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ARTICLE INFO ABSTRACT

Keywords: Living organisms have an innate ability to regulate the synthesis of inorganic materials, such as bones and teeth

Cds in humans. Cadmium sulfide (CdS) can be utilized as a quantum dot that functions as a unique light-emitting

Cerebellum neuron semiconductor nanocrystal. The increased use in CdS has led to an increased inhalation and ingestion rate of CdS

Green synthesis by humans which requires a broader appreciation for the acute and chronic toxicity of CdS. We investigated the

Neurotoxicity toxic effects of CdS on cerebellar cell cultures and rat brain. We employed a ‘green synthesis’ biosynthesis

Quantum dots L. . . e e . . g . .
process to obtain biocompatible material that can be used in living organisms, such as Viridibacillus arenosi K64.
Nanocrystal formation was initiated by adding CdCl, (1 mM) to the cell cultures. Our in vitro results established
that increased concentrations of CdS (0.1 pg/mL) lead to decreased cell viability as assessed using 3-[4,5-di-
methylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT), total antioxidant capacity (TAC), and total oxi-
dant status (TOS). The in vivo studies showed that exposure to CdS (1 mg/kg) glial fibrillary acidic protein
(GFAP) and 8-hydroxy-2' -deoxyguanosine (8-OHdG) were increased. Collectively, we describe a model system
that addresses the process from the synthesis to the neurotoxicity assessment for CdS both in vitro and in vivo.
These data will be beneficial in establishing a more comprehensive pathway for the understanding of quantum
dot-induced neurotoxicity.

1. Introduction

Currently, the use of nanoparticles (NPs) in medicine is rapidly
expanding for diagnostic or treatment purposes [1-3]. The unique
properties of NPs include their small size, wide surface area, and their
use as a vehicle for the transport of other compounds [4,5]. Nano-
particles have been successfully used in the diagnosis of cancer, blood
vessel visualization and single cell diagnostics [6-9]. Further, they can
be utilized in the treatment of malignant diseases and neuronal ill-
nesses, given their ability to deliver genes to single cells [10,11]. Over

the last decade, the use of NPs in the medical field has grown sig-
nificantly, and as the technology employed in NPs synthesis will con-
tinue to improve, their medical applications will continue to expand
into new areas of therapy [11]. Nonetheless, the full understanding of
their toxicity has yet to be addressed).

Cadmium (Cd) is a heavy metal that occurs naturally in the earth’s
crust and is a primary industrial and environmental pollutant, and a
significant anthropogenic toxicant [12-14]). It is also present in various
food items [15], and its toxicity has been widely documented in both
humans and animal models [16,15,12,17,18]. Cd exists in an inorganic
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state as Cd sulfide (CdS), which is found as an impurity in zinc ores and
as such, is a waste product of zinc mining [19]. CdS has been used as a
semiconductor that has already found a use for the formation of
quantum dots but has not exhausted the potential for further use in the
size of “Nano” [20]. Li et al. [21] reported that the toxicity of the pure
Cd metal is higher than that of CdS. CdS has been used to construct
unique light-emitting semiconductor nanocrystals and it is also widely
used as a color pigment in various industrial products. Recently, the
efficacy of CdS nanoparticles has been explored as a drug delivery
system or carrier to promote drug delivery to desired sites [22-25].
Increasing the functional area of nanoparticles may increase the risk of
toxicity, especially in a biological system [4,12]. Modlitbova et al. de-
monstrated that the size of CdS particles is directly related to the
toxicity exhibited by the particle [26,27]. A significant challenge con-
fronting research in the field of nanoparticle synthesis is the growing
need to develop reliable, non-toxic, clean, eco-friendly, and green ex-
perimental protocols [28-30]. One synthesis option that meets the
needs listed above is the use of natural processes, such as the use of
enzymes, vitamins, polysaccharides, biodegradable polymers, micro-
organisms, and biological systems for the synthesis of NPs.

Our focus has been to develop a method that will provide a con-
trolled and up-scalable process for the biosynthesis of monodispersed
and highly stable NPs. Thus, a wide range of bacterial species has been
used in green nanotechnology for the synthesis of NPs utilizing gold,
silver, platinum, palladium, titanium, titanium dioxide, magnetite, and
cadmium sulfide among other elements [31,32]. Little evidence exists
regarding the “green synthesis” of CdS by bacteria. Hence, it is essential
to widen the range of biosynthesized CdS NPs toxicity investigations.

