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Abstract To prepare timely motor actions, we constantly predict future events. Regularly

repeating events are often perceived as a rhythm to which we can readily synchronize our

movements, just as in dancing to music. However, the neuronal mechanisms underlying the

capacity to encode and maintain rhythms are not understood. We trained nonhuman primates to

maintain the rhythm of a visual metronome of diverse tempos and recorded neural activity in the

supplementary motor area (SMA). SMA exhibited rhythmic bursts of gamma band (30–40 Hz)

reflecting an internal tempo that matched the extinguished visual metronome. Moreover, gamma

amplitude increased throughout the trial, providing an estimate of total elapsed time. Notably, the

timing of gamma bursts and firing rate modulations allowed predicting whether monkeys were

ahead or behind the correct tempo. Our results indicate that SMA uses dynamic motor plans to

encode a metronome for rhythms and a stopwatch for total elapsed time.

DOI: https://doi.org/10.7554/eLife.38983.001

Introduction
Adaptive behavior benefits from the ability to discern temporal regularities in the environment. To

exploit these regularities, the brain must be able to measure time intervals between repetitive

events (Buhusi and Meck, 2005; de Lafuente et al., 2015; Confais et al., 2012; Leon and Shadlen,

2003; Grahn and Brett, 2007; Merchant and Lafuente, 2014; Merchant et al., 2015), and use this

timing information to anticipate future events (Goel and Buonomano, 2014; Jazayeri and Shadlen,

2010; Uematsu et al., 2017). This behavior is evident when we dance to music, which requires per-

ceiving rhythms and generating movements in sync with them (Levitin et al., 2018). Nonhuman pri-

mates and other vertebrates are capable synchronizing their movements to periodic rhythms

(Merchant et al., 2013; Takeya et al., 2017; Gámez et al., 2018), and we recently showed that

monkeys can internally maintain rhythms of different tempos in the absence of overt motor actions

(Garcı́a-Garibay et al., 2016). Ample evidence indicates that cortical and subcortical motor circuits

participate in behavioral tasks that require time perception and temporally precise behavioral

responses (Mita et al., 2009; Crowe et al., 2014; Bartolo et al., 2014; Merchant and Averbeck,

2017; Grahn and Brett, 2007; Ivry and Spencer, 2004; Murray et al., 2014). Nonetheless, the neu-

ronal mechanisms that allow motor structures to encode rhythms of different tempos, in the absence

of motor commands, are not yet completely understood.

We developed a novel visual metronome task in which nonhuman primates had to observe, and

then internally maintain, a temporal rhythm defined by a left-right alternating visual stimulus. Cru-

cially, subjects had to track the rhythm in the absence of overt movements (Garcı́a-Garibay et al.,

2016). By uncoupling rhythm encoding and maintenance from motor actions, we aimed to identify
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the mechanism that allows the brain to internally maintain rhythms of different tempos. While mon-

keys performed the task, we recorded the local field potentials (LFPs) and spiking activity of single

neurons in the supplementary motor area (SMA) that has been implicated in timing and rhythm per-

ception (Buzsáki et al., 2012; Pesaran et al., 2002). Our results show that bursts of lower gamma

band activity (30–40 Hz) reflect the internally maintained tempos by a simple mechanism: the inter-

vals defining the rhythm are encoded by the periodic onset of gamma bursts. Moreover, increasing

amplitudes of gamma bursts reflected an estimate of total elapsed time (i.e. the total time since the

rhythm began). Importantly, gamma bursts encoded both rhythm and the total elapsed time in the

absence of sensory stimulation and overt motor activity.

Results

Monkeys can perceive rhythms and maintain them internally
We trained two rhesus monkeys (M. mulatta) to perform a visual metronome task (Figure 1A). While

maintaining eye and hand fixation over the screen, monkeys saw a visual stimulus that appeared on

one side, switched to the other, and the back to the initial location. This alternating stimulus defined

three entrainment intervals of an isochronous rhythm. On each trial, the interval duration was

pseudo-randomly chosen to be 500, 750, or 1000 ms. In this manner, animals were presented with a

visual metronome whose tempo was changed on a trial-by-trial basis (Figure 1A).

After the third entrainment interval, the visual stimulus disappeared, and subjects had to maintain

the rhythm internally by keeping track of the virtual position (left or right) of the stimulus as a func-

tion of elapsed time. To test the ability of subjects to maintain the rhythms, a go-cue at the middle

of any one of up to four maintenance intervals instructed the subjects to reach towards the stimulus

location (the go-cue consisted of removing the hand fixation point; the number of maintenance

intervals was pseudo-randomly chosen; Figure 1A). Thus, the key parameters in the visual metro-

nome task were (1) interval duration (500, 750, or 1000 ms), and (2) the number of maintenance

intervals that subjects had to wait after the visual stimulus was gone.

We characterized monkeys’ ability to maintain the rhythms by plotting the proportion of correct

responses as a function of the elapsed time since the initiation of the first maintenance interval

(Figure 1B). The behavioral results show that monkeys satisfactorily performed the task and were

eLife digest A catchy tune on the radio, and suddenly we are tapping our foot and moving our

bodies to the rhythm of the music. We can follow a beat because our motor neurons, the nerve cells

that control movements, work together in circuits. During actions that require precise timing – such

as dancing to a rhythm – the motor neurons within these circuits increase and decrease their activity

in complex patterns.

But recent evidence shows that these motor neuron circuits also ‘switch on’ simply when we

perceive a rhythm, even if we do not move to it. In fact, just imagining a rhythm triggers the same

symphony of electrical activity in the brain. How do motor neurons generate coordinated patterns of

activity without movement or even an external stimulus?

Cadena-Valencia et al. set out to answer this question by training monkeys to follow a rhythm.

The animals learned to track a dot that appeared alternately on the left and right sides of a

touchscreen with a regular tempo. After a few repeats, the dot disappeared. The monkeys then had

to continue mentally tracking where the dot would have been. A group of neurons in a brain region

called the supplementary motor area synchronized their activity with the dot. Whenever the dot was

due to appear, the neurons in the area showed a burst of rapid firing. These spikes of activity, called

gamma bursts, helped the motor neurons to communicate with one another within their circuits.

The gamma bursts thus acted as an internal metronome, making it easier for the monkeys to

follow the rhythm. These results should be a starting point for other studies to pinpoint exactly

where and how this rhythmic activity arises, and how the brain uses gamma bursts to synchronize

our movements to a tempo.

DOI: https://doi.org/10.7554/eLife.38983.002
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Figure 1. The visual metronome task. (A) Rhythms of different tempos were defined by a left-right alternating visual stimulus that appeared on a touch

screen. While keeping eye and hand fixation, subjects first observed three isochronous entrainment intervals with duration of either 500, 750, or 1000

ms (pseudo-randomly selected on each trial). After the last entrainment interval, the visual stimulus disappeared initiating the maintenance intervals in

which subjects had to keep track of the stimulus’ virtual location (left or right, broken lines). A go-cue (extinction of the hand fixation) at the middle of

Figure 1 continued on next page
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able to correctly estimate the location of the stimulus in more than 80% of trials (94 ± 0.2% monkey

1; 86 ± 0.3% monkey 2; mean ± s.e. over sessions, n = 131 sessions).

