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Abstract

Scores produced by statistical classifiers in many clinical decision support systems and other 

medical diagnostic devices are generally on an arbitrary scale, so the clinical meaning of these 

scores is unclear. Calibration of classifier scores to a meaningful scale such as the probability of 

disease is potentially useful when such scores are used by a physician. In this work, we 

investigated three methods (parametric, semi-parametric, and non-parametric) for calibrating 

classifier scores to the probability of disease scale and developed uncertainty estimation 

techniques for these methods. We showed that classifier scores on arbitrary scales can be 

calibrated to the probability of disease scale without affecting their discrimination performance. 

With a finite dataset to train the calibration function, it is important to accompany the probability 

estimate with its confidence interval. Our simulations indicate that, when a dataset used for finding 

the transformation for calibration is also used for estimating the performance of calibration, the 

resubstitution bias exists for a performance metric involving the truth states in evaluating the 

calibration performance. However, the bias is small for the parametric and semi-parametric 

methods when the sample size is moderate to large (>100 per class).
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1 Introduction

Automated statistical learning classifiers are widely used in many medical applications. For 

examples, computer-aided diagnosis (CAD) algorithms are used in medical imaging for 

cancer detection,1 genomic classifiers are used to combine gene-expression data to predict 

patient response to therapy that can potentially lead to personalized treatments,2 clinical 

variables are combined using statistical models to predict the risk of breast cancer,3 among 

many others. In this work, we consider the binary outcome problem in which patients come 

from two populations (or truth states), e.g., diseased or non-diseased and responders or non-
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responders. Statistical learning algorithms often output numerical scores that are multi-level 

ordinal, quasi-continuous, or continuous, to which a cut-off threshold can be applied to 

predict the binary outcome. Many statistical classifiers yield scores on an arbitrary scale, the 

clinical meaning of which is often unclear. This may not be a problem if the scores are 

always dichotomized into binary decisions with a fixed threshold before being presented to 

physicians, i.e., the (quasi)continuous scores are not the final output. In many applications, 

however, ordinal, quasi-continuous, or continuous scores are output to physicians as they 

convey more information than dichotomized binary decisions. In such situations, it is 

important that the scores are on a meaningful scale so that physicians can understand and 

interpret them appropriately. In medical imaging, for example, CAD devices use statistical 

classifiers to output a score for a computer- or radiologist-detected region that represents the 

likelihood of the region being cancer. The radiologist can then incorporate this information 

in his/her diagnosis.

All classifier scores provide ranking information to physicians, e.g., patients with a score of 

90 are more likely, on average, to be diseased than patients with a score of 55. It is not 

always clear, however, how likely a patient is diseased given a particular score without 

comparing with other patients. Moreover, it can be troublesome for a physician to interpret 

outputs from more than one diagnostic devices that output scores on arbitrary but different 

scales, since the same numerical score from different devices may have different meanings 

in terms of the likelihood that an abnormality of interest is present. It is therefore desired to 

transform classifier scores to a clinically meaningful scale. In this paper, we consider the 

probability of disease scale, although other scales such as the likelihood ratio scale are 

possible as well. It should be noted that there are methods to normalize classifier scores to 

the [0, 1] domain4; however, such normalized scores do not necessarily have a probability 

meaning and score normalization methods are not what we consider in this paper.

Our purpose in this research is to investigate methods for transforming classifier scores on 

arbitrary scales to the probability of disease scale. We begin with a review of related 

previous work. In the machine learning community, Platt5 proposed transforming support 

vector machines (SVM) scores to probability estimates by fitting a sigmoid function. 

Zadrozny and Elkan6 proposed an isotonic regression method implemented with the pool-

adjacent-violators algorithm (PAVA).7 These two methods have been compared for a variety 

of classifiers.8 In the medical imaging community, Pesce et al.9 developed a method to 

transform classifier scores to the likelihood ratio scale based on a semi-parametric proper 

receiver operating characteristic (ROC) model.10 To the best of our knowledge, this method 

has not been compared with the other two methods. Moreover, the scale transformation 

function is estimated with a finite dataset and consequently the estimated probability has 

uncertainty that should be quantified. We initially presented a preliminary comparison of 

PAVA with the method extended from Pesce et al.9 at the SPIE Medical Imaging conference.
11 In this paper, we extended our previous work to compare all three methods. Moreover, we 

developed techniques to quantify the uncertainty of the probability estimate for all three 

methods mentioned above. Finally, we evaluated and compared these methods using 

simulation studies and demonstrated their applications in a real-world CAD problem.
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2 Methods

2.1 Relation between calibration and discrimination under the rationality assumption

It has been well known that probabilistic classifier scores have two fundamental properties: 

discrimination and calibration.12 Discrimination refers to the ability of a classifier to 

discriminate between two truth states, e.g., how likely the score of a diseased subject is 

greater than that of a non-diseased subject. In fact, a commonly used measure of 

discrimination, the area under the ROC curve (AUC), is exactly the probability that the score 

of a randomly chosen diseased subject is greater than that of a randomly chosen non-

diseased subject.13 Calibration, on the other hand, describes the degree to which an 

estimated probability score agrees with the actual outcomes: out of 100 patients having the 

probability score of x%, it is expected that close to x of patients are actually diseased for a 

well-calibrated model. This paper is about transforming classifier scores to a calibrated 

probability scale. A natural question is whether this transformation would affect the 

discrimination.

