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Ecosystems greatly vary in their species composition and interactions, yet they all show remarkable
resilience to external influences. Recent experiments have highlighted the significant effects of spatial
structure and connectivity on the extinction and survival of species. It has also been emphasized lately that in
order to study extinction dynamics reliably, it is essential to incorporate stochasticity, and in particular the
discrete nature of populations, into the model. Accordingly, we applied a bottom-up modeling approach
that includes both spatial features and stochastic interactions to study survival mechanisms of species. Using
the simplest spatial extension of the Lotka-Volterra predator-prey model with competition, subject to
demographic and environmental noise, we were able to systematically study emergent properties of this rich
system. By scanning the relevant parameter space, we show that both survival and extinction processes often
result from a combination of habitat fragmentation and individual rare events of recolonization.

E
xtinction and survival of species are the two extremes of population dynamics. Generations of theoretical
ecologists tried to model different aspects of the rich dynamics observed in natural populations and
communities. For example, the complex interactions between the various species in an entire ecosystem

is mostly modeled by trophic networks1,2. On the other end, for a single species, rigorous analytical treatment of
the stochastic dynamics can be achieved3,4. Moving from a single-patch view, the incorporation of space into the
model was initially pursued using the concept of metapopulation5,6.

The patch-occupancy approach to metapopulations was used to study the steady-state fraction of occupied
patches using the local probabilities of colonization and extinction7,8. Later on, stochasticity was added to this
approach, resulting in stochastic patch-occupancy models (SPOMs). SPOMs incorporate the probability of
patches to be occupied as a function of local rates of colonization and extinction, which depend on factors such
as patch quality and connectivity9. However, SPOMs lack explicit population dynamics, and thus do not include
‘‘mass effects’’ - a term referring to how variation in population densities can affect migration10,11. Depending on
rates of migration and local heterogeneity in the metapopulation, neighboring patches can be synchronized or
asynchronized, leading mass effects to alter the probability of local recolonization12. Furthermore, ‘‘rescue effects’’
whereby populations on the brink of extinction are recovered by an inflow of individuals from occupied patches
can be generated by mass effects13.

Combining space and species interactions resulted in the concept of metacommunity, a framework proposed to
study inter-connected communities of interacting species14,15. Metacommunity models are used extensively in
recent years16,17, often with a simplification of using only a small number of species. In particular, victim-exploiter
models such as predator-prey systems are very popular first step approximations in studying more diverse
ecosystems, dating back to the classical Lotka-Volterra equations18,19.

A long term paradox of spatially extended predator-prey systems is the fact that local dynamics tend to be
unstable while the global dynamics escape extinction. The unstable properties of small systems were shown
already in the 1930’s by the seminal experiments of Gause20. Recent experiments with predator-prey21–25 host-
parasite24, and single species26,27 systems imply that migration amongst spatial patches is a two-edged sword: if too
weak, it doesn’t allow recolonization of empty patches by their neighbors hence leading to a short lifetime of the
system. On the other hand, when too large, the system synchronizes, thus reducing the effect of local refuges,
leading to the global extinction of all patches28–30. The discrepancy between the system’s behavior along the range
of migration regimes could be understood by different stabilizing mechanisms31. These involve limited migration
coupled to either spatial heterogeneity32, or to stochasticity that induces desynchronization between neighboring
sites17,33,34.
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Both metacommunity and metapopulation models may still lack
essential properties of real space and real migration patterns of indi-
viduals. To overcome this issue, hierarchical metapopulation models
were recently proposed35. Hereby, we take a different approach, by
modeling the spatially extended system on a regular lattice. This
approach is simpler compared to hierarchical metapopulation mod-
els and require less assumptions on the population structure. On the
other hand, it is computationally more intense. Modeling population
dynamics on regular lattices exhibits spontaneous emergence of local
communities (‘‘islands’’)36. These islands effectively move in a col-
lective motion, and interact with neighboring communities/islands.
Using this framework we investigate predator-prey dynamics, based
on the original Lotka-Volterra local interactions terms18,19. We add
prey competition to the local dynamics37, in order to limit the max-
imum prey population, thus allowing us to study how predators
invade a stable prey population, and how prey can survive this inva-
sion using individual migration patterns.