Importantly, performance as a function of time displays the hallmark of a timing task: the propor-

tion of correct responses declines as a function of the number of maintenance intervals (or equiva-

lently, elapsed time). The proportion of correct responses started close to 100% and declined to

approximately 75% for the last maintenance intervals (last two data points for each curve). This

behavior is consistent with the internal rhythm gradually drifting away from the true tempo of the

stimulus (Gibbon et al., 1997; Grondin, 2001). As we described in previous work (Garcı́a-

Garibay et al., 2016), this pattern is well captured by a model in which the subject’s time estimates

arise from increasingly noisy (wider) distributions, described by Weber’s Law of time (also called the

scalar property of timing) (Laje et al., 2011). The increase in timing variability causes the subjects to

eventually fall out of synchrony with the true stimulus position (getting ahead, or behind the true

tempo), thus explaining the decrease in correct responses as a function of elapsed time (Figure 1B,

the colored curves are fits of this model to the data; pooled data across monkeys; see also Fig-

ure 1—figure supplement 1). Behavioral performance for the 4th maintenance interval of the 750

and 1000 ms tempos is higher than would be expected, that is it is higher than the performance on

the previous 3rd interval. This is likely due to the fact that our experiment only included up to four

maintenance intervals. We speculate that monkeys exploited this information and halted the mainte-

nance at the 4th interval, so that they could avoid errors due to moving onto the 5th interval. In the

future, we plan to mitigate this bias by choosing the number of entrainment and maintenance inter-

vals from an exponential distribution with a flat hazard rate.

Reaction times to the go-cue increases significantly in proportion to elapsed time within a narrow

window ranging between 350 ms after the first maintenance interval of the fastest tempo (500 ms

intervals), to 400 ms after the last interval of the slowest tempo (1000 ms intervals) (Figure 1C;

R2 = 0.72, slope = 11 ms/s, p<0.001; monkey 1 = 10.2 ms/s±0.8; monkey 2 = 11.3 ms/s ± 0.5). This

increase in reaction times could be a result of the increasing difficulty in estimating the true stimulus

position. As expected by scalar variability, the subject’s estimate of the stimulus position becomes

noisier with time, thus increasing uncertainty and the reaction time necessary to make a decision. In

Figure 1—figure supplement 2, we provide the LFP spectrogram aligned to movement onset,

Figure 1 continued

any of the four maintenance intervals prompted the subjects to reach toward the estimated location of the stimulus. It is important to note that this was

not an interception task because the left-right switching stopped at the time of the go-cue. Monkeys received a liquid reward when correctly indicating

the stimulus location. (B) The proportion of correct responses is plotted as a function of elapsed time during the maintenance intervals. Colors indicate

the performance for the three tempos (500, 750, 1000 ms). Performance was significantly above chance (broken line at p=0.5; z-test p<0.001; n = 131

sessions; median ±I.Q.R. over sessions). The decrease in performance as a function of elapsed time is expected from variability of the subjects’ internal

timing in the absence of the external visual rhythm. This drop in performance was captured by a model of timing subject to scalar variability (continuous

lines). (C) Reaction times to the go-cue increased as a function of elapsed time (n = 131 sessions; median ±I.Q.R. over sessions). Black line indicates a

linear regression on the median reaction times. (D) Mean spectrogram across recording sessions and subjects (500 ms interval). The step traces at the

top indicate the stimulus position as a function of time, for entrainment and maintenance intervals. Signal amplitude was normalized with respect to a

500 ms baseline period before stimulus presentation. A salient modulation of the LFP signal is observed around the gamma band (30–40 Hz). Gamma

activity rhythmically increases in sync with the left-right transitions of the stimulus. Note also the increase in gamma activity as a function of total

elapsed time. (E) Recordings were made from the supplementary motor area (SMA). The recoding chamber on monkey 1 (shown) was centered 23 mm

anterior to Ear Bar Zero and 4 mm lateral to the midline, on the left hemisphere. The image shows a sagittal plane 2 mm lateral from the middle.

DOI: https://doi.org/10.7554/eLife.38983.003

The following source data and figure supplements are available for figure 1:

Source data 1. Source data for the spectrograms.

DOI: https://doi.org/10.7554/eLife.38983.008

Figure supplement 1. Behavioral performance and LFP data for each monkey.

DOI: https://doi.org/10.7554/eLife.38983.004

Figure supplement 1—source data 1. Source data for the spectrogram.

DOI: https://doi.org/10.7554/eLife.38983.005

Figure supplement 2. Gamma amplitude and reaction times.

DOI: https://doi.org/10.7554/eLife.38983.006

Figure supplement 2—source data 1. Source data for the spectrogram.

DOI: https://doi.org/10.7554/eLife.38983.007
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demonstrating that gamma band activity decreases, and it is replaced by low-frequency oscillations

at movement onset. We also demonstrate that larger gamma band amplitudes are correlated with

increased reaction times. Overall, behavioral results show that monkeys were able to entrain to a

rhythm, and maintain it in the absence of sensory stimuli, and importantly, in the absence of overt

motor commands.

Gamma oscillations reveal the internally maintained rhythms
While the monkeys performed the visual metronome task, we recorded neural activity in 131 experi-

mental sessions (84 and 47 for monkeys 1 and 2, respectively; Figure 1E), and analyzed the local

field potentials (LFPs) within 5–80 Hz band. As a first step, we calculated the mean spectrogram for

both monkeys, across all recording sessions (Figure 1D; 500 ms interval shown; combined data

across monkeys). Modulations of LFP amplitude were especially salient in the 30–40 Hz frequencies,

which we will refer to as gamma band. In this band, LFP power was up to two-fold larger than the

baseline activity recorded 500 ms before trial initiation (p<0.001; permutation test of the time-fre-

quency bins, 1000 permutations).

The LFP amplitude in the gamma band had a rhythmic structure. It increased markedly with the

presentation of the last visible stimulus (3rd entrainment interval, Figure 1D), as well as near the

time when the non-visible stimulus would be switching its position from one side of the screen to the

other during maintenance intervals (Figure 1D; broken red lines). To test this observation quantita-

tively, we verified that the average gamma amplitude at the time of switches was significantly higher

than halfway between them (t-test, p<0.01 for the three tempos; window sizes 1/4th of interval

length; see Materials and methods). In addition to the rhythmic modulation, gamma oscillations

increased in amplitude as a function of total elapsed time (Figures 1D and 3C; note that the last

maintenance interval displays the largest amplitude).

The analyses so far focused on mean LFP activity across sessions. To gain further insight into the

LFP dynamics supporting the maintenance of internal rhythms, we analyzed LFP amplitude modula-

tions within single trials. The LFP recordings from single trials (band-passed at 30–40 Hz) revealed

short-duration bursts during which the oscillations transiently increase in amplitude (Figure 2B), con-

sistent with recent findings in the putamen (Bartolo et al., 2014) and the prefrontal cortex

(Lundqvist et al., 2016). Importantly, we observed that during the maintenance epoch, these bursts

tended to coincide with the times at which the stimulus would have changed position, as is shown

by the peaks in the spectrogram of the example single trials (Figure 2A).