Diamond14 pointed out that there is a trade-off between discrimination and calibration 

implying that a model maximizing one must be doing so by sacrificing the other. This notion 

has influenced other investigators15 and become somewhat popular. Unfortunately, this is a 

misconception. Diamond14 came up with this notion by “ proving” that any perfectly 

calibrated model can only achieve an AUC of 0.83. His proof, however, assumed that the 

probability scores are uniformly distributed in the whole population, which is neither 

realistic nor necessary for a statistical model to work. To disprove this trade-off 

misconception and further illustrate the relationship between discrimination and calibration, 

we provide a theoretical counter example below.

Let us assume that we have measurements of a set of p biomarkers (genomic, imaging, etc.) 

denoted by a p × 1 vector X and, conditioned on the truth state (D = 1 for diseased, and D = 

0 for non-diseased), X follows multivariate normal distributions with a common covariance 

matrix V and means μ1 and μ0, respectively, i.e., X|D = 1 ∼ (μ1, V), X|D = 0 ∼ (μ0, V), 

where (μ, V) denotes the density function of the normal distribution with mean μ and 

covariance matrix V. We further assume the prevalence of disease in the population is η. 

Consider a generalized linear classifier that consists of two steps: in the first step, X is 

mapped to a scalar variable y through a linear combination y = wTX where w is a p × 1 

coefficient vector; in the second step, y is transformed to the probability of disease given y 
using a monotonically increasing function P = 1/(1 + exp(Ay + B)) with the constraint A ≤ 0. 

Since y follows a uni-variate normal distribution conditioned on the truth state and P is a 

monotonically increasing function of y, it can be shown that the AUC of this classifier is

(1)

Chen et al. Page 3

Stat Methods Med Res. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Φ is the cumulative distribution function of the standard normal distribution. 

Moreover, we show (see Appendix 1) that P is perfectly calibrated probability of disease 

given y if and only if the parameters A and B are

(2)

Note that the constraint A ≤ 0 is almost trivial because, if we have a classifier w such that A 
≥ 0, we can always replace it with − w. Also note that A ≤ 0 implies wT(μ1 – μ0) ≥ 0 and 

hence 0.5 ≤ AUC ≤ 1.

In this theoretical example, we see that the discrimination ability of the classifier as 

measured by AUC in equation (1) is determined by the classifier coefficient parameters w 
and the intrinsic separability of the two populations given the measurements X that is 

characterized by parameters μ1, μ0, and V. Because the calibration function in step 2 is 

monotonically increasing, it does not have any effect on the discrimination. This means that, 

depending on the parameters, the AUC in equation (1) can be any value between 0.5 and 1 

and, no matter what the AUC value is, the classifier scores can be perfectly calibrated to the 

probability of disease scale. The practical implication of this property is that the classifier 

coefficient vector w can be obtained by maximizing the AUC (i.e., discrimination) without 

considering calibration, which in this case is the Fisher's linear discriminant w = V−1(μ1 – 

μ0).16 And then, we can transform y to the probability of disease scale without affecting the 

discrimination in terms of AUC or any rank-based figures of merit.

In general, many classifiers (e.g., linear discriminant, SVM, and nearest neighbor classifiers) 

are trained by optimizing an objective function that is related to discrimination and produce 

classifier scores on some arbitrary scale that can then be calibrated to a meaningful scale. 

However, to calibrate scores without changing their ability to discriminate, the calibration 

function must be monotonically increasing. Thus, in this study, we make the rationality 

assumption where “rationality” is defined as a property that the classifier score and the 

probability of disease are related by a monotonically increasing function. We call this 

assumption the rationality assumption because it is rational to assign a higher score to a 

patient with a higher probability of disease. Rational classifier scores (y) must be a 

monotonically increasing function of the likelihood ratios of the scores (LR(y) = f(y|D = 

1)/f(y|D = 0)), i.e., if y1 ≤ y2, then LR(y1) ≤ LR(y2). The proof is straightforward as follows. 

By the definition of rationality, y is a monotonically increasing function of the probability of 

disease P(D = 1|y). Moreover, the probability of disease P(D = 1| y) is monotonically related 

to the LR of y according to the Bayes' theorem: P(D = 1| y) = 1/(1 + LR−1 × (1 − η)/η). 