Modeling scheme. We follow Durret and Levin38 by looking at four
modeling categories for describing ecosystem dynamics (see Fig. 1).
In this way, the impact that spatial features and discreteness
of individuals have on these systems can be systematically
evaluated39. We begin by modeling the system using a set of
Ordinary Differential Equations (ODE). This is a mean-field,
single-patch approach where a species population is described by a
single continuous density. The addition of explicit space results in
Reaction-Diffusion (RD) equations, where spatial patterns and
complexity emerge. A different approach uses stochastic single-
patch (SSP) models, that neglects space, but individuals are taken
as autonomous entities that stochastically interact with each other.
Finally, the combination of the RD and SSP approaches leads to
Interacting Particle System (IPS)38,39, in which discrete individuals
interact locally and migrate between patches that are connected
through an explicit spatial structure.

ODE models are used extensively in various fields, and give good
results when the modeled system is well mixed and the number of
individuals is large4. Analytical solutions can often be found for this
set of models, and otherwise numerical solutions are generally easy to
obtain. One major drawback of this modeling approach is that in
order to study extinction, arbitrary cutoff criteria need to be applied,
which may invalidate predictions of extinction events based on this
modeling approach.

In the context of ecological systems and predator-prey interac-
tions, many ODE models use different non linear terms to include
complex interactions. For example, Rosenzweig & Macarthur37 used
the type II functional response40 to implicitly incorporate the time it
takes one predator to handle a single prey unit. Here, we modeled the

predation using the simple type I functional response40, as we aim to
capture the simplest possible model while maintaining the discrete
and spatial properties of real systems, as described below.

The inclusion of space into a local continuous model naturally
leads to the RD modeling approach, which is often analyzed with
standard tools for solving partial differential equations41. Using these
tools, analytical approximations can be made in some cases, but more
often, numerical methods are applied. Spatio-temporal dynamics,
such as invasion fronts and scale free patterns, often emerge from
basic model assumptions using the RD modeling approach42–44. This
is also a natural setting to study the effects of environmental noise, as
it can easily be incorporated into the model45. However, since the
species densities are continuous, studying extinction is still problem-
atic for the same reasons as described above.

A direct modeling approach to capture extinction events uses
individual agents with stochastic interactions between them46. In
order to gain tractability, spatial structure is often not included,
resulting in SSP models, where all interactions take place on the
same site. With discrete numbers of individuals, the model is subject
to demographic noise3, naturally leading to the possibility of extinc-
tion. For the simple logistic growth dynamics, the timescales for
extinction could be obtained using analytical tools under some sim-
plifying assumptions4,47. For more complex dynamics, stochastic
simulations can be used46, allowing the study of a wider set of
systems.

If however, we do not neglect space, then we have the full blown
spatial and stochastic IPS model. Analytical tools for these models
are mostly absent, and the numerical tools used are often similar to
those used for SSP models. Due to the large systems described in this
approach, as compared with the SSP case, simulation times are often
a major limiting factor. A thorough examination of the model is
therefore more problematic, requiring the use of methods that
approximate the dynamics of the model48. It is however in this group
of models that complex behavior such as extinction due to spatial
features of the system can be described. Moreover, since the basic
model assumptions are still rather simple and straightforward, it is
often possible to retrace complex emergent phenomena to its basic
components17,34,36,49–54. This contrasts with the more complex mod-
eling approach of Agent Based Models (ABM), in which each par-
ticular individual is described separately. Simulations of ABM
systems take much longer times, and the connection between micro-
scopic behavior and macroscopic phenomena is harder to obtain39.