This trend is readily visualized by color-coding the amplitude of gamma oscillations and plotting

all recorded trials on a single panel (Figure 2C). It is readily apparent that gamma bursts during

maintenance tend to appear around the times at which the stimulus should be switching from one

side of the screen to the other. This pattern is captured by the mean gamma amplitude, across trials,

as a function of elapsed time (Figure 2D; p<0.01, t-test that compared amplitudes at the times of

switch [0.5 and 1 s] versus amplitudes at the middle of the interval [0.75 and 1.25 s]; 125 ms

windows).

These salient temporal features of the gamma LFP were consistent across the three interval dura-

tions (Figure 3A; 500, 750, and 1000 ms intervals). To better illustrate the time distribution of

gamma bursts, trials were sorted according to burst-onset time in each maintenance interval.

It is important to emphasize that there are no motor actions during the maintenance intervals,

and no periodic stimuli is shown on the screen. The only difference between the three groups of tri-

als (500, 750, 1000 ms) is the tempo of the internal rhythm that subjects are maintaining. In other

words, the rapid succession of the gamma bursts in the 500 ms intervals, and the more temporally

distant bursts in the 1000 ms intervals, are a reflection of the subject’s internal maintenance of a

visuo-spatial rhythm for the fast and slow tempos, respectively. This finding reveals a neural signa-

ture of rhythms, of different tempos, that are maintained internally.

Alignment of the gamma bursts to their onset time revealed that bursts have a similar temporal

profile across tempos and elapsed intervals (Figure 3B). Importantly, we found that the amplitude of

these bursts increased in proportion to the time elapsed since the initiation of the internal rhythm

(Figure 3C; R2 = 0.86, exponential model). The results presented so far indicate that (1) the LFPs in

SMA encode internal rhythms by means of gamma bursts that occur in sync with the beats (i.e. loca-

tion switch) of a visual metronome presented earlier; and that (2) these bursts increase in amplitude,

providing a neural correlate for total elapsed time.
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Figure 2. Single trial analysis of the LFP. (A) Representative spectrogram of 15 single trials (500 ms interval). There

is an increase in amplitude at the gamma band (30–40 Hz), particularly salient during maintenance intervals. (B)

Single-trials of the LFP signal, band-pass filtered at the 30–40 Hz gamma band. Gamma oscillations are composed

of transient bursts during which oscillations increase in amplitude. Note how the bursts tend to occur in sync with

Figure 2 continued on next page
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Errors due to deviations of the internal rhythm from the objective
tempo
In a previous study, we demonstrated that human subjects tend to lag behind fast tempos and get

ahead of slow ones (Garcı́a-Garibay et al., 2016). This predicts that animals might systematically

overestimate the 500 ms rhythms, and underestimate the 1000 ms rhythms. However, since animals

only had two response options (left or right), it was not possible to use behavioral responses to dis-

ambiguate errors in which the animals were ahead or behind the true tempo. Nonetheless, we

hypothesized that systematic over- and under-estimations of the intervals should be reflected in the

patters of gamma activity in SMA. We therefore compared the profile of gamma activity on correct

and error trials (Figure 4A). The results showed that, on fast tempo trials (500 ms interval), the

dynamics of gamma on error trials was right-shifted with respect to correct trials. That is, error trials

displayed slower dynamics compared to correct trials (Figure 4A, upper panel). This trend was cap-

tured by the power spectrums of error and correct trials, which showed that error trials indeed oscil-

lated at lower frequencies (Figure 4A, inset on upper panel). Conversely, the dynamics of errors on

slow tempo trials (1000 ms) resemble a left-shifted version of the correct trials, that is errors dis-

played faster dynamics as compared to the correct trials (Figure 4A; bottom panel). This pattern is

captured by the power spectrums of correct and error trials, which show that error trials oscillated at

higher frequencies compared to correct trials (Figure 4A, inset on the bottom panel). These results

suggest that monkeys were lagging behind fast tempos and getting ahead of slow ones.

The internal rhythm increasingly getting out of synchrony was also demonstrated by the ability of

a logistic classifier to differentiate between correct and error trials (Figure 4B; see

Materials and methods). This analysis shows that correct and error trials are increasingly easier to

classify as a function of elapsed time, just as it would be expected from a rhythm that increasingly

falls out of sync with the correct tempo. This pattern holds true for a classifier that cumulatively uses

gamma amplitude information as the trial develops, and also for a classifier using the information

from a sliding window of constant length (Figure 4B). On average, monkeys tend lag behind fast

rhythms and get ahead of slow ones. However, we must note that mean error activity comes from a

mixture of lagging and leading tempos (see Figure 4—figure supplement 1). Thus, mean error

activity does not necessarily reflect the half a cycle de-synchronization that must underlie incorrect

responses on single trials.

Gamma band activity in a delayed-reach task
Since SMA participates in the preparation of impending motor actions, it is possible that the rhyth-

mic gamma bursts that we observed arise because this premotor area rhythmically prepare reach

movements alternatively to the left and right locations of the screen. To test this possibility, we

recorded the LFPs in a delayed-reach control task (Hwang and Andersen, 2011) in which subjects

were required to reach to the left or the right after being cued by a briefly presented visual stimulus

(Figure 5A). In this task, monkeys waited a pseudo-randomly chosen time (1100 to 3000 ms,

Figure 2 continued

left-right transitions of the stimulus and tend increase in amplitude as a function of total elapsed time. (C) Gamma

amplitude on each trial is coded by color (939 trials; 500 ms interval, every trial starting on the left is shown, across

sessions and subjects). Trials were sorted according to burst onset time within the window marked by the black

line at the bottom. The panel on the right shows the last gamma bursts aligned to their onset time. Bursts were

defined as the period in which gamma amplitude exceeded the 90th percentile of the amplitude distribution

across trials, for at least 100 ms (four cycles of the gamma rhythm). (D) Mean gamma amplitude as a function of

elapsed time (n = 131 sessions). Note how the periodic increases in gamma are in sync with the left-right internal

rhythm during the maintenance intervals. The panel on the right shows the mean profile of the bursts in the last

maintenance interval. The inset shows the distribution of the gamma amplitude during bursting (red distribution)

and non-bursting (blue distribution) periods of the trials (dark vertical lines indicate the median burst amplitude for

each distribution).

DOI: https://doi.org/10.7554/eLife.38983.009

The following source data is available for figure 2:

Source data 1. Source data for the single trial activity.

DOI: https://doi.org/10.7554/eLife.38983.010
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exponential distribution) before a go-cue prompted a reach towards the location specified by the

cue (Figure 5B).

Figure 3. Gamma bursts in maintenance intervals for the three tempos (500, 750, 1000 ms). (A) For each maintenance interval and tempo, bursts are

ordered according to their onset time. Below single trials, mean gamma amplitude is plotted as a function of time (trials starting on the left are shown;

131 sessions; interval duration was pseudo-randomly selected on each trial, but is grouped here for presentation; linewidth denotes s.e. across trials).