Therefore, y is a monotonically increasing function of LR(y). It is easy to see the converse is 

also true: if y is a monotonically increasing function of LR(y), then y is rational. Because of 

this property, the ROC curve for rational classifier scores is convex (called a proper ROC 

curve17).
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We make a distinction between rationality and optimality of classifiers. Optimality of 

classifiers usually refers to optimal discrimination (e.g., AUC) given the measured attributes 

X. According to the signal detection theory,17 the optimal classifier (also known as the ideal 

observer) in terms of maximizing the AUC given X is the likelihood ratio of X. Clearly, the 

optimal classifier is rational. However, a rational classifier is not necessarily optimal. 

Referring to the theoretical example given above, the optimal classifier is the Fisher's linear 

discriminant and it is rational. But any linear classifier in this example that satisfies wT(μ1 

−μ0) > 0 is rational. Rationality only requires the decision variable (y) be monotonically 

increasing with the likelihood ratio of itself (LR(y)), but not necessarily the likelihood ratio 

of the full attributes (X), which can be hard to obtain in practice without the knowledge of 

the joint distribution of the attributes. Because of this, the rationality assumption is not hard 

to meet in practice.

The rationality assumption allows one to calibrate classifier scores to the probability of 

disease scale without affecting the discrimination of the classifier and without even having to 

know how the classifier is trained. Under this assumption, we introduce three calibration 

methods.

2.2 Calibration method 1: The parametric method

Platt5 proposed a method for transforming scores (y) from SVMs to a calibrated posterior 

probability by fitting a sigmoid function

(3)

where the parameters (A and B) can be obtained by solving a regularized maximum 

likelihood estimation (MLE) problem via a Levenberg-Marquardt algorithm.18 Lin et al.19 

developed an improved algorithm in Platt's framework to overcome some numerical 

difficulties. In essence, this is just a uni-variate logistic regression method. The difference is 

that, instead of using the 0 and 1 target values as conventional logistic regression does, Platt5 

applied a regularization to mitigate overfitting by using 1/(N0 + 1) and (N1 + 1)/(N1 + 2) as 

target values, where N0 is the number of actually negative subjects and N1 is the number of 

actually positive subjects. Since Platt's method assumes a parametric form of the scale 

mapping function, it is a parametric method. Although this method was proposed for 

calibration of SVM classifiers, it has been used for other classifiers as well8 since the 

method does not have to assume any specific classifier.

We implemented the algorithm by Lin et al.19 to estimate the parameters A and B given a set 

of scores with known truth states. Previous work in the literature did not include an 

estimation of the uncertainty of the estimated posterior probability. In this study, we adopted 

the delta method20 to compute the standard error of the probability estimate. Specifically, 

given a score y, the standard error of the estimated probability given y, σP̂(y), where P̂(y) is 

the estimated probability, can be computed using the formula below with the MLE of A and 

B (denoted as Â and B̂, respectively)
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(4)

where the partial derivatives are derived analytically from equation (3), and the variances of 

A and B and their covariance are obtained from the inverse of the Hessian matrix output 

from the optimization procedure.

2.3 Calibration method 2: The semi-parametric method

Pesce et al.9 developed a method for transforming classifier scores to the log-likelihood ratio 

(LLR) scale. Their method is closely related to the proper ROC model developed by Metz 

and Pan.10 In their method for fitting a proper ROC curve, the classifier scores are assumed 

to be monotonically related to a latent continuous decision variable that is rational. 

Specifically, they used an explicit monotonic transformation of the likelihood ratio of normal 

distributions as a latent decision variable (denoted as u). In their algorithm, classifier scores 

are first sorted and categorized into I bins using truth state runs as described in Metz et al.21 

(rather than ad-hoc binning), where I depends on the data. These bins are mapped to the 

latent space with subject-occurrence frequency in each bin the same as that in the 

corresponding bin in the score space thanks to the monotonicity assumption. The likelihood 

for observing these binning data (i.e., numbers of subjects in the bins) is a multinomial 

function of the following latent-space parameters: two parameters for the normal 

distributions, I – 1 boundary parameters for I bins. An MLE procedure is used to estimate 

these parameters from which the ROC curve and ROC-based accuracy indices are derived 

and their standard errors are computed from the Hessian matrix output by the MLE 

procedure. The readers are referred to the Metz and Pan10 for more technical details. Note 

that the approach is deemed to be semi-parametric instead of parametric because the 

classifier scores are not assumed to follow a specific parametric form but are assumed to be 

related to a latent decision variable through an implicit monotonic transformation.

Using the estimated distribution parameters and boundary parameters for the bins, a method 

in Metz et al.21 allows for the estimation of boundary values on the latent axis for each 

distinct value in the test score. Note that each distinct value in the test score may correspond 

to a single subject or, when there are ties in the data, a number of subjects with one or mixed 

truth states. Suppose that, for the ith distinct test value yi, the boundary values on the latent 

axis are ui−1 and ui and there are ni0 actually negative subjects and ni1 actually positive 

subjects tied for yi. Then using these parameters together with the distribution parameters, 

Pesce et al.9 chose to use the median value between ui−1 and ui as the complementary value 

ũ in the latent space for the test value yi. Because there is an explicit monotonic relationship 

between u and the LLR defined in the proper ROC model, the LLR corresponding to ũ can 

thus be computed. The associated standard error can then be computed via the delta method.
9
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Assuming a known prevalence of disease η, the LLR obtained via the semi-parametric 

method of Pesce et al.9 can then be transformed to the posterior probability using the Bayes 

theorem

(5)

By replacing LLR with its estimate , we obtain an estimate of the posterior probability. 