Changes in neuronal function can impact our posture, balance, co-
ordination, and speech. Since CdS easily cross the blood-brain barrier
(BBB) it has been used to visualize brain blood vessels [33], and tumors
[34,35]. CdS has also been studied for the treatment of neurodegen-
erative diseases such as Parkinson’s disease [36] and Alzheimer’s dis-
ease [37]. Cell viability, antioxidant capacity, and oxidant status are
some of the parameters that need to be further investigated in response
to CdS exposures. In the present study, we evaluated the neurotoxicity
of various concentrations and doses of biosynthesized CdS both in vitro
and in vivo systems, respectively.

2. Methods
2.1. Biosynthesis of CdS NPs

2.1.1. Chemicals and reagents

All media (Dulbecco Modified Eagle’s (DMEM), Neurobasal (NBM),
Roswell Park Memorial Institute (RPMI 1640), and supplements, Fetal
Calf Serum (FCS), phosphate buffer solution (PBS); antibiotic/anti-
mycotic solution (100X ), ir-glutamine, and trypsin-EDTA were ob-
tained from Sigma-Aldrich (St. Louis, MO, USA).

2.1.2. Bacteria and biosynthesis of CdS NPs

The biosynthesis process is designed to obtain highly biocompatible
material that can be used in living organisms. Viridibacillus arenosi K64
(GenBank Accession Number: KR873397), were obtained from Atatiirk
University East Anatolia High Technology Application and Research
Center (DAYTAM) culture collection.

The cultures were grown overnight in an incubator (120 rpm/min,
32°C) inoculated with 100 ml LB (Luria Bertani) broth medium (yeast
extract 5.0 g/L; peptone 10.0 g/I; NaCl 10.0 g/1) and left to incubate.
The culture on LB broth medium was centrifuged at 6000 rpm at 20 °C
for 10 min. The supernatant was allowed to incubate for 36 h in culture
on a shaker (120 rpm, 32°C). After 36 h, the culture was diluted by
adding an equal volume of sterile and fresh LB broth. The culture was
returned to the shaker for another 24 h (120 rpm, 32 °C). At the end of
the incubation, the culture was re-centrifuged and 20ml of 0.25M
CdCl, and 5 ml of 0.5 M Na,S were added in the supernatant which was
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Fig. 1. Harvested cell line (X 10): Cerebellum neuron cells.
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Fig. 2. Scanning electron microscopy (SEM) images of CdS NPs shapes and
sizes. (EHT = 4.00kV).

incubated at 60 °C for 10-20 min until a yellow-white color was ob-
served. The resulting NPs were allowed to stand at room temperature
(22—25°C) for 24 h to obtain the final usable NPs [38,39].

CdClL, + Na, S— CdS+2NacCl
(seed crystal)
CdCl, + $*~ — CdS + 2CI-

(bacterial origin)

2.1.3. Isolation and purification of CdS nanoparticles

After 24h at room temperature, the synthesized solution was
transferred to a 50 ml tube and centrifuged at 10,000 rpm at 20 °C for
10min. The precipitate containing CdS was washed with n-hexane,
methanol, and ddH,O0, respectively. After each wash, the wash solutions
were removed by repeating the centrifugation step of 10,000 rpm at
20 °C for 10 min [40-43]. The resulting precipitate was dried for 24 h at
60 °C before characterization.

2.1.4. Characterization of CdS nanoparticles

The biosynthesized CdS nanoparticles were characterized by X-ray
powder diffraction (XRD, PANalytical Empyrean Inspect S50, USA),
scanning electron microscope (SEM) (Zeiss Sigma 300, Germany). All
analyses were made through the purchase of services from Atatiirk
University DAYTAM.