Current study approach. In this study we use an IPS model (the
‘‘ABC’’ model) to investigate the influence of spatial heterogeneity
and discreteness of individuals on the dynamics of species survival
and extinction. This model, described in detail in the methods
section, follows the interactions between A (resource), B (prey),
and C (predator) agents. The A agents, that never die out, act as
catalysts in the system, allowing for B reproduction to occur in the
same location, and are thus the source of environmental noise. The
B agents reproduce only in the presence of A agents, and compete
with other B agents. The C agents prey on the B agents, replacing a B
agent with a C agent. All these agents interact locally and move
stochastically on the underling migration matrix of the system.

By using approximate simulation methods on IPS, the effect of
model parameters can be investigated in reasonable times55. This is
done by scanning the parameter space for specific relevant para-
meters, and building a parameter-space map, where each point in
the map describes the eventual state of numerous simulations under
the same conditions. In the context of predator-prey interactions, we
chose the predation rate and the prey mortality as the main para-
meters investigated, as they pertain to the robustness of predators
and prey, respectively. We note that a wide set of parameter values
has been studied, and the specific parameter values chosen do not
greatly affect the results described. Using this methodology a more
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Figure 1 | Four different modeling schemes and their relation to each
other. ODE - Ordinary Differential Equations, RD - Reaction Diffusion,

SSP - Stochastic Single-Patch, IPS - Interacting Particle System.
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general understanding of the behavior of the system can be gained,
showing how the eventual state of the system depends on model
parameters. In particular, we are able to trace back global extinction
events to the individual migration events that cause them, and find
their dependence on model parameters.

Results
The importance of being spatial and discrete. We begin our
investigation by taking the commonly used ODE representation of
the Lotka-Volterra equations, and adding in turn first spatial

heterogeneity, then discreteness of agents, and finally combining
these two features. For the simple ODE case, the system is
generally in coexistence of predator and prey, except when either
the predator or prey are very weak (low predation rate and high
mortality rate respectively), which leads to survival of the prey or
extinction of both, respectively. These three possible phases of the
system can be seen in Fig. 2a, combined with phase transition lines
derived from linear stability analysis of the ODE system, which are
consistent with the simulation results. We move to an RD model with
spatial heterogeneity, by randomly distributing a finite number of

Figure 2 | Parameter space maps for different models studied: long times behaviors of the model (following the introduction of predators) are shown
for different values of the predator’s (C) predation rate (c) and prey’s (B) decay rate (b). Extinction of both species (B and C) is shown in black,

survival of the prey after the extinction of the predator in green and coexistence of both species in cyan. In each panel, both axes are in logarithmic scale,

with larger c at the top, and longer B life span to the right. Phase transition lines derived from linear stability analysis are marked in red (a). In the

panels on the upper row (a&b), B and C fields were taken to be continuous while in the panels on the lower row (c&d) these agents followed a discrete

dynamics (see text for details). The left column (a&c) corresponds to a single site (well-mixed) system while the right column (b&d) refers to a 1D ring

composed of 500 sites. In the continuous dynamics (upper row), parameter-space is dominated by the coexistence phase, except for the regime of

either weak B (on the left; shorter B life span) or weak C (on the bottom; lower c) of each panel. In the discrete system it is clear that while a coexistence

phase remains just above the low predation regime, the system’s state transforms into either extinction (of both species) or survival (of the B’s) phase

along different transition lines.
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resource agents in a spatial system. We see no significant effect on the
parameter space for this different model, as can be seen in Fig. 2b.
This similarity stems from the fact that without discreteness of the
predator and prey agents, extinction only occurs when the effective
reproduction of the species is lower than its effective mortality. These
effective values do not directly depend on the spatial structure, but
only on the resource density in the system.

Adding discreteness of agents to the system, instead of spatial
structure, has more dramatic effects. Results of the SSP model, seen
in Fig. 2c, show a vast region of parameter space where the predators
are more efficient in catching prey, leading to the extinction of both
predator and prey. This well known consequence of over-predation56

occurs when the predators eliminate all of the prey in this single-
patch system, thus left with no food source, and die out. It did not
occur in the continuous model since prey levels never reach zero in
such a setting, but only exponentially small numbers. Finally, by
combining spatial heterogeneity with discrete numbers of predator
and prey, we reach a more complete description of predator-prey
interactions. In this system, resource agents diffuse throughout the
system, enabling the reproduction of prey agents when in the same
location. Islands of prey agents naturally form around the diffusing
resource agents, which interact with other islands and predators,
leading to complex emergent behavior36,57. As seen in Fig. 2d, for
values of high predation, the system reaches a state where the prey
survives, but the predator is absent. This unintuitive result is surpris-
ing not only because it is the more efficient predators that die out, but
because they go extinct without eliminating the prey in the process.