The standard error of the estimated probability is computed with the delta method similar to 

that in the previous method.

2.4 Calibration method 3: The non-parametric method

A non-parametric isotonic regression method can be used to calibrate classifier scores to the 

probability of disease as demonstrated by Zadrozny and Elkan.6 Given a dataset 

of N subjects with the ith subject having a classifier score yi and the truth state Di ∈ {0, 1}, 

isotonic regression finds, from the family of isotonic functions (z), the function g that maps 

the classifier score yi to the posterior probability that yi belongs to the diseased class, g(yi) 

≡; P(Di = 1|yi), i.e.

(6)

A widely used algorithm for isotonic regression computation is the PAVA.7 This algorithm 

works as follows. First, the classifier scores are sorted ascendingly:  if i 
≤ i′. The probability estimate for each subject is initialized with its binary truth state: 

 and each subject is put in its own group Gi,i. The notation g(j) denotes the 

probability estimate at the jth iteration and Gi,i′ denotes the group of (sorted) subjects from 

subject i to subject i′(i ≤ i′). Then the following is repeated iteratively: in the jth iteration, 

search from the beginning until the first occurrence of a pair of groups Gk,i–1 and Gi,l such 

that  (adjacent violator), then pool the subjects in Gk,i–1 and Gi,l into 

one group Gk,l and assign  for i = k, …, l and 

 for i < k and i > l; if no adjacent violators, then stop. An illustrative 

example of the PAVA is shown in Table 1.

We used the bootstrap approach22 to estimate the confidence intervals (CIs) of the PAVA 

estimated probability. Specifically, we bootstrap the classifier score dataset  many 

times (in this paper, we set B = 2000 times) using a balanced bootstrap, i.e., each subject is 

sampled exactly the same number of times. For each bootstrapped dataset , we 

apply the PAVA to obtain an estimate of the probability of disease for each subject in the 

bootstrap dataset. Then, by aggregating all the estimates, each classifier score in the original 
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dataset has B estimates of the probability of disease, from which a bootstrap percentile CI is 

constructed.

2.5 Remarks on calibration methods: Assumptions, training, and testing

All the three calibration methods described above share the rationality assumption regarding 

the score data. This is clear for Platt's parametric method as it assumes an explicit monotonic 

relation (i.e., the logistic function) between the score and the probability. Moreover, the 

specific logistic function as defined in equation (3) is the correct model when the scores 

follow certain distributions, e.g., a pair of normal distributions with equal variance (as shown 

in Section 2.1) or a pair of exponential distributions.5 However, it is not necessarily the 

correct model for other types of distributions. For example, it can be verified that the logistic 

model is not the correct model for the beta distribution score that we use for simulation in 

the next section. In the semi-parametric method, the score data are not required to follow 

specific distributions but is assumed to be monotonically related to the likelihood ratio of 

normal distributions. The non-parametric method makes the rationality assumption by the 

constraints in the optimization but makes no further assumption regarding the distribution of 

the score data. It is interesting to note that, similar to the connection between the semi-

parametric calibration method and the semi-parametric proper ROC model, the PAVA-

generated probability scores correspond to the so-called ROC convex hull,23,24 which is 

essentially a non-parametric estimate of the proper ROC curve.

These calibration methods require a training dataset of Ntr score samples with truth states to 

determine the score-to-probability transformation function (which we call the calibration 

function from now on). As illustrated in Figure 1, the calibration function in the parametric 

method is a sigmoid function characterized by two parameters A and B and training gives an 

estimate of these two parameters Â and B̂. In testing on a new score y, the probability can be 

calculated using the trained formula (shown in Figure 1 below the first graph). For the semi-

and non-parametric methods, the training yields an estimate of the probability of disease for 

each score in the training data. The transformation function is thus defined on these discrete 

training data points. In testing on a new score y, we use interpolation on the training data to 

obtain the probability estimate.

2.6 Evaluation

The evaluation of algorithm-based medical diagnosis devices has predominately relied on 

rank-based metrics such as sensitivity, specificity, the AUC, among many others.25,26 Such 

measures characterize the discrimination or classification ability of a device. However, they 

do not capture the calibration or scale information of classifier scores because, for example, 

a change of the scale of classifier scores by a monotonic transformation would not change 

the aforementioned rank-based metrics. Performance metrics that are dedicated to or account 

for calibration have been an active area of research in recent years; however, there is a lack 

of consensus on which metrics are the best and controversies exist for at least some recently 

proposed metrics.27–30 A comparison of different performance metrics is interesting, but is 

beyond the scope of this paper. Instead, we consider a classic performance metric, namely 

the Brier score (BS)31, to investigate the properties of the three calibration methods as 

presented above. The Brier score is defined as the mean square difference between the 
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probability (P) and the truth state (D: 0 or 1) and thus accounts for both discrimination and 

calibration. Given a dataset of N subjects, the BS can be estimated as

(7)

We used simulations to investigate the statistical properties of the three calibration methods. 