2.1.5. Invitro studies
Cerebellum cell cultures were obtained from the Department of
Medical Pharmacology at Ataturk University (Erzurum, Turkey)
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Fig. 3. EDX and elemental mapping of CdS nanoparticles. The estimated band gap value for CdS is 2.02 eV.
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Fig. 4. In vitro viability ratio of CdS (0.01 — 100 pug/mL) on cerebellum neuron cells (n = 6/group). * Significant differences at P < 0.05 compared to control group;

** Significant differences at P < 0.001 compared to control group.

(Fig. 1). The cells were thawed and briefly centrifuged to form a pellet.
The pellet was resuspended in growth media, and the cells (1 x 10°
cells/ymL) were seeded into a 48-well culture plate. The cells were
treated with increasing concentrations of CdS (0.01-100 pug/ml) and
incubated for 24 h (5% CO,; 37 °C). As a control, 150 ul NBM (Gibco,
sigma, USA) only was added to one set of wells for 24 h. Following 24 h
incubation, cell viability was determined using the commercially
available MTT assay (Cayman Chemical, MI, USA). Briefly, 10 ul of MTT
reagent was added to each well, and incubated (5% COo; 3 °C) for 4 h.
After incubation, the media was removed and replaced with 100 pl of
dimethyl sulfoxide (DMSO). The optical density (OD) was determined
at 570 nm using Multiskan™ GO Microplate Spectrophotometer reader
(Thermo Scientific, Canada), and the cell viability (%) was calculated.
TAC and TOS status were investigated with commercially available kits
(Rel assay, Turkey) that were used according to the manufacturer’s
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suggested procedure. The evaluation was made spectrophotometrically
(Multiskan™ GO Microplate Spectrophotometer reader) [44]. The in-
tensity of the color was directly proportional to the number of pro-
oxidants present and the antioxidants status of the cell. Briefly, for
evaluating TOS status 500 pl of reactive 1 was added to 75 pl plasma
(cells supernatant) and absorbance was measured at 530 nm, 25 pl re-
active 2 was incorporated in each well and a secondary absorbance was
read at 530 nm following a 10 min incubation at room temperature. By
using the absorbance values acquired and the following formula, TOS
standards were detected in H,O, equivalents/mmol L~ [45,46].

TOS = (A example/A ST2) x 20

Briefly, for evaluating TAC status, 500 pl reactive compound 1 was
added to each well followed by the addition of 30 pl of the specimen
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Fig. 5. In vitro TAC capacity of CdS (0.01-100 pg/mL) on cerebellum neuron cells (n = 6/group). * Significant differences at P < 0.05 compared to control group; **

Significant differences at P < 0.001 compared to control group.
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Fig. 6. In vitro TOS status of CdS (0.01 — 100 pg/mL) on cerebellum neuron cells (n = 6/group). * Significant differences at P < 0.05 compared to control group; **

Significant differences at P < 0.001 compared to control group.

and initial absorbance was read at 660 nm (time 0). After the initial
reading, 75l of reactive 2 was added to the wells, and plates were
incubated at room temperature for 10 min. After 10 min, a secondary
absorbance value was obtained at 660 nm. While distilled water was
used for Standard 1 (blank), Standard 2 in the kit was used as the
second point for calibrating the relationship of absorbance intensity to
pro-oxidants present. The absorbance values acquired were established
according to the following formula, and TAC standards were detected in
Trolox™ Equivalents/mmol L~ [47].

TAC = (A ST1-A example)/(A ST1-A ST2)

2.2. In vivo study

2.2.1. A rat model for CdS toxicity

Male Sprague-Dawley rats (n = 30) weighing 210 = 10g were
randomly divided into 6 groups (n = 5/group). Each rat received 1 dose
CdsS (0, 0.1, 1, 5, 15 or 25 mg/kg) intraperitoneally [48-50]. After 24 h
and under deep anesthesia (high dose sevoflurane; Gujarat, india),
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animals were sacrificed by decapitation, and the brain sample was
collected (by cutting skull from foramen magna to nose) for pathologic
determination.

2.2.2. Ethical approval

This study was conducted at the Medical Experimental Research
Center at Ataturk University (Erzurum, Turkey). The Ethical Committee
of Ataturk University approved the study protocol (42190979-01-02/
2411).

2.2.3. Histopathological determination

Brain tissue was fixed for 48 h in 10 % buffered formaldehyde. The
right hemisphere was dehydrated and processed by graded concentra-
tions of alcohol and xylene. Then, immersed in paraffin series and
embedded in fresh paraffin. 5 pm sections of whole brain were obtained
by using a microtome (Leica, Biosystems, USA). A total of 29 sections
(From each 10 obtained section, the first one was used for analysis
while the other 9 were discarded; 290 sections in total) were chosen
and stained with hematoxylin and eosin (H & E) [51,52].
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Fig. 7. Brain tissue, (A) control group, normal histological image, (B) 0.1 mg/kg group, mild hyperemia in the vessels, (C) 1 mg/kg group, hyperemia in the vessels,
atrophy in very few neurons (arrow), (D) 5 mg/kg groups, severe hyperemia (arrowhead) in the veins, atrophy in the neuron (arrow), (E) 15 mg/kg groups, moderate
atrophy in the neurons (arrow), degeneration and necrosis (arrowhead), hyperemia in the vessels, (F) 25 mg/kg groups, Severe hyperemia of the vessels, severe
atrophy of neurons (arrow), degeneration and necrosis (arrowhead). H&E, Bar: 20 pm.

