal (~1000

cells/mm2).37 Reduced chondrocyte density and more active cloning

was found beginning 3 months after IAF, which corroborates the

elevated histological scoring of PTOA previously reported in this

animal model at the same time point.31 Chondrocyte density began to

progressively, though not significantly, rebound by 6 months

(increased 28 cells/mm2; p = 0.716) and 12 months (increased

73 cells/mm2; p = 0.5734) after the fracture. Despite greater clone

densities at 6 and 12 months, the progressive increases in chon-

drocyte density were found to be mainly from increases in chon-

drocytes not associated with clones (nonclone related collaborating

regarding the chondrocyte density: 580, 596, 642 cells/mm2 for 3, 6,

and 12 months after fracture, respectively). At 6‐ and 12‐month

postoperative timepoints, the combination of lower than normal

chondrocyte density, increased number of chondrocyte clones, and

increasing chondrocyte cellularity outside clones indicate progressive

arthritic changes, but not necessarily a linear progression through the

stages of cellularity outlined in the Mankin scoring system.1 Local

increases in clone density at 3 months were found close to the region

that articulates with the healing fracture line, and then more ante-

riorly and posteriorly relative to that location by 6 and 12 months

after fracture. These findings would indicate spatial progression of

cartilage abnormalities through the joint that are associated with time

after injury, however, determining the mechanism responsible for this

would require a separate study.

There are several limitations in this work that need to be con-

sidered. The first is that we have trained the YOLO model to identify

a chondrocyte clone based on our empirical definition of >3 non-

linearly organized chondrocytes in a single lacuna. These criteria were

chosen to provide a standardized morphological description of the

appearance of a specific feature of osteoarthritic cartilage identified

in the Mankin scoring scheme as “cloning.”1 This term “clone” has

been used interchangeably with the term “cluster” or “proliferation”

in other scoring schemes.2 A true clone would imply that all the

chondrocytes present in any given instance of this feature were

derived from a single cell, and such an assessment would require a

detailed analysis of cell proliferation markers that is not feasible in

Safranin‐O sections. While determining the true clonal/proliferative

nature of the cells in these features is outside the scope of this work,

a future study combining this automated feature detection approach

with specific stages of chondrocyte proliferation/activity could pro-

vide important information about the time course of chondrocyte

function throughout the course of osteoarthritic cartilage degenera-

tion after joint injury. It would also be interesting to relate such

findings to local collagen disruption or proteoglycan concentrations

as such covariates would presumably be closely related to cellular

response. However, our model is presently trained to identify clones

independent of surrounding tissue appearance, and as such it cannot

provide any mechanistic or associative information relating chon-

drocyte proliferation to tissue structure/composition.

Secondly, the interobserver agreement on clone identification

using this definition was relatively lower (ICC = 0.76) than expert

agreement achieved for identification of individual chondrocytes

(ICC = 0.87).25 However, given the much smaller number of clones in

an image compared to the total number of chondrocytes, this re-

duction in ICC value is a function of disagreement on a very small

number of clones in the full data set. Another limitation was that the

YOLO detected some false positive clones among sparsely dis-

tributed chondrocytes and some artificially small clones (Figure 4). A

possible reason for the false positives is that the training images

included mostly clustered chondrocytes, leaving the model without

sufficient training to recognize sparser chondrocyte patterns. A

possible reason for identifying artificially small clones was that the

YOLO was trained using rabbit cartilage, and clones from rabbit

cartilage are smaller than those that can develop in much thicker pig

cartilage. Retraining using additional images of sparse chondrocytes,

larger clones, and multiple species could potentially further improve

performance over the good agreement with experts that was

achieved with this version of the YOLO. Finally, there were few

statistically significant differences in clone density associated with

time after fracture in the minipig model of PTOA, which is attributed

both to the presence of some clones in normal minipig talar cartilage,

and to the small number of animals available for each study group

(n = 5) in this secondary analysis of existing histological sections. As

hypothesized, progressive chondrocyte/clone density changes were

identified, although adequately powered future studies will be nee-

ded to fully document the natural history of chondrocyte activity in

joints sustaining IAFs.

In conclusion, two CNN models were developed, validated,

and implemented to document progressive changes in chon-

drocyte density & cloning in a minipig model of IAF, which is

known develop posttraumatic OA. The accuracy of the resulting

chondrocyte segmentation and clone identification was very si-

milar to the gold‐standard of human expert chondrocyte/clone

identification. This fully objectively obtained cellularity data

could be incorporated into an automated image‐analysis based

histological scoring system for OA progression, or used as a

stand‐alone technique to quantify changes in cellularity and

chondrocyte organization in articular cartilage. This deep‐

learning‐powered approach provides objective and accurate
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cartilage health information and can thus better facilitate studies

of cartilage injury and regeneration.
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