(B) The temporal profile of gamma bursts is plotted for each stimulus transition (1st, 2nd, 3rd, and 4th, dotted lines in A), and for each interval duration

(500, 750, and 1000 ms; top to bottom). The bursts have a stereotyped temporal shape and increase in amplitude after each consecutive transition. (C)

Mean amplitude of gamma bursts plotted as a function of elapsed time for the three interval durations (500, 750, and 1000 ms; R2 = 0.86, exponential

model).

DOI: https://doi.org/10.7554/eLife.38983.011

The following source data is available for figure 3:

Source data 1. Source data for the behavioral performance.

DOI: https://doi.org/10.7554/eLife.38983.012
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Figure 4. Gamma amplitude in correct and error trials. (A) Mean gamma amplitude during maintenance intervals, for correct (blue) and error trials

(orange) (n = 1400–3000 correct, 260–540 errors; colored area shows s.e. across trials; trials starting on the left are shown, pooled across 131 sessions).

The insets on each panel show the periodogram (power spectral density) of correct and error trials (mean across single trials). It can be observed that

error trials oscillate at slower frequencies in the 500 ms interval trials, and oscillate at faster frequencies in the 1000 ms trials, as compared to correct

responses. (B) Correct and error trials can be classified with increasing accuracy as a function of elapsed time. Two logistic classifiers were used to

differentiate between correct and error trials (cross-validated on 50 correct and 50 error trials; n = 100 iterations; colored area shows s.e. across trials).

One classifier used a growing window (Cumulative, green line) that incorporated the gamma amplitude data as each trial developed in time. The other

classifier used data within a constant length window that slided across each trial (Sliding window, blue line).

DOI: https://doi.org/10.7554/eLife.38983.013

The following source data and figure supplement are available for figure 4:

Source data 1. Source data for the spectrograms.

DOI: https://doi.org/10.7554/eLife.38983.015

Figure supplement 1. Six-choice version of the metronome task.

DOI: https://doi.org/10.7554/eLife.38983.014
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The results of this control task show that, as monkeys prepare an impending reach movement,

the LFPs in SMA generate bursts of gamma band activity that occur more frequently, and with

increasing amplitude, as a function of total elapsed time (Figure 5C, delay period). These findings

are consistent with the idea that gamma bursts in SMA encode impending motor commands. More-

over, the results of this control task are consistent with the idea that the SMA circuits reflect internal

rhythms by means of rhythmically alternating motor plans to make a reach movement to the left and

right locations of the screen.

Figure 5. LFP activity in a delayed-reach task. (A) Mean spectrogram of the LFPs during the delayed-reach task (reaches to the right side of the screen

are shown). The stimulus presentation is indicated by the red lines a 0–0.5 s (cue). After the sensory cue, a variable delay between followed (1.2–3 s;

exponential distribution). A salient activation of the gamma band during the delay period can be observed (n = 131 sessions). (B) Gamma amplitude

across single trials of the delayed-reach task (all trials when cue was presented on right are shown). (C) Mean gamma amplitude plotted as a function of

elapsed time. After a brief sensory response, gamma activity increases as a function of elapsed time. Red and blue lines indicate reaches to the right

and to the left, respectively.

DOI: https://doi.org/10.7554/eLife.38983.016

The following source data is available for figure 5:

Source data 1. Source data for the single trial figures.

DOI: https://doi.org/10.7554/eLife.38983.017
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Gamma oscillations during entrainment of the visual metronome
According to the previous delayed-reach experiment, gamma bursts might be reflecting an internal

rhythm by periodically alternating ‘reach-left’ and ‘reach-right’ motor plans. However, our task is

designed such that a motor response was never required during the three entrainment intervals. For

this reason, we next analyzed the gamma band activity during the entrainment intervals in which the

presentation of the alternating visuo-spatial stimuli defined the different tempos of the visual metro-

nome task (500, 750, and 1000 ms intervals; Figure 6A–B).

The results showed that even during entrainment intervals, which did not involve any motor plan-

ning, bursts of gamma oscillations were present in each interval, and their amplitude progressively

increased after the presentation of each visual stimulus (Figure 6A–C). It is important to note that

gamma activity in entrainment intervals peaked after each stimulus presentation. This is in contrast

to what was observed during maintenance intervals, in which the peaks of gamma occurred when

the stimulus switched sides. We speculate that this phase offset could be related to the process of

estimating interval duration, a process that necessarily happens during entrainment intervals.

A potential concern is that the gamma bursts in entrainment intervals are merely sensory

responses to visual stimuli. However, a pure sensory response should produce similar gamma

dynamics after each stimulus presentation, both across consecutive entrainment intervals (1st, 2nd,

3rd), and also similar across tempos (500, 750, 1000 ms), which was clearly not the case in our results

(Figure 6A). In particular, two observations suggest that gamma bursts during entrainment cannot

be explained solely in terms of a sensory response. First, gamma bursts increased in amplitude as a

function of elapsed time, but the amplitude dropped sharply 500 ms after the onset of the third

entrainment interval (Figures 6A, 750 and 1000 ms panels). Therefore, gamma bursts carry informa-

tion about the animals’ knowledge that the third entrainment interval was the last visible interval,

that is the last interval that could be used for estimating the tempo. Thus, gamma dynamics likely

incorporate aspects of higher cognitive processing. Second, the times of burst onset do not have a

fixed temporal profile with respect to stimulus presentation (Figure 6B). To demonstrate this, we

measured the distribution of burst onset time across each consecutive interval (1st, 2nd, and 3rd

entrainment intervals) and across metronome tempos (500, 750, and 1000 ms), and then performed

Chi-squared tests between these distributions (by using burst onset time we removed the effect of

burst amplitude). The tests demonstrated that the temporal profiles of gamma onset times signifi-

cantly differ, both across consecutive intervals and across metronome tempos (p<0.01; corrected for

multiple comparisons). In fact, gamma responses to stimulus onset are similar only during the first

500 ms of the first entrainment interval, which is the only epoch in which monkeys have no informa-

tion about the metronome tempo (Figure 6C). These results indicate that gamma bursts reflect cog-

nitive processes related to estimating the rhythm of the visual metronome.

To quantify the extent to which gamma burst amplitude encodes total elapsed time, we mea-

sured burst amplitudes in each of the three entrainment intervals (Figure 6D). We found that burst

amplitude increased linearly in proportion to total elapsed time (R2 = 0.94). In this manner, in addi-

tion to periodically generating bursts in each entrainment interval, the SMA circuit reflected the total

elapsed time since the beginning of the entrainment epoch.

The metronome is encoded in the firing patterns of SMA neurons
Simultaneously with LFPs, we recorded the extracellular spike potentials of 113 neurons (78 monkey

1; 35 monkey 2). The temporal profile of the mean firing rates largely resembled the modulations of

gamma-band activity in the LFP in the sense that firing rates (1) display oscillatory amplitude modula-

tions, both during entrainment and maintenance intervals (Figure 7A,B); (2) firing rates increase as a

function of total elapsed time; and (3) the activity of neurons in the delayed-reach task increase dur-

ing the period preceding reach movements to a target signaled by a brief visual cue (Figure 7C).