One advantage of using simulation is that it allows a direct comparison of the estimated 

probabilities with the true probability of disease that can be computed analytically. 

Specifically, two simulation models were used to generate classifier score data. The first 

model was a pair of normal distributions with different means and equal variance. We chose 

parameters corresponding to an AUC value of approximately 0.80, i.e., y|D = 0 ∼ (0, 1), y|

D = 1 ∼ (1.2, 1). As mentioned earlier, the decision variable y with such density functions 

is rational. The second model was a pair of beta distributions

(8)

Note that the density function of the beta distribution generally has two parameters, and the 

density functions in equation (8) are special cases by setting one of the parameters to be 1 

and setting the other to be greater than or equal to 1. As shown by Mossman and Peng,32 the 

decision variable y with this particular form of beta density functions has a “proper” ROC 

curve, i.e., y is rational. In this study, we set α = 1.1, β = 3.5 that yields an AUC value of 

approximately 0.80.

Since the probability density functions of y are known, the true posterior probability of 

disease (D= 1) can be calculated as

(9)

where the disease prevalence η is assumed to be known. A summary statistic, namely the 

mean square error (MSE), can be computed from a sample of N subjects

In our simulations, we randomly sampled a training dataset from the specified distributions 

and trained the calibration functions in the three methods. This yielded, for each method, a 

calibration function and the associated 95% CI. The estimated calibration function was 
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compared with the true calibration function that was calculated using equation (9). The 

average length of the 95% CI was computed as a surrogate measure of the variability of the 

calibration function.

We computed the two performance metrics, namely the Brier score and the MSE, under two 

evaluation scenarios. In the first scenario, we used the probability estimates of the training 

data to compute BS and MSE. This is equivalent to training and testing the calibration 

function using the same dataset and we call it the resubstitution evaluation. In the second 

scenario, we used the probability estimates of an independently drawn dataset to compute 

BS and MSE, which we call the independent evaluation.

3 Simulation results

Figures 2 and 3 show examples of calibration by the parametric, semi-parametric, and non-

parametric methods for the normal distribution and the beta distribution, respectively. In 

each of the two examples, we sampled 300 subjects per class from the respective 

distributions. In these two figures, we plot the calibration function, i.e., the probability of 

disease versus the classifier score, for the three methods and for the analytical truth. In 

addition, we provide scatter plots of the true versus estimated probability for each method. 

By comparing the two figures, we see that the parametric method appears to be more 

sensitive to the distribution of the score data than the other two methods: the parametric 

method calibration appears to be perfect for the normally distributed data, but discrepancies 

between the estimated and the true calibration function are evident for the beta distribution 

data (bias). Moreover, we observe that the parametric and the semi-parametric methods 

appear to have narrower CI than the non-parametric method.

More quantitative comparisons are made using repeated simulation experiments. In this 

work, we varied the sample size for estimating the calibration functions (from 30 or 50 

subjects per class, to 100, 200, and 300 subjects per class). For each sample size, we 

repeated the simulation 800 times by generating score data independently in each repetition. 

Figure 4 plots the average width of the 95% CI as a function of sample size for the three 

methods and for the normal distribution data (left) and beta distribution data (right), 

respectively. The average width of the 95% CI is a surrogate measure of the variability of the 

estimated calibration function. Figure 4 indicates that, as expected, the variability decreases 

as the sample size increases. More importantly, the results indicate that the semi-parametric 

and the parametric method have similar levels of variability and they are substantially lower 

than that of the non-parametric method.

The lower variability of the parametric and semi-parametric methods may be expected to 

result in paying a price in bias as the bias-variance trade-off usually plays out. To this end, 

we examined the MSE of the probability estimates. The results, as shown in Figure 5, 

indicate that, for all the sample sizes examined and for both types of distributions, the non-

parametric method has substantially larger MSE than the parametric and semi-parametric 

methods. The relative ranking of the parametric and the semi-parametric methods was found 

to depend on the distribution of the data. For normally distributed score data, the parametric 

method has the best (i.e., lowest) MSE under all the sample sizes examined, as shown in 
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Figure 5(a). This is expected because, as mentioned earlier, the parametric model is the 

correct model for equal-variance normal distributions and parametric estimation is generally 

known to be most efficient. For score data, following the beta distribution, however, the 

MSE versus sample size curves cross for the parametric and semi-parametric methods, as 

shown in Figure 5(b). Given that the variance is similar between the parametric method and 

the semi-parametric method and it is similar between the two types of data distributions 

(Figure 4), we infer from the MSE results that the parametric method is more sensitive to the 

type of data distribution in terms of bias than the semi-parametric method (i.e., the bias for 

the semi-parametric method is similar across data distributions whereas the bias for the 

parametric method is larger for beta distribution data than for normal distribution data). The 

“cross” in Figure 5(b) is the usual bias-variance trade-off phenomenon: at large sample sizes 

(200 and 300 per class), the variance is similarly low for both methods (Figure 4, left) and 

the larger MSE of the parametric method (Figure 5(b)) is attributed to its larger bias; at 

smaller sample sizes (30 and 50 per class), the variance is high for both methods and 

dominates the MSE and the relatively larger variance of the semi-parametric method 

contributes to its larger MSE.