We would like to focus on the survival mechanisms that allow this
prey persistence to occur, not when the predators are too weak to
hunt them, but when they are too efficient in doing so.

Survival mechanisms. In a predator-prey system, survival mechanisms
may refer to the survival of the predators, a transition between
Coexistence and Survival phases, or to the survival of prey instead
of their extinction, which is the transition between Survival and
Extinction phases. We focus on the prey survival, and investigate
two distinct mechanisms that enable it, stemming from micro-
scopic interactions between discrete agents, moving around in a
heterogeneous space. We term these mechanisms ‘‘Diaspora’’ and
‘‘Ebola’’ for reasons that will be explained below.

The Diaspora mechanism allows prey to survive for intermediate
predation levels, when prey agents come back from fringe areas of the
system to recolonize regions where the prey has been eliminated by
predation. To understand this mechanism we look at a simpler sys-
tem, a single island mesoscopic view, in which a single resource agent
supports a population of prey agents around it.

To this island we then insert predator agents, and see how this
system reacts over time, and how its final state depends on system
parameters. The evolution of the system after the introduction of
predator agents strongly depends on the predation rate, as seen in
Fig. 3a. For very low predation rates (V), the predators are inefficient,
and simply die out without any significant effect on the prey popu-
lation. With higher predation rate however (IV), the effective preda-
tion rate is high enough to overcome the predators own mortality,

Figure 3 | Dynamics and Parameter-space map for a single island system: a 1D ring of 200 sites with one static A agent. (a) Five representative points in

parameter-space (I..V) were chosen to demonstrate the dynamics in real space for different time points after the C agents were introduced into the system.

All five points are on the b 5 1022 line, while the values of c change (I: 1021.75, II: 1023.0, III: 1024.25, IV: 1025.5, V: 1026.75). For very low c (V), the C’s are

inefficient, and even with a large number of B’s cannot reproduce, hence the C’s go extinct without affecting the B’s. At low c (III,IV), the B numbers

diminish at first, but while for lower predation (IV) they quickly rebound and never fall to zero, for higher predation (III) the B density falls to zero (time

100) in the main site, and only diffusion of B’s from neighboring sites saves the system from extinction. For still higher predation (II) the C agents

eliminate all B’s from the main site and its vicinity (time 500), and they follow soon after and decay (time 1000). some B agents remain on the fringe of the

island (time 1500), and due to their long lifespan they manage to diffuse back to the main site and repopulate the system (time 5000). For very high c (I)

fewer B agents remain, and they do not manage to return to the main site, thus leaving the system at a state of extinction. (b) Parameter-space containing

points (I–V), shows how the coexistence phase expands upwards compared to the single site case (Fig. 2a), and reaches the same transition line as the

many A agents case (Fig. 2d). One can see that one (static) island is largely sufficient to explain the coexistence phase of the full IPS model.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7877 | DOI: 10.1038/srep07877 4



and a coexistence of predator and prey is reached in a monotonic
manner.

Coexistence is reached in a less direct manner for medium levels of
predation (III). For these values of predation rate, a single-patch
system would end up in extinction, but here the addition of space
plays a significant role. Shortly after the introduction of predators
their numbers explode in the central site, and the prey are eliminated
from that site. The predators also spread to neighboring sites, but due
to lower numbers of prey they cannot multiply as quickly, and so the
fringe prey populations are largely untouched. As the predator num-
bers drop in the central site the prey agents from the fringe slowly
move back to the main site, and are not killed as quickly by the
predators, due to their low numbers. The prey agents now multiply
by the use of the resource agent, and the cycle can now go on, with
predator numbers jumping due to high prey concentration. These
cycles are damped by the limiting factor of the prey competition, so
that the system settles to a coexistence state. The stabilizing effect of
the fringe sites seen here, which leads to coexistence in spatial het-
erogeneous systems, has been previously described as a migration
induced stability32,58.