We found that SMA neurons had a preferred spatial location, that is they were more active when

the stimulus was presented (entrainment intervals), or was estimated to be (maintenance intervals),

on one side of the screen. Of the 113 recorded neurons, 74 preferred the right side of the screen,

and 39 preferred the left side (Materials and methods). This side preference allowed us to detrend

the firing rates by subtracting the mean firing rate across sides (mean between preferred and non-

preferred sides of the screen; Figure 7D). The detrended firing rates demonstrated the cyclic
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Figure 6. Gamma band activity in entrainment intervals. (A) Gamma bursts in single trials sorted by their onset time for each entrainment interval, and

for each tempo (500, 750, and 1000 ms). Below the single-trial panels, the mean gamma amplitude is plotted as a function of time (trials starting on the

left are shown; n = 131 sessions; interval duration was pseudo-randomly selected on each trial, but is grouped here for presentation; linewidth denotes

s.e. across trials). (B) Probability of burst onset plotted a function of elapsed time. Line color on each panel indicates the distribution of onset times for

the consecutive entrainment intervals (1st, 2nd, and 3rd). (C) Mean gamma dynamics for the three tempos, plotted on the same timescale (same curves

as the ones below single trial panels in (A). (D) Burst amplitude as a function of elapsed time in entrainment intervals, for each tempo (500, 750, and

1000 ms).

DOI: https://doi.org/10.7554/eLife.38983.018

The following source data is available for figure 6:

Source data 1. Source data for the single trial figures.

DOI: https://doi.org/10.7554/eLife.38983.019
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Figure 7. Firing patterns of SMA neurons. (A) Rasterplot and firing rate of a representative SMA neuron during the metronome task. This neuron fires

more when the stimulus is shown (entrainment), or is estimated to be (maintenance), on the right side of the screen. The panel below shows the mean

firing rates for two kind of trials. (B) Mean firing rate for the 113 recorded neurons show the oscillatory nature of the activity that indicates whether the

stimulus is within its preferred location, or on the opposite side. Also note the increase in mean firing rates correlated with total elapsed time. (C) Mean

Figure 7 continued on next page
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oscillations in the activity and, importantly, allowed to calculate the cross-correlation function

between correct and incorrect trials.

The cross-correlation analysis between firing rates provided an independent corroboration of the

hypothesis that that errors are mostly due to the internal metronome lagging behind fast rhythms,

and getting ahead of slow ones (Figure 7E). The cross-correlogram for the 500 and 750 ms intervals

peak at negative lags, demonstrating that incorrect trials lag behind the correct tempo. The oppo-

site pattern was observed for the slow tempo (1000 ms tempo).

Neuronal spikes are associated with gamma band activity
To explore the relationship between single-neuron spiking and the simultaneously recorded LFP, we

calculated the spike-triggered average (STA) LFP, and its spectral density, within a window of �100

to 100 ms surrounding each spike (Figure 8A–B, see Materials and methods) (Denker et al., 2011;

Fries et al., 2001). We found that the LFP activity simultaneously recorded with each spike has a

power peak at 30 Hz, and this peak is especially salient during maintenance intervals (Figure 8A,

bottom panel; factorial ANOVA: interaction band/condition F = 12.11 p<0.05, Bonferroni tests of

Gamma power in maintenance and entrainment vs baseline: p<0.05). Moreover, the association

between spikes and the 25–40 Hz frequency band is stronger at the times of stimulus transitions,

that is. around the times at which the stimulus switches from one side of the screen to the other

(Figure 8C; window length around switch: half an interval, t-test p<0.005). To demonstrate that

gamma is closely associated with the timing of spikes we performed a control analysis in which we

jittered the spike times by ±15 ms with the resulting loss of the observed peak at the gamma band

(random uniform distribution; grey traces Figure 8c; t test between jittered data in switch and non-

switch conditions p=0.21).

These analyses demonstrate that the performance of the metronome task is accompanied by a

tighter temporal relationship between the gamma bursts and the firing of single neurons, and this

association is more prominent at the times of stimulus switching during the maintenance intervals.

These results are consistent with previous investigations proposing that LFP oscillations near the

gamma frequencies could help single neurons synchronize their firing, and thus have a larger and

more temporally precise influence on downstream target structures (Siegle et al., 2014; Veit et al.,

2017; Fries, 2015).

Finally, we demonstrate that the LFP signals we recorded reflect local interaction and were not

the result of signals being volume-conducted from other brain regions. We measured the coherence

between LFPs of simultaneously recorded electrodes and plotted this measure as a function of the

distance between them. The results show that coherence decayed as a function of electrode dis-

tance (Figure 8D, R2 = 0.72), as expected by an LFP signal that is generated in the neuronal circuits

within the vicinity of the recording electrode.

Discussion
Our results show that (1) monkeys can maintain rhythms in the absence of sensory stimuli and in the

absence of overt motor commands. (2) Those internal rhythms are encoded by bursts of low

Figure 7 continued

firing rates of the 113 neurons recorded during the delayed-reach control task. Since the delay period had variable times (randomly selected from an

exponential distribution), as time progresses fewer trial contribute to the mean (Materials and methods). (D) Detrended mean firing rates and its

comparison with activity on error trials. Note how the detrending allows for a better appreciation of the oscillatory patterns of correct and incorrect

trials. (E) To determine if errors were lagging behind or getting ahead of the correct tempo we calculated the cross-correlation between correct and

incorrect trials for the three tempos. The upper panel, corresponding the 500 ms tempo, shows a negative lag, meaning that errors were oscillating at a

slower pace as compared to correct to correct trials. The opposite effect is demonstrated on the lowest panel, corresponding to the 1000 ms tempo.

DOI: https://doi.org/10.7554/eLife.38983.020

The following source data and figure supplements are available for figure 7:

Figure supplement 1. Firing patterns of single neurons during the visual metronome task.

DOI: https://doi.org/10.7554/eLife.38983.021

Figure supplement 1—source data 1. Source data for the STA figures.

DOI: https://doi.org/10.7554/eLife.38983.022
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Figure 8. Relationship between spikes and LFP during the visual metronome task. (A) The three panels on the left show the spike-triggered average

(STA) of the LFP signal surrounding each individual spike of an example neuron (�100 to 100 ms window centered at each spike time). The STA of three

epochs is shown; baseline (cyan), entrainment (blue), and maintenance (red). Panels on the right show the power spectrum of the STA on each epoch.

(B) Average STA power across neurons. Colors denote trial epochs. Note the salient power of the STA around 30 Hz (colored areas show s.e.m. across

neurons; n = 113). (C) Average STA power for periods of stimulus switch and non-switch (windows of half the interval length, centered at times of switch

or at the middle of each interval; colored areas show s.e. across neurons). Dotted lines and gray areas show the STA power obtained by jittering the

spikes ± 15 ms. (D) Coherence between the LFPs in simultaneously recorded electrodes, as a function of distance between them. The negative slope

suggests that the recorded LFPs are generated by neuronal circuits in the vicinity of the recording electrodes.

DOI: https://doi.org/10.7554/eLife.38983.023

The following source data is available for figure 8:

Source data 1. Source data for the STA figures.