2.2.4. Immunohistochemical staining

After dehydration, transparency, and paraffinization, 4-5 pm thick
sections were taken from paraffin blocks and placed on Poly-L-lysine
slides. Slides were taken into preparation transport apparatus and left at
56 °C for 1h. Immunohistochemical staining Expose Kit (Abcam:
ab80436, UK) was performed as recommended by the manufacturer.
Briefly, after xylene and graded ethanol administration, the sample was
washed in phosphate buffer (PBS) solution. For blocking endogenous
peroxidase activity 10 % hydrogen peroxide was applied. Then protein
block (ABCAM: ab80436) was applied to each slide to cover the tissue
(block non-specific antibody binding). The primary antibody was re-
constituted with 8-OHdG (cat no. Sc66036, dilution 1/50; Santa Cruz,
USA) and GFAP (cat no. NB600- 1235, dilution 1/400; Novus
Biological, USA). After washing, 1-2 drops of secondary antibody were
added for 20 min followed by the addition of horseradish peroxidase
(HRP) conjugate. The mixture was incubated for 30 min in a humidified
vessel at room temperature. 3 — 3 Diaminobenzidine (DAB) was applied
and then washed with distilled water. The hematoxylin (Mayer’s) was
applied for 15—20 sec. The tissue slice was washed until the excess of
hematoxylin was removed. After this process, the slides were suspended
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by lamination with 80 % ethanol, 96 % ethanol, 100 % ethanol, and
xylol. Sections were evaluated as (-), mild (+), moderate (+ +) and
severe (+ + +) according to immune positive values [53].

2.2.5. Statistical analysis

To assess changes following exposure to increasing concentrations
of CdS, (concentration-effect), statistical analysis was performed with
Kruskal-Wallis and Mann- Whitney U test comparisons (IBM SPSS 20.0
software). P-value <0.05 was considered as statistically significant.

3. Results
3.1. SEM and EDX analysis

Results from the SEM images (Fig. 2) established that NPs existed in
different sizes (8-25nm, with an average size around 18nm) and
formed clusters. However, it was observed that the clusters which were
formed were comprised of NPs of varied sizes that did not exhibit
homogeneous distribution. When evaluated based on shape and struc-
ture, NPs obtained through biosynthesis were observed both in
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Fig. 8. Cerebral tissue, (A) control group, normal histological image, (B) 0.1 mg/kg group, mild hyperemia in the veins, (C) 1 mg/kg group, atrophy in very few
Purkinje cells (arrow), hyperemia in the vessels, (D) 5 mg/kg groups, atrophy in the neuron (arrow), severe hyperemia in the veins, (E) 15 mg/kg groups, moderate
atrophy in the neurons (arrow), degeneration and necrosis (arrowhead), hyperemia in the vessels, (F) 25 mg/kg groups, severe hyperemia in the vessels, severe
atrophy in neurons (arrow), degeneration and necrosis (arrowhead). H&E, Bar: 20 pm.

spherical and hexagonal structures (Fig. 2).

Corresponding peaks were determined by considering the materials
targeted specifically (Cd and S) in the energy-dispersive X-ray (EDX)
spectrum. However, different elements are also observed that do not
match the Cd or S peak. Unidentified contaminant peaks may arise from
the organic structure, which cannot be removed by coating or washing
processes for sample analysis (Fig. 3).

3.2. In vitro analyses

3.2.1. Cell Viability, MTT assay

The MTT assay test was performed to determine cellular viability
after 24 h of exposure to CdS NPs (Fig. 4). The viability decreased with
increasing CdS concentrations. The highest survival rate (93 %) was at
the lowest concentration of CdS (0.01 pg/mL), whereas the viability
rate at the highest CdS concentration (100 ug/mL) was 56 % (P < 0.05)
(Fig. 4). Each subsequent concentration yielded further reduced cell
viability (P < 0.05). The cell viability was decreased slightly in 0.01
pg/mL (minimum of 4%) group, but the maximum decrease was seen in
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100 pg/mL (47 %) group compared to the values obtained in the control
group.