This rescue effect, of fringe prey population returning to repopu-
late an extinguished island, is what allows the Diaspora survival
mechanism to take place. For higher predation rate (II), the prey
population after a predator invasion is largely decimated, with only
a sparse population of prey in the fringe. The probability of each prey
agent to come back to the resource site is negligible, but taken as a
whole, the prey have a viable chance to reform an island around the
resource site. Thus, the Diaspora mechanism is directly affected by
the probability of an agent to get to a given location in space, often
termed a first passage problem59. Given a very high predation rate (I),
the number of prey agents to survive the predator invasion is insig-
nificant, and thus the probability that any of the remaining prey
agent will return to the resource site quickly goes to zero. This trans-
ition of survival to extinction can therefore happen if either the prey
have a shorter life span, or the predators are more efficient, as seen in
Fig. 3b.

Considering how an island in decimated by predators given the
opportunity, we are left to ask what happens if the predators cannot
reach some of the islands. This scenario allows a different survival

mechanism that we term the Ebola mechanism. When competent
predators reach an island, they quickly invade into its main site that
contains the resource, and spread across the island. As described
above, the future of the island depends on the predation rate, but
regardless of the island’s fate, the predators may move on to infect
other islands if they are near enough. Thus, if there are enough
resources in the systems, all islands become connected, and the pre-
dators easily migrate across the system. In a system with only a few
resource units however, the islands are not connected, and the pre-
dators cannot migrate between them. In this scenario, if the preda-
tion is high enough, the islands reached by the predators will be
decimated. The predators will soon follow and die out, leaving the
distant islands untouched, and given time, the prey will repopulate
the system. Thus, the Ebola survival mechanism clearly depends on
the spatial structure of the system. Moreover, since a single predator
can create a whole new invasion wave if it reaches a distant island, its
correct description requires discrete agents. An example of the
dynamics of these two mechanisms can be seen in Fig. 4.

For the case of very high predation rate, we use a simple cluster toy
model (see methods section) to validate our understanding of these
two mechanisms. By assuming each island has an effective radius in
which predators can propagate, we ask what part of the system is
covered by the islands for this given radius. A system in which more
than one cluster of islands exist, will end in a state of prey survival by
the Ebola mechanism, while if all the clusters are connected, the
Diaspora mechanism might allow prey survival. The results from
the cluster toy model are compared to the IPS model in Fig. 5 a&b.

Extinction of the fittest. With the understanding of the mechanisms
that allow prey survival in high predation regimes, we can turn to the
general question of how predator and prey robustness effects their
persistence. As seen in the top-bottom arrow in Fig. 5e, we find that
predators are more susceptible to extinction if they have a higher
predation rate. This result can be seen as a specific case of the
‘‘Tragedy of the commons’’ of over predation56, but we note two
interesting additions. First, the predator persistence is increased by
the spatial heterogeneity, as seen when comparing the coexistence
range of a single-patch system in Fig. 2c, to the IPS model shown in
Fig. 5. Second, despite the over predation by efficient predators,

Figure 4 | Time evolution of two 2D systems, exhibiting the Ebola (upper row) and Diaspora (lower row) effects. Both system have c 5 1021 but

different value of b. A, B and C agents are colored in red, green and blue respectively. Soon after their arrival to the system, the C agents quickly spread

throughout the system (times 20,100). For higher b (upper row), with smaller B islands, the C’s cannot reach certain parts of the system which are left

unharmed; soon afterwards the C’s go extinct (time 1000). The remaining island of B’s (time 2000) slowly repopulate the whole system (time 10000). For

lower b (lower row), the islands are bigger and thus the C’s reach all of them, and only a handful of B’s survive on the fringe (time 300). These however

have a higher chance of reaching an A agent by diffusion due to their longer lifespan, (time 1000), and once they do, they repopulate the system more

rapidly due to the larger island size (time 3000).