DOI: https://doi.org/10.7554/eLife.38983.024
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gamma-band LFP oscillations in SMA whose timing and amplitude indicate rhythm intervals and total

elapsed time, respectively. (3) The spikes of single neurons are associated with the low gamma band

frequency of the LFP, which is consistent with the idea that gamma oscillations might help to syn-

chronize populations of neurons whose temporally coincident firing would have a larger impact on

its postsynaptic targets (Buzsáki and Schomburg, 2015; Cardin et al., 2009; Fries, 2015;

Siegle et al., 2014; Veit et al., 2017; Womelsdorf et al., 2007; Wong et al., 2016).

In our metronome task, the go-cue can arrive at the middle of any of the four maintenance inter-

vals. So, there is a rhythmic modulation in the likelihood of motor response initiation. This could be

related the periodic modulation of the gamma bursts and the firing rates of SMA neurons. However,

we must emphasize that the rhythmicity in the gamma bursts and firing rates is also observed in

entrainment intervals, where no movement is ever required. In addition to rhythmic modulations, the

probability of the go-cue appearing, given that it has not appeared yet, increases as a function of

total elapsed time (hazard rate). Thus, the increase in gamma amplitude and in the firing rates that is

observed as total time elapses, could be related to the increasing likelihood of a motor response.

We must note, however, that in the delayed-reach task we used an exponential distribution of delay

times, resulting in a flat hazard rate. Even with a flat hazard rate, we observed increases in gamma

amplitude, and in the firing rates, that are related to total elapsed time. Overall, we favor the inter-

pretation that SMA participates in the metronome task by generating a motor plan that dynamically

matches the spatio-temporal tempo defined by the rhythmic visual stimulus.

SMA plays a central role in learning, imaging, planning and executing complex motor actions

(Nachev et al., 2008; Romo and Schultz, 1992; Kurata and Wise, 1988; Shima and Tanji, 2000;

Murakami et al., 2014). It is densely and reciprocally connected to M1 and to the parietal and fron-

tal lobes, and has direct projections to motor nuclei in the brain stem (Jürgens, 1984). Thanks to

this diverse input and output relationships its activity been found to correlate not only with motor

actions but also with cognitive, emotional, and perceptual functions (Narayana et al., 2012;

Vergara et al., 2016; de Lafuente and Romo, 2005). SMA is active before the actual movement

begins, participating in action selection, and importantly, determining the time at which actions are

performed (Merchant and Averbeck, 2017; Mita et al., 2009; Chen et al., 2010; Ohara et al.,

2001; Yokoyama et al., 2016; Shima and Tanji, 2000). Preparatory activity can be observed even

when monkeys are required to rapidly produce a movement in response to a sensory cue

(Lara et al., 2018), and it has been proposed that this preparatory activity constitutes the initial step

of the temporal evolution of a dynamical system for the control of movement (Churchland et al.,

2010; Remington et al., 2018). Consistent with this view, our results show that LFP and single neu-

ron activity in SMA starts during the entrainment epoch of the metronome task, seconds before an

actual movement will be required. Thus, the internal metronome is encoded as a dynamic motor

plan that is initiated by the presentation of entrainment intervals.

That behavioral performance decreases as a function of time while gamma amplitude increases

with elapsed time might seem counterintuitive. However, we must note that the tempo of the inter-

nal metronome is encoded by the timing, not the amplitude of the gamma bursts. On Figure 4—fig-

ure supplement 1 we show a six-choice variation of the metronome task that allowed determining

that error trials are not explained by random behavioral responses. Instead, the behavioral responses

on the six-choice version of the task demonstrate that error trials are due to the internal metronome

lagging or getting ahead of the true tempo. Even on error trials, gamma activity, and the firing pat-

tern of neurons, show rhythmic dynamics and a mean amplitude that increases with total elapsed

time. Thus, there are three independent lines of evidence supporting the notion that error trials arise

from the internal metronome falling out of sync with the intended tempo. First, the periodograms of

gamma activity indicate that errors on fast trials (500 ms interval) oscillate at slower frequencies as

compared to correct trials. Conversely, errors on slow tempos (1000 ms) oscillate faster than correct

responses. Second, these same patterns were demonstrated by the cross-correlograms of the firing

rates in correct and incorrect trials (Figure 7E). Finally, the behavioral results on the six-choice ver-

sion of the metronome task showed that errors are not uniformly distributed across choices (as

would be expected from lapses of attention), but distribute around the correct stimulus position,

with increasing variability for longer elapsed times, as would be expected from the scalar property

of timing (Figure 4—figure supplement 1). Moreover, the distributions show that errors tend to be

behind the true stimulus position on fast trials, and ahead on slow trials.
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It has been debated whether subjects performing a rhythmic task measure individual intervals

separately, or instead rely on an estimate of total elapsed time (Laje et al., 2011). Our results now

reveal that rhythms of different tempos are supported by the presence of rhythmic neuronal activity

outlining each individual interval. In addition to this, the increases in gamma burst amplitude, and

mean firing rates, provide information about total elapsed time.

Gamma synchronization might be useful to the formation of local ensembles of neurons that

increase the temporal coordination of presynaptic spikes on postsynaptic targets, allowing brief win-

dows of effective communication (Wong et al., 2016; Womelsdorf et al., 2007; Buzsáki and

Schomburg, 2015). Previous results show that gamma oscillations increase before the execution of a

motor action, and then shut down at the time of movement onset (Yokoyama et al., 2016) a result

replicated by our data. Previous work by Merchant and colleagues found that LFP gamma band

activity in the basal ganglia was associated with the presentation of sensory stimuli defining the

intervals within a hand tapping task (Bartolo et al., 2014). They found that bursts of gamma were

selective for intervals of different durations, and thus different cell populations were selective for dif-

ferent time intervals. We found no such duration selectivity in the SMA cortex, instead observing

that gamma bursts encoded intervals of different durations.

Signals associated with timing tasks can be found across multiple brain areas, including parietal,

motor, and premotor cortices, as well as dopaminergic midbrain neuron in the primate (Ghose and

Maunsell, 2002; Genovesio et al., 2006; Lebedev and Wise, 2000; Mita et al., 2009;

Harrington et al., 2010). For example, Jazayeri and Shadlen, 2015 have shown that activity of sin-

gle neurons in the lateral intraparietal area encodes the time elapsed from a previous sensory stim-

uli, as well as the time remaining to initiate a saccadic eye movement (Jazayeri and Shadlen, 2015).

Importantly, they showed that these signals calibrate themselves according to the underlying proba-

bility to make an eye movement within a given temporal window. A recent important result by

Jazayeri and colleagues demonstrated that encoding intervals of different lengths is achieved by

means of speeding up or slowing down the temporal dynamics of populations of neurons that, indi-

vidually, display widely different firing patterns (Wang et al., 2018). Our results extend this finding

to the dynamics of the LFP oscillations by demonstrating that they also show temporal scaling

(Figures 3A and 6C). A coherent picture is thus emerging, indicating that time-estimation and time-

production signals are present as dynamic motor plans that are distributed across the motor struc-

tures that participate in executing timely motor actions.