3.2.2. Total antioxidant capacity (TAC) assay

TAC assay was performed after 24 h exposure to CdS NPs (Fig. 5).
The total antioxidant capacity was decreased in a concentration-de-
pendent manner following exposure to CdS. The highest antioxidant
rate was seen at the concentration of 0.01 ug/mL CdS (5.2 Trolox™
equivalents/mmol L™ (P > 0.05) and lowest antioxidant capacity was
observed at the two highest concentrations of 10 and 100 pg/mL CdS,
respectively (P < 0.05).

3.2.3. Total oxidant status (TOS) assay

TOS assay was performed following 24h exposure to CdS NPs
(Fig. 6). Total oxidant status was increased following exposure to CdS
and this elevation in oxidant status was concentration-dependent
(P < 0.05). The highest oxidant rate was seen at CdS concentration of
100 pg/mL as determined by changes in the 5.8 H,O, equivalents/
mmol L', Oxidant status in all concentration groups (except for the
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Fig. 9. Brain tissue, (A) control group, 8-OHdG expression is negative, (B) 0.1 mg/kg group, 8- OHdG expression is negative, (C) 1 mg/kg group, very light neurons
intracytoplasmic 8-OHdG expression (arrow), (D) 5mg/kg groups 8 lightweight neurons, 8-OHdAG expression (arrow), (E) 15mg/kg groups, moderate in-
tracytoplasmic expression in neurons 8-OHdG expression (arrow), (F) 25 mg/kg groups, severe intracytoplasmic 8-OHdG expression in neurons (arrow), Bar: 20 um.

0.01 pg/mL CdS group) was significantly different compared to control
group values (P < 0.05). The total oxidant status increased from a
minimum of 6% (0.01 pg/mL) to a maximum of 75 % (100 pg/mL)
compared to the controls.

3.3. In vivo study

3.3.1. Histopathologic determination

Hematoxylin-eosin staining in the cortex and cerebellum are shown
in Figs. 7 and 8. According to our results, the control group cortex and
cerebellum tissues have normal histological structure (Figs. 7 and 8A).
The lowest dose of CdS NPs (0.1 mg/kg) resulted in mild hyperemia in
both brain and cerebellum tissues (Figs. 7 and 8B). Increasing the dose
of CdS NPs to 1 mg/kg resulted in mild atrophy and degeneration in
cortical neurons (Fig. 7C) and Purkinje cells (Fig. 8C). CdS NPs (5 mg/
kg) in the cortical neurons showed atrophy, degeneration and hyper-
emia in the vessels (Fig. 7D). Mild levels of atrophy and degeneration of
Purkinje cells in the cerebellum and severe hyperemia in the vessels
were noted (Fig. 8D). CdS NPs (15 mg/kg), brain and cerebellum tissues
showed moderate degeneration of atrophy in neurons, necrosis and
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hyperemia in vessels (Fig. 7E). Moderate atrophy and degeneration and
liquefaction necrosis were noted in Purkinje cells of the cerebellum
(Fig. 8E). At the highest dose of CdS NPs (25 mg/kg), atrophy in the
brain was characterized by severe degeneration of neurons, necrosis
and hyperemia in the vessels (Figs. 7F; 8 F).

3.3.2. Immunohistochemical determination

8-OHdG and GFAF determination of cortex and cerebellum are
shown in Figs. 9-12. No expression of 8-OHdG and Glial fibrillary acidic
protein (GFAP) was observed in brain and cerebellum tissue from
control animals. CdS NPs (0.1 mg/kg) exposure resulted in increased 8-
OHAG expression in the brain and cerebellum tissues, as indicated by
expression in neurons and Purkinje cells in the cerebellum. In contrast,
minimal GFAP expression was observed in astrocytes. CdS NPs (1 mg/
kg) effect on 8-OHAG expression was slight, with detection being ob-
served in very few cortical neurons and Purkinje cells in the cerebellum
and only mild GFAP expression was observed in astrocytes. A statisti-
cally significant difference (P < 0.05) was observed in the CdS NPs (5
mg/kg) group when compared to controls. Intracytoplasmic 8-OHAG
expression was observed in a small number of neurons and Purkinje
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Fig. 10. Cerebral tissue, (A) control group, 8-OHdG expression negative, (B) 0.1 mg/kg group, 8- OHdAG expression negative, (C) 1 mg/kg group, 8-OHdG expression
negative, (D) 5mg/kg groups, mild Purkinje cells intracytoplasmic expression of 8-OHdG (arrow), (E) 15mg/kg groups, moderately intracytoplasmic 8-OHdG
expression in Purkinje cells (arrow), (F) 25 mg/kg groups, severe intracytoplasmic 8-OHdG expression in Purkinje cells (arrow), Bar: 20 ym.