www.nature.com/scientificreports
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the prey may persist due to the survival mechanisms previously
described. This effect however, is largely dependent on the prey’s
own characteristics. As seen in the left-right arrow in Fig. 5e, more
robust prey, with a longer life-span, leads to extinction of the prey,
rather than its survival. This is a side effect of the Ebola

mechanisms, that depends on the prey scarcity in space for its
survival. If the prey is too abundant throughout space, then the
predators can reach all the prey communities, and eliminate them.
Thus, it is the weaker and scarcer prey, that might survive a
predator invasion.
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Enrichment and dimensionality. A closer look at the role of
resource abundance, by comparing the different parameter-space
maps of Fig. 5c–f, shows another paradoxical consequence of the
Ebola mechanism. With more resource agents in the system, the
region of Extinction of both predator and prey, prevalent for high
predation and high prey life span, is enlarged. Taken together with a
slight enlargement of the Coexistence region for low predation, these
two effects contrast with the classic view of the ‘‘Paradox of
Enrichment’’60. Here, instead of instability due to enrichment, we
see that the predators actually benefit, even if only slightly, from
the addition of more resources. Further, it is the prey that become
unstable by the addition of resources. In the high predation regime,
where a low resource density would allow prey survival, more
resources bring a higher risk of prey extinction.

We finally look at the effect of system dimension on the results
presented. As seen in Fig. 6a&b, the phase regimes are similar for
both one dimensional (1D) and two dimensional (2D) systems, but
some differences are noticeable. More specifically, we see that the
Diaspora mechanism is more dominant in a 2D setting, and that the

both the Coexistence and the Extinction phases take up larger regions.
This appears to be a specific case in which with higher dimensions,
possible outcomes become more extreme, with larger coexistence
and extinction domains. In the limit of a fully connected system,
we nearly come back to the single-patch system, in which a
Survival phase is largely nonexistent, and only Coexistence and
Extinction prevail.

Discussion
The routes to extinction are numerous, yet natural populations man-
age to prelude them by various mechanisms. We have shown how
having a population made of discrete individuals in a heterogeneous
landscape can allow the system to retain its stability, even in adverse
conditions. These mechanisms, which allow for the persistence of
populations, depend on the probability of individuals to reach far
away populations. For parameters in which the transition between
survival and extinction occurs, a single individual’s migration will
determine the fate of the whole population. It is therefore instru-
mental to use explicit stochastic modeling when investigating the

Table 1 | Descriptions of the different reactions and migrations in the ABC model

Reaction/Migration (rate) Description

Prey reproduction: (a) a B agent finds a A agent, and reproduces into two B agents. AzB?
a

AzBzB

Prey decay: (b) a B agent dies out. B?
b

�

Predation: (c) a C agent consumes a B agent, reproducing into two C agents. BzC ?
c

CzC

Predator decay: (d) a C agent dies out. C ?
d

�

Prey competition: (E) two B agents compete and one of them is eliminated. BzB?
E

B

Resource migration: (DA) an A agent moves to a randomly chosen adjacent site. Ai ?
DA

Aj

Prey migration: (DB) a B agent moves to a randomly chosen adjacent site. Bi ?
DB

Bj

Predator migration: (DC) a C agent moves to a randomly chosen adjacent site. Ci ?
DC

Cj
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Figure 7 | The system phases Survival (Ebola), Survival (Diaspora) and Coexistence as a function of the predation rate, derived using both the Gillespie
algorithm and the binomial algorithm. System size was set to N 5 64, and NA 5 8 (resource agents). Prey’s decay rate was set to b 5 1022 (a),

and b 5 1023 (b).
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stability of the system and its dependence on system parameters.
Moreover, since the migration probabilities depend on the spatial
structure of the system, by allowing spatial heterogeneity to emerge
from intrinsic properties of the system we can focus on the role of
basic species interactions on its stability properties.