Finally, the results of our simulations investigating the effect of the resubstitution versus 

independent testing on summary performance metrics (MSE and BS) are presented in 

Figures 5 and 6. Figure 6 shows, in reference to the BS of the infinitely trained (or 

theoretical) calibration function (plotted as dot-dash lines in Figure 6, BS = 0.1814 for 

normal data and BS = 0.1783 for beta data obtained by numerical computation using large 

samples), the resubstitution estimates of BS are optimistically biased and the independent 

estimates of BS are pessimistically biased. This phenomenon is similar to the training of 

classifiers.33 In addition, the two estimates appear to be converging as the training sample 

size increases and the parametric and semi-parametric methods seem to converge faster than 

the non-parametric method. We emphasize that the bias mentioned above is in reference to 

the infinitely trained calibration function, whereas the independent estimate of BS is 

unbiased by definition for a finite-trained and fixed calibration function's population 

performance.

By contrast, the resubstitution versus independent testing seems to have no effect on the 

MSE, as shown in Figures 5. This can be explained by the fact that the truth state values, but 

not the true probability values, are involved in training of the calibration function for all the 

three methods. For example, the objective function in the non-parametric method is in fact 

the Brier score (see equations (6) and (7)). The training procedure minimizes the objective 

function, which effectively minimizes the BS for the training data by driving the probability 

of non-diseased subjects towards 0 and the probability of diseased subjects towards 1, but it 

is not necessarily generalizable to the independent testing data. However, this does not 

happen to the MSE because the true probability values are not involved in training and there 

is no self-consistency between the MSE and the training data.

4 A real-world example

We demonstrate the three calibration methods on a medical image CAD application. In this 

application, a computer algorithm was developed to detect lung nodules in computed 
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tomography images. Image analysis algorithms were used to detect candidate regions of 

interest (ROIs) from the images. Then characteristic image features were extracted to 

distinguish between nodules and non-nodules. A linear discriminant analysis (LDA) 

classifier was trained using these image features to classify the ROIs into nodules or false 

detections. In the test dataset, we have 360 nodules and 2314 non-nodules. The LDA scores 

for these test cases are uncalibrated and thus are not clinically meaningful. We transform 

them to the probability of disease (i.e., nodule) using the three methods investigated in this 

paper. Figure 7 shows the calibration curves with the associated 95% CI. The average width 

of the 95% CI for the parametric, semi-parametric, and non-parametric method is 2.6%, 

2.8%, and 5.5%, respectively. The resubstitution and leave one out cross validation (CV) 

estimates of the Brier score are presented in Table 2. These results show that, with the 

reasonably large dataset in this application, the calibration function is estimated accurately 

by all three methods. The resubstitution and CV estimates of the BS metric are nearly the 

same.

5 Discussions

In this paper, we investigated three methods for calibrating classifier scores on an arbitrary 

scale to the probability of disease scale. We examined the assumptions behind these methods 

and developed uncertainty estimation techniques. We then investigated their statistical 

properties using simulation studies: variability, MSE with respect to the true probability of 

disease, Brier score, and their interplays with sample size and the type of distribution of the 

data. We showed that, under the rationality assumption, classifier scores on arbitrary scales 

can be calibrated to the probability scale without affecting discrimination.

Intuitively, one may expect that a huge number of samples are needed to reliably calibrate 

classifier scores to the probability scale. However, our simulation results show that, with the 

principled methods investigated in this paper, a sample size of a few hundreds can achieve a 

calibration with reasonably favorable properties (e.g., 95% CI length of around 10 – 15 % as 

shown in Figure 4). This is essentially because, by using models, we do not have to calibrate 

every probability value independently. Of course, the larger the sample size, the more 

accurate the calibration. It is therefore important to accompany the probability estimate with 

an appropriately calculated CI. We argue that, even if the dataset for calibration is limited 

and hence the CI might be wide, a probability estimate with the CI may be more informative 

than a score on a meaningless arbitrary scale.

Our simulations show that there might be no universal winner among the three calibration 

methods investigated. The parametric method enjoys lower variability; however, it may not 

be sufficiently robust to different types of distributions of the score data. The non-parametric 

method seems to be robust to different data distributions but it suffers from large variability. 