cells. There was moderate GFAP expression in astrocytes. When com-
pared to the control group, a statistically significant difference
(P < 0.05) was observed in the CdS NPs (15 mg/kg) group. Comparing
brain and cerebellum tissues, intracytoplasmic 8-OHdG expression was
determined to be at a medium level in both neurons and Purkinje cells.
There was moderate/severe GFAP expression in astrocytes in the
treatment group when compared to the control group (P < 0.05).
Treatment with CdS NPs (25 mg/kg), comparing brain and cerebellum
tissues, intracytoplasmic 8-OHdG expression was detected in a large
number of neurons and Purkinje cells. In the brain, very severe GFAP
expression was observed in astrocytes. When the CdS NP (25 mg/kg)
group was compared to the other treatment groups, the difference was
statistically significant (P < 0.001).

4. Discussion

We determined the effects of CdS in an in vitro toxicity model of
cerebellar neuronal cell line and measured cell viability and oxidative
stress status with the MTT, TAC and TOS assays. Using SEM imaging
and spectrofluorometric analysis, we established the individual
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dimensions of the particles. Our novel data showed NPs as large clusters
(5-8nm) in size in SEM images. XRD analysis was performed to obtain
information on the interplanar spacing and crystal structures of CdS
quantum dot nanoparticles synthesized, showing crystal phases in
several samples. In general, hexagonal crystals are formed by evalu-
ating the parameters obtained from XRD patterns and evaluating the
library and available resources. It graphically shows the crystallite sizes
and the band gap ranges obtained from the XRD results. In this study,
(002), (101), (110), (201), (004), (314) were obtained by the XRD
measurements of CdS obtained by biosynthesis method (27.6°, 31.9°,
45.6° 54.1°, 56.6°, 66.4° and 75.4°) (203) and (105). The largest peak
from the XRD results was measured as the lowest peak width (201) of
about 6400 (101) planes. Considering the peak intensity and the output
order of the peaks, the structure of the crystals we have obtained ap-
proximates a hexagon [54]. We observed several peaks that exhibited
intensities suggestive of a shape that ranged from hexagon to cubic
structure. When the XRD measured peaks shows our crystals formation
are hexagonal [54]. The data from our XRD analysis indicates that the
shapes range from spherical to hexagonal. Our XRD results for the CdS
quantum point obtained with bacteria have been evaluated as
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Fig. 11. Brain tissue, (A) control group, GFAP expression was very mild, (B) 0.1 mg/kg group, GFAP expression was very mild, (C) 1 mg/kg group, GFAP expression
was mild (arrow), (D) 5 mg/kg groups, GFAP at the intermediate level, (E) 15 mg/kg groups, moderate/severe GFAP expression (arrow), (F) 25 mg/kg groups, severe

GFAP expression (arrow), Bar: 20 um.