Indeed, the choice of predator-prey interactions allows us to do
just that. The Lotka-Volterra model is quite compelling in terms of
the minimal number of assumptions from which the predator-prey
systems properties are deduced. Yet its framework has two short-
comings: some of the empirically observed phenomenology cannot
be explained, and the effects of discreteness and spatial extension
have not been followed to their last implications. As it turns out these
two issues are solved together, as the effects of discreteness and
spatial structure correspond very well to features which would a
priori seem to be outside the Lotka-Volterra original framework.
Over-fitness of the prey individuals as could be measured in the
absence of predators leads to increased fragility of the prey popu-
lation to predator attack, and over-fitness of the predator individuals
(as could be measured on a single site) leads to the extinction of the
predator population before it even exhausts the prey. Such effects, not
expected in the original ODE formulation of the Lotka-Volterra
systems, are intrinsic to the discrete spatially extended system and
are in agreement with the empirical observations11,24.

One may speculate that it is the kind of mechanisms described
above that put limits to the degree of individual fitness which is
optimal from the point of view of species survival. This leads to the
possibility that the ecology is inherently never in equilibrium: as
individuals of a species increase their fitness the species survival
expectation decreases. Instead of converging towards some optimal
plateau, one may rater imagine the ecology as an ever evolving system
in which new imperfect species are born, they evolve towards higher
individual fitness by the usual Darwinian selection and are eliminated
by their excess efficiency, destroying the very ecological basis of their
existence. Thus one would have two levels of evolution: The usual
Darwinian one that leads to individual fitness increase and an addi-
tional one that acts on species. This latter is actually destroying the
species whose individuals are too fit, leaving space for new imperfect
species to take their place. This macro over-individual mechanisms
may facilitate a theoretical framework to account for major biological
jumps that take the system out of local equilibrium and throw it into a
more efficient but very different global states (unattainable by local
optimization). In particular it may constitute a mechanism for the
dynamics responsible for punctuated equilibrium.

It is rewarding that an entire series of empirical observations
which seem contradictory to the assumptions of the Lotka-
Volterra model, are in fact are borne out by the Lotka-Volterra
original framework as soon as discreteness and spatial extension
are properly accounted for.

Methods
The model. The ‘‘ABC model’’ considered in this paper describes a system with three
types of agents interacting in it; namely: resource (A), prey (B) and predator (C). The
system is composed of a finite number of sites linked through a coupling (migration)
matrix to form a meta-population system. Each agent is positioned on a specific site of
the system. There is no limit to the number of agents allowed on a site. An agent can
react only within that site, or diffuse to adjacent sites according to the connectivity
matrix which defines the topology of the system. The probability of an agent
migrating is density independent and as such is not affected by the number of agents
in the site. Each of the possible reactions and migrations occurs with a specific
probability per time unit (rate). The different types of reactions and migrations are
described in table 1.

The objective of the current study is to investigate the stability features of the
system. In the simulations, we create a semi-steady state of the system by initializing
the A’s and B’s randomly and simulating the system in the absence of C’s until a time
T. The time T is chosen such that there is no qualitative difference between the state
system at time T and the state at time 2 ? T.

We then introduce a number of seed C agents to the system at a randomly chosen
position. We classify the various realizations of the systems in three phases according
to their final state:

. The Coexistence phase: both B (prey) and C (predator) agents coexist in the
system for a long period of time.

. The Survival phase: only B agents remain, having survived after the C agents were
introduced into the system and eventually went extinct.

. The Extinction phase: no B or C agents remain in the system.

Extinction is an absorbing phase - once the number of B and C agents has reached
zero, no recovery is possible. Moreover, given the stochasticity of the system, internal
fluctuations will eventually take all finite systems into the extinction phase for infinite
time. We therefore consider a system to be in a specific phase if it remains in that
phase for a long enough time so that only very rare fluctuations (with a probability
exponentially small in the system size) will take the system out of its current phase.