Materials and methods

Subjects
Two adult male Rhesus monkeys (Macaca mulatta) participated in the study (weight: 5–7 kg, age: 5,

7 years). Experimental procedures were approved by the Ethics in Research Committee of the Insti-

tute of Neurobiology and were in agreement with the principles outlined in the Guide for Care and

Use of Laboratory Animals (National Institutes of Health). Each monkey was surgically implanted with

titanium head bolts and a titanium recording chamber over the left supplementary motor area

(SMA). Placement of the chambers over the SMA was guided by structural MRI for both monkeys

(Figure 1E).

Behavioral task
Monkeys were trained in a visual metronome task described in detail in a previous report (Garcı́a-

Garibay et al., 2016). Briefly, while maintain eye and hand fixation over a touch screen (ELO Touch

Solutions, model 1939L; ASL Eye-Track 6), subjects observed a visual stimulus (gray circle, 10˚ diame-

ter, 25˚ eccentricity) that periodically changed position from one side of the screen to the other, at

regular intervals (entrainment epoch; 500, 750, or 1000 ms interval; pseudo-randomly selected on

each trial; Figure 1A). After three entrainment intervals the visual stimulus disappeared, and subjects

had to continue estimating its position (left or right) as a function of elapsed time (maintenance

intervals; Figure 1A). This visuo-spatial rhythm task is similar to a visual metronome that paces a

rhythm which subjects have to keep internally during the maintenance epoch. To quantify the ability

of the subjects to maintain rhythms of different tempos a go-cue (disappearance of the hand fixation

area) was presented at the middle of any of the four maintenance intervals (randomly selected,
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uniform distribution; Figure 1A). This go-cue instructed the subjects to make a reach movement

towards the estimated target position (left or right). It is important to note that this was not an inter-

ception task, that is once the go-cue was presented the non-visible stimulus no longer changed posi-

tion. Performance was measured as the proportion of correct responses plotted as a function of the

elapsed time since the initiation of the maintenance epoch (Figure 1B). Visual stimuli and task con-

trol was achieved with the Expo software (designed by Peter Lennie, maintained by Robert Dotson;

available at https://sites.google.com/a/nyu.edu/expo/).

Delayed-reach control task
In this task, monkeys were required wait a variable delay period before making a reach movement

to one side of the screen signaled by a brief visual stimulus (Figure 5). The stimulus appeared for

500 ms on either the left or side of the screen (randomly selected), and the delay period was ran-

domly selected from a truncated exponential distribution with a minimum delay duration of 1.1 s

and a maximum of 3 s. For analyzing the activity during the delay period (Figures 5 and 7), we used

every trial up to the time before the go-cue. This ‘attrition’ method allows to use all available infor-

mation up a given point in time (without the go-cue, or movement related- activity). In this manner,

before 1.1 s all trials contribute to the mean activity. Then, there is a progressive attrition of trials so

that for the 3 s time point ~300 trials contribute to the mean. Figure 5B shows every trial in which

the visual cue appeared on the left.

Neural recordings
Neural recordings were performed with seven independent movable microelectrodes (2–3 MW,

Thomas Recordings, Giessen, Germany). Electrodes were advanced in the coronal plane into the

supplementary motor area until single unit activity was obtained in at least one of the electrodes. At

each recording site, spikes were isolated online (Cerebus acquisition system, Blackrock Microsys-

tems, Salt Lake City, UT) and sampled at 30 KHz. The local field potentials (LFPs) were obtained by

filtering the electrode signal at 0.5 to 500 Hz, at a 2 KHz rate. Offline, the signal was down sampled

to 1 KHz, and band-pass filtered to the 2–50 Hz band.

Data analysis
Analyses were performed with MATLAB 2013b (The Mathworks, Natick, MA), making use of the

Chronux Toolbox for the time- frequency maps (Mitra and Bokil, 2007).

Time-frequency decomposition
Spectral estimation was performed using multitaper methods (Pesaran et al., 2002; Mitra and

Pesaran, 1999; Cohen, 2014). A 200 ms windows sliding at 5 ms steps was used for the time-fre-

quency maps (one taper was used, 5 Hz bandwidth). Spectrogram power was normalized by dividing

each frequency and time bin by the average power in a 500 ms baseline window before trial

initiation.

Oscillations of gamma amplitude
For the entrainment intervals, we compared the mean gamma amplitude (across the trials of one ses-

sion) at the time of switches (dotted lines in Figure 1D), with the gamma amplitude in between

switches (at the middle of each interval). We used window lengths of 25% the interval duration. For

each tempo, each recording session contributed three pairs of switch/non-switch windows. Thus, the

degrees of freedom of the t-test were (131 sessions) x (3 pairs per session) = 393–1 degrees of free-

dom. We performed three such tests, one for each metronome tempo (500, 750, 1000 ms). The

three tests had p<0.01.

Single-trial analysis
To characterize how the amplitude of the gamma oscillations is modulated over time, we averaged

the normalized spectrograms over the low gamma band frequencies (30–40 Hz). Narrow-band filter-

ing with analytic envelopes and complex Morlet wavelet convolution yielded similar results. Gamma

bursts were defined as the period of time in which gamma amplitude exceeded the 90th percentile

of overall activity for at least 100 ms (i.e. for at least four cycles of the gamma oscillations). On panel
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2C trials were sorted by the burst-onset time on the last maintenance interval, thus, the previous

gamma bursts are not aligned. On panel 3A gamma bursts were aligned independently on each

interval,that is the bursts were aligned for the first transition, then re-aligned for the second transi-

tion and so on. This was done for display purposes only; the mean gamma activity is not affected by

how trials are sorted.

Classification of correct and error trials
A logistic function was used to identify correct and error trials:

p correctð Þ ¼
1

1þ e� b0þt1b1þt2b2þ...tnbnð Þ

where t1 correspond to the gamma amplitude in the first time-bin, t2 to the amplitude on second

time bin, and so on (10 time bins per interval, 35 time-bins for each trial). Thus, the predicted behav-

ior arises from a linear combination of the gamma activity used to fit the logistic function. The classi-

fier accuracy was measured on 100 trials (50 correct and 50 error trials; randomly selected) not used

in fitting the logistic function. Fitting and testing was repeated 100 times, randomly selecting the

test trials. For the cumulative window classifier (Figure 4B, green line), we used the gamma ampli-

tude on the first time-bin and then tested the accuracy of decoding, then we added the data of the

second time-bin and recalculated accuracy, and so on until the last time-bin. In a second approach

that we called ‘sliding window’, a window of 5 time-bins were used to fit the classifier and calculate

accuracy. This window moved across the trial to calculate accuracy as a function of elapsed time

(Figure 4B, blue line).

Neuron’s spatial preference
To estimate each neuron’s spatial preference, we computed the cross-correlation between the stim-

ulus position (left and right) and the mean firing rate. For this analysis, we concatenated the mean fir-

ing rate of trials starting on the left with those starting the right, and generated the stimulus

position signal accordingly. The sign at the peak of the cross-correlogram tells us if increasing firing

rates are significantly correlated, or anti-correlated, with the stimulus position being on the left. With

each neuron’s spatial preference, we were able to generate the mean firing rate of trials starting on

the neuron’s preferred location, and the mean firing rate of trials starting in the opposite location

(Figure 7B). The detrended firing rates were obtained by subtracting the mean activity across all tri-

als, from the mean firing rates of each trial type (starting on the preferred and non-preferred loca-

tion; Figure 7D).