hexagonal crystal structures according to the available sources. Diao
et al. [27], CdS particle size is essential for determining toxicity. Na-
noparticles of 110-130nm and 80-100nm CdS were used for in-
vestigation of liver tissue toxicity [27]. Their data demonstrated an
inverse relationship between size and toxicity with the smaller NPs
eliciting greater oxidative damage. In our studies, we used ultra-small
CdS nanoparticles, but 0.01 ug/mL failed to show significant toxicity.
According to Nisha et al. [55] surface modification is one of the sim-
plest and most practical techniques to decrease CdS toxicity [55]. In their
studies, polyvinylpyrrolidone (PVP) and cysteine were used to cover the
nanoparticle surface and evaluate toxicity with Vero cells. The results from
these toxicity assay demonstrated that NPs that were surface-coated were
less toxic than comparable NPs that were not. The impact of the surface
coating was evident by the significantly higher viability for the surface-
modified CdS NPs than the unmodified CdS NPs. This data is important
since the Li et al. (2018) study present fundamental differences compared
to ours (decreased size increased toxicity) but Nisha et al. [55] supported
the hypothesis that surface modification can significantly reduce CdS
particle toxicity. According to Li and his colleagues CdS toxicity (10 mg/kg
for both CdS groups in mice) among 80-100 nm and 110-130 nm were
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apparent in 80-100 nm group in comparison to the large particle size
group. The author stated that in the smaller particle size group, Cd con-
centration in blood and liver tissue were higher and tissue damage was
higher than in large particle size group. Figs. 8, 10 and 12 show necrotic
degeneration and DNA fragmentation in neurons and astrocytes in cortical
regions, especially with the high CdS NPs doses. Purkinje cells
(Figs. 9-11), show distinct pathological signs characterized by degenera-
tion and apoptosis as well as reduced number and smaller cell size com-
pared to the normal control group.

Munari et al., compared 10 nmol/] with 3, 10 nmol/l for 3 and 5
days, 10 and 50 nmol/] for 3, 5, and 7 days in SAOS, HEK293 T and
TOLEDO cells, respectively [56,57]. Examining their results, their via-
bility rate is equivalent to that of the control group, and CdS is nontoxic
at a concentration of 10nmol/l. Converting the units of their con-
centration to match our study, their results correlate with our findings
at the lower concentration of NP2 (0.01 ug/mL). However, since they
did not perform tests at 50 nmol/], it is not possible to compare the
remainder of their findings with ours.

Pujalte and colleagues used CdS NPs at different concentrations
using IP15 (glomerular mesangial) and HK-2 (epithelial proximal) cells
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Fig. 12. Cerebellum tissue, (A) control group, GFAP expression is very mild, (B) 0,1 g, GFAP expression is very mild, (C) 1 group, GFAP expression is mild (ar-
rowhead), (D) 5 groups, GFAP expression at intermediate level (arrowhead), (E) 15 groups, moderate/severe GFAP expression (arrowhead), (F) 25 groups, severe

GFAP expression (arrowhead), H&E, Bar: 20 um.

[58]. They noted NPs toxicity at concentrations of 5ug/cm2 and
6.5 ug/cm2, with no toxicity observed at 1.4 ug/cm2 CdS. Their max-
imum toxicity at the highest concentration resulted in cell viability of
26 + 2.5 %. While these results are similar to ours, the concentrations
of 0.01 and 0.1 pg/ml did not reveal significant toxicity, but the via-
bility ratio at concentrations of 5ug/cm2 and 6.5pg/cm2 showed
greater toxicity compared to our results. The variations in the data
reported here and in the Pujalte et al. [58] study differ likely due to
differing production techniques, overall particle size, or cell type.

Previous reports have suggested that QDs enter the CNS via the BBB
after systemic redistribution [59]. Jorge Reyes-Esparza and colleague
used different dextrin-coated Cd nanoparticles (CdS-Dx/QDs) for one
week [60]. They found a high level of fluorescence in kidney, liver and
brain and these studies confirmed the effective cellular uptake and even
distribution pattern of CdS-Dx/QDs in tissues. In our study, we found all
dose of CdS crossed BBB, and in high doses, 8-OHdG and GFAP ex-
pression were significantly increased. Pathological findings of our in
vivo study have confirmed neuronal CdS uptake. Astrocytes have shown
higher GFAP expression with increasing CdS dose while in neurons 8-
OHJG expression was observed. The IHC staining of neurons and Pur-
kinje cells corroborated that CdS NPs crossed the BBB in-dose depen-
dent manner and induced degeneration and inflammation.
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5. Conclusion

The study showed that these NPs may be utilized in biological
systems as a delivery agent, or a diagnostic tool provided that the
concentration is below the threshold of toxicity (0.01 pg/mL). Our re-
sults show that 0.01 pg/mL CdS did not exert significant toxicity in any
of the assays performed. Thus CdS NPs should be considered for drug
delivery and diagnosis. Nonetheless, additional studies to evaluate the
effects of chronic CdS exposure in laboratory animals are warranted.
The in vivo study revealed that CdS can easily cross the BBB in dose-
dependent manner, with signs of degeneration being present only at
doses exceeding 0.1 mg/kg.
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