Based on our simulations, the semi-parametric method may be a reasonable choice for many 

applications as it seems to have an acceptable trade-off between robustness and precision—it 

is not as sensitive to the data distribution as the parametric method and it is substantially less 

variable than the non-parametric method. One would need to examine the nature of the data 

(type of distribution, sample size, etc.) to choose an appropriate method for a particular 
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application. With a sufficiently large sample size, we have found that all the three methods 

work pretty well.

In medical applications, patient sample size is often limited as compared to sample sizes in 

other industrial pattern recognition applications. This is due to a variety of factors such as 

low disease prevalence, the cost of collecting medical data, and the inability or 

unwillingness of some patients or research groups to share data, etc. This has to be taken 

into account in designing and validating classifiers for medical diagnosis. Ideally, one would 

wish to have independent datasets for training, calibration, and testing of performance. 

However, this may not be the only or even the best way with limited resources available 

because partitioning a limited dataset into independent subsets may render each of them too 

small to do meaningful training and testing. It is well established that it is crucial to use 

independent datasets for training and testing a multi-variate classifier because of the severe 

bias in resubstitution. However, as our simulation results show, the resubstitution versus 

independent testing bias for a calibration function is not as severe with a reasonable sample 

size, which at least in part is because classifiers are multi-dimensional and the calibration 

function is uni-variate and resubstitution bias (or lack of generalizability) becomes worse at 

higher dimensions (a phenomenon known as the curse of dimensionality).34,35, This, 

together with the fact that calibration is independent of discrimination, implies that one may 

be able to use one dataset for training the classifier to optimize the discrimination ability of 

the classifier, and then use an independent test set to both test the discrimination 

performance and train the calibration function. To ensure a rigorous assessment, one can use 

CV of the latter dataset to assess the calibration performance.

It should be emphasized that the diseased samples and non-diseased samples in the dataset 

for training the calibration function should be representative of the diseased and non-

diseased populations, respectively. However, in general, the sample prevalence of disease 

(ηsample) is not required to be the same as the population prevalence (ηpop). This is because, 

when ηsample ≠ ηpop, one can scale the probability of disease estimated from the samples to 

that in the population.36 Note that we have P(D = 1| y) = ηLR(y)/(ηLR(y) + 1 – η) where the 

likelihood ratio LR(y) is independent of the prevalence. Moreover, LR(y) in the sample 

dataset is asymptotically the same as the LR(y) in the population (subject to random sample 

variations) as long as the diseased or non-diseased samples are random samples (hence 

representative) of their respective populations. Therefore, the probability of disease 

estimated from the samples P̂sample can be scaled to the estimated probability in the 

population P̂pop to match the population prevalence by

(10)

where
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So far, we have assumed that classifier scores are on an arbitrary scale. We should point out 

that some algorithms (e.g., logistic regression, Gaussian process classifiers37 and Bayesian 

neural networks38) output scores directly on the probability scale and a post-calibration 

procedure may be unnecessary. However, the probability scores output by such algorithms 

correspond to the prevalence of algorithm training samples and they can be converted to 

probability scores for a target population prevalence value using equation (10).

Although we have focused on automated classifiers in our discussions of the calibration 

methods, the methods developed and evaluated in this study have broader applications. The 

classifier scores discussed in this paper can be from automated algorithms, but they can be 

from human classifiers or physical measurements of a biomarker as well. For example, 

Horsch et al.39 used the likelihood ratio scale9 as an intermediate vehicle to transform scales 

between scores of computer algorithms and ratings of radiologists in image-based cancer 

detection tasks, which has the potential to help radiologists better understand and use the 

computer output. For another example, Pepe26 cautioned against pooling the rating scores of 

multiple radiologists for data analysis as they may use different scales. Use of calibration 

methods to unify their scales may help mitigate this concern.

Finally, we note that there are two potentially important extensions of the current work. The 

first is the evaluation of calibration. In this work, we used the Brier score to evaluate the 

training and testing of calibration functions (e.g., resubstitution bias). However, the Brier 

score may not be sufficiently informative for real-world applications because it combines 

both the discrimination and the calibration performance into one number. In practical 

applications, it is often desired to evaluate the two types of performance information 

separately. Discrimination measures such as AUC, sensitivity, and specificity are well 

established. More research is needed to investigate properties of different measures (e.g., 

calibration slope and Hosmer–Lemeshow test as investigated in Steyerberg et al.27) and 

develop consensus for the most appropriate measure of calibration in practical clinical 

applications.