Spike-triggered average (STA)
To estimate the synchronization between the spikes and the simultaneously recorded LFP, 200 ms

windows centered on each spike were analyzed (Fries et al., 2001; Denker et al., 2011). The aver-

age LFP in these windows were computed and normalized peak-to-valley to values between 0 and 1.

This procedure was applied before spectral decomposition of the STA (Figure 8A, power spectrum),

allowing the comparison of spectral density maintaining the same maximum amplitude across condi-

tions (baseline, entrainment and maintenance epochs). To assess statistical significance, we per-

formed a factorial ANOVA with the factors condition (baseline, entrainment, maintenance), and

frequency (alpha, beta, gamma), where the dependent variable was the average amplitude between

6 and 10 Hz for alpha, 15 to 24 Hz for beta and 30 to 40 Hz for gamma. This analysis demonstrated

that the average power of the STA over the gamma band was significantly larger during entrainment

and maintenance, as compared to the baseline period (p<0.01; Figure 8B). We normalized the

amplitude of the LFP traces surrounding each spike to account for the increase in gamma amplitude

with total elapsed time.

Coherence between simultaneously recorded electrodes
To assess the locality of the observed LFP oscillations we estimated the phase clustering between

the LFPs in pairs of simultaneously recorded electrodes. We used the time series of all trials

recorded while the monkeys performed the task. For each electrode pair, we band-pass filtered the

signal (30–40 Hz) and estimated the analytic envelope to obtain the instantaneous phase. Then, for
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each time point we estimated the difference angles between signals in the complex plane. The

coherence was defined as the length of the average vector of all difference angles, a procedure that

results in magnitudes between 1 (all difference angles are aligned to the same direction) and zero

(random distribution) (Cohen, 2014). To quantify how coherence decreased as a function of elec-

trode separation we grouped the distance variable into 50 bins containing the same number of

observations per bin. A linear regression was then applied to these data (Figure 8D).
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Buzsáki G, Schomburg EW. 2015. What does gamma coherence tell Us about inter-regional neural
communication? Nature Neuroscience 18:484–489. DOI: https://doi.org/10.1038/nn.3952, PMID: 25706474

Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI. 2009. Driving fast-spiking
cells induces gamma rhythm and controls sensory responses. Nature 459:663–667. DOI: https://doi.org/10.
1038/nature08002, PMID: 19396156

Chen X, Scangos KW, Stuphorn V. 2010. Supplementary motor area exerts proactive and reactive control of arm
movements. Journal of Neuroscience 30:14657–14675. DOI: https://doi.org/10.1523/JNEUROSCI.2669-10.
2010, PMID: 21048123

Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, Shenoy KV. 2010. Cortical preparatory activity:
representation of movement or first cog in a dynamical machine? Neuron 68:387–400. DOI: https://doi.org/10.
1016/j.neuron.2010.09.015, PMID: 21040842

Cohen M X. 2014. Analyzing Neural Time Series Data. The MIT Press.
Confais J, Kilavik BE, Ponce-Alvarez A, Riehle A. 2012. On the anticipatory precue activity in motor cortex.
Journal of Neuroscience 32:15359–15368. DOI: https://doi.org/10.1523/JNEUROSCI.1768-12.2012,
PMID: 23115174

Crowe DA, Zarco W, Bartolo R, Merchant H. 2014. Dynamic representation of the temporal and sequential
structure of rhythmic movements in the primate medial premotor cortex. Journal of Neuroscience 34:11972–
11983. DOI: https://doi.org/10.1523/JNEUROSCI.2177-14.2014, PMID: 25186744

de Lafuente V, Jazayeri M, Shadlen MN. 2015. Representation of accumulating evidence for a decision in two
parietal Areas. Journal of Neuroscience 35:4306–4318. DOI: https://doi.org/10.1523/JNEUROSCI.2451-14.
2015, PMID: 25762677

de Lafuente V, Romo R. 2005. Neuronal correlates of subjective sensory experience. Nature Neuroscience 8:
1698–1703. DOI: https://doi.org/10.1038/nn1587, PMID: 16286929

Denker M, Roux S, Lindén H, Diesmann M, Riehle A, Grün S. 2011. The local field potential reflects surplus spike
synchrony. Cerebral Cortex 21:2681–2695. DOI: https://doi.org/10.1093/cercor/bhr040, PMID: 21508303

Fries P, Reynolds JH, Rorie AE, Desimone R. 2001. Modulation of oscillatory neuronal synchronization by
selective visual attention. Science 291:1560–1563. DOI: https://doi.org/10.1126/science.1055465, PMID: 11222
864

Fries P. 2015. Rhythms for cognition: communication through coherence. Neuron 88:220–235. DOI: https://doi.
org/10.1016/j.neuron.2015.09.034, PMID: 26447583

Cadena-Valencia et al. eLife 2018;7:e38983. DOI: https://doi.org/10.7554/eLife.38983 21 of 23

Research article Neuroscience

https://doi.org/10.7554/eLife.38983.027
https://doi.org/10.7554/eLife.38983.028
https://doi.org/10.7554/eLife.38983.025
https://doi.org/10.1523/JNEUROSCI.2679-13.2014
https://doi.org/10.1523/JNEUROSCI.2679-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24623769
https://doi.org/10.1038/nrn1764
http://www.ncbi.nlm.nih.gov/pubmed/16163383
https://doi.org/10.1038/nrn3241
http://www.ncbi.nlm.nih.gov/pubmed/22595786
https://doi.org/10.1038/nn.3952
http://www.ncbi.nlm.nih.gov/pubmed/25706474
https://doi.org/10.1038/nature08002
https://doi.org/10.1038/nature08002
http://www.ncbi.nlm.nih.gov/pubmed/19396156
https://doi.org/10.1523/JNEUROSCI.2669-10.2010
https://doi.org/10.1523/JNEUROSCI.2669-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/21048123
https://doi.org/10.1016/j.neuron.2010.09.015
https://doi.org/10.1016/j.neuron.2010.09.015
http://www.ncbi.nlm.nih.gov/pubmed/21040842
https://doi.org/10.1523/JNEUROSCI.1768-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23115174
https://doi.org/10.1523/JNEUROSCI.2177-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25186744
https://doi.org/10.1523/JNEUROSCI.2451-14.2015
https://doi.org/10.1523/JNEUROSCI.2451-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25762677
https://doi.org/10.1038/nn1587
http://www.ncbi.nlm.nih.gov/pubmed/16286929
https://doi.org/10.1093/cercor/bhr040
http://www.ncbi.nlm.nih.gov/pubmed/21508303
https://doi.org/10.1126/science.1055465
http://www.ncbi.nlm.nih.gov/pubmed/11222864
http://www.ncbi.nlm.nih.gov/pubmed/11222864
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1016/j.neuron.2015.09.034
http://www.ncbi.nlm.nih.gov/pubmed/26447583
https://doi.org/10.7554/eLife.38983
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