The second potential extension of the current work is to investigate methods for setting 

thresholds that warrant appropriate clinical actions. Note that even though a model is trained 

based on two-truth-state data, the patients can be categorized into more than two groups 

based on continuous classifier scores for appropriate treatments (e.g., sending home for 

healthy patients, follow-up for intermediate patients, and therapeutic treatment for diseased 

patients). One problem of setting thresholds based on observed classifier scores is that the 

thresholds may be set to optimize certain performance measure on the same dataset that is 

used to evaluate the performance (e.g., sensitivity) thereby introducing bias to that 

performance estimate.40 A potential solution is to set thresholds on the (absolute) probability 

scale, which can be done in the data analysis plan before collecting the data thus avoiding 

bias of the data-dependent method. Such thresholds can then be transformed through a 

score-to-probability calibration function to the classifier score scale. Another advantage of 

Chen et al. Page 14

Stat Methods Med Res. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



setting thresholds on the probability scale is that it is straightforward to apply utility (or cost) 

analysis on that scale. With utilities defined for each clinical action and truth state 

combination, the thresholds are determined by maximizing the expected total utility. For 

example, in a two-truth-state problem, there are four utilities, defined respectively for true 

positives, false negatives, true negatives, and false positives as UTP, UFN, UTN, and UFP, and 

the optimal threshold on the posterior probability can be found as a function of the utilities. 

Incidentally, a “50% chance” threshold is not necessarily optimal unless the relative utility, 

defined as (UTP – UFN)/(UTN – UFP), is unity.

6 Conclusion

In conclusion, we investigated three methods for calibration of classifier scores to the 

probability of disease scale and developed uncertainty estimation techniques for these 

methods. Under the rationality assumption, classifier scores on arbitrary scales can be 

calibrated to the probability of disease scale without affecting discrimination. With a finite 

dataset to train the calibration function, it is important to accompany the probability estimate 

with its CI. Our simulations indicate that the resubstitution bias exists for a performance 

metric involving the truth states in evaluating the calibration performance, but the bias is 

small for the parametric and semi-parametric methods when the sample size is moderate to 

large (>100 per class).
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Appendix 1

Calibration function of linear classifiers for multi-variate normal data

Following the notation in Section 2.1, assuming we have p–dimensional normal data: X|D = 

1 ∼ (μ1, V), X|D = 0 ∼ (μ0, V), where  (μ, V) denotes the density function of the 

normal distribution with mean μ (a vector of p × 1) and covariance matrix V of size p × p. 

Using a linear combination, X is mapped to a scalar variable y: y = wTX. Our goal is to find 

P(D = 1|y), the probability of disease given score y. Note that the conditional distribution of 

y is uni-variate normal, i.e.

(11)

According to the Bayes theorem, we have
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By inserting the conditional density functions in equation (11) into the equation above and 

also note that the prevalence of disease η ≡ P(D = 1) is assumed to be known, we have

where

Note that P(D = 1| y) is a monotonically increasing function of y if A < 0, i.e., wT(μ1 – μ0) > 

0.
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Figure 1. 
Examples illustrating training of calibration functions: the parametric method gives a 

functional formula with parameters estimated from the training data; the semi- and non-

parametric methods give an estimate of the probability of disease (P̂i) for each score (yi) in 

the training data.
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Figure 2. 
An example of calibration. The two-class score data were generated from a pair of normal 

distributions with 300 samples per class. The left panel plots the true calibration function 

(dot-dash line), the estimated calibration function (solid line) and the associated 95% CI 

(dash line). The right panel plots the true versus estimated probability for the finite dataset.
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Figure 3. 
An example of calibration. The two-class score data were generated from a pair of beta 

distribution with 300 samples per class. The left panel plots the true calibration function 

(dot-dash line), the estimated calibration function (solid line) and the associated 95% CI 

(dash line). The right panel plots the true versus estimated probability for the finite dataset.
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Figure 4. 
The average width of the 95% CI as a function of sample size for the three methods and for 

the normal distribution data (left) and beta distribution data (right) respectively.
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Figure 5. 
Mean square error of calibrated probabilities with respect to the true probabilities for (a) 

normal distribution data, and (b) beta distribution data.
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Figure 6. 
Brier score of calibrated probabilities for (a) normal distribution data, and (b) beta 

distribution data. The horizontal dot-dash line corresponds to the Brier score for perfectly 

calibrated scores (or infinitely trained calibration function).
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Figure 7. 
Calibration of LDA classifier scores to the probability of being a nodule.
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Table 2

Brier score results for the calibrated LDA classifier in lung nodule detection.

Parametric Semi-parametric Non-parametric

Resubstitution 0.0590 0.0583 0.0557

Leave one out cross validation 0.0592 0.0586 0.0578
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(μ1, V), X|D = 0 ∼ 
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(μ0, V), where 
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 (μ, V) denotes the density function of the normal distribution with mean μ (a vector of p × 1) and covariance matrix V of size p × p. Using a linear combination, X is mapped to a scalar variable y: y = wTX. Our goal is to find P(D = 1|y), the probability of disease given score y. Note that the conditional distribution of y is uni-variate normal, i.e.(11)According to the Bayes theorem, we haveBy inserting the conditional density functions in equation (11) into the equation above and also note that the prevalence of disease η ≡ P(D = 1) is assumed to be known, we havewhereNote that P(D = 1| y) is a monotonically increasing function of y if A < 0, i.e., wT(μ1 – μ0) > 0.
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