Choice of parameters. The parameters chosen in this study represent the system’s
behavior for a wide range of parameters. The main parameters that were varied are the
prey decay rate (b) and the per capita predation rate (c). These relate to the robustness
of the prey and predator, respectively, and their values were varied between 100 and
1027. The other reaction and diffusion rates were kept constant. The prey
reproduction rate (a) was set to 0.5, since we are interested in the regime where prey
can survive, in the absence of predators, with a few resource agents. The predator
decay rate (d) was set to 0.1 to ensure that the predators are dependent on the prey for
long term survival. The prey competition rate (E) was set to 1026, to allow for large
communities of prey to exist. Diffusion rates for all agent types (DA, DB, DC) were set
to 1022, except for the results shown in Fig. 3, where DA was set to 0 for simplicity. We
note that as long as the different diffusion rates have similar values, the effective
movement of the A agents compared to the B and C agents is negligible, since many
more B and C agents exist, so that at least some of them end up following the A agent
whenever it moves to a different site.

Other alternatives to consider spatial heterogeneity exist. One such variation
was considered by altering the original AB model36 to include mortal A agents that
re-appear randomly after they die61. This variation showed very similar behavior
to the original AB model in which A agents are immortal and move on a lattice
similar the A’s in the ABC model studied here. Nevertheless, we cannot rule out
the possibility that the survival mechanisms described in this paper will change in
some extreme limits of the diffusion coefficients or when considering consumable
resources (A’s).

Numerical methodology. To display the role of spatiality and discreteness, we
compared the spatially extended discrete model (Fig. 2d) with models where either
the discreteness (Fig. 2b) or the spatial extension (Fig. 2c) or both (Fig. 2a) were
missing. The parameter-space maps for the discrete systems in Fig. 2c&d, were
obtained by stochastic Monte-Carlo simulations, using the following binomial
algorithm62:

We consider a time step, Dt, to be a sequence of updates of N sites, where N is the
number of sites in the system. The choice of which site to update is drawn randomly
from a uniform distribution, independent of previous choices. After updating the N
sites, the time is progressed by Dt. A site update consists of the following operations:

. The order in which actions are performed (migrations and reactions, as described
below) is random with equal probabilities.

. Migrations: for each agent type, the number of agents that migrate is drawn from
a Binomial distribution b(pi, Ni) where Ni is the number of agents of type i in the
site and pi 5 DiDt (Di is the migration rate for agent of type i). The agents that
were chosen to migrate are then randomly distributed amongst the adjacent sites,
using a binomial distribution as well: if nD agents were chosen to migrate and nN is
the number of nearest neighboring sites, nD1 5 b(nD, 1/nN) will migrate to the first
neighbor, nD2 5 b(nD 2 nD1, 1/(nN 2 1)) to the second nearest neighbor and so
on.

. Reactions: several different reactions are carried out simultaneously within the
site, with reaction probabilities as listed below. The change in number of agents is
computed for all reactions first, and only later are these summed and the number
of agents is updated.

The probabilities of the different reactions that take place, which were then used for
the Binomial distribution for each site update, were calculated as:

. Prey reproduction probability: Pa~1{ 1{aDtð ÞNA

. Prey death probability: Pb~1{ 1{bDtð Þ 1{EDtð ÞNB{1

. Predation probability: Pc~1{ 1{cDtð ÞNB

. Predator decay probability: Pc 5 dDt

where NA, NB are the number of A and B agents at the site where the reaction takes
place respectively. The time step size was set to Dt 5 0.1 in all simulations. This
ensures that the probability for all linear reactions and diffusions are never more than
0.1. With smaller Dt the simulation becomes more like a Gillespie simulation46, and
the set of equivalent simulations from both algorithms were compared to insure
consistency of the results, (see the subsection below describing the comparison to the
Gillespie algorithm).

The continuous simulations (Fig. 2a&b), were carried out in a similar fashion, but
instead of a binomial distribution, the average probability was used to determine the
fraction of agents that will undergo each process. As suggested by the name, the
number of agents was allowed to take any non-negative real value. A cutoff value of
10250 was used at the end of the simulation to determine the fate of the system (A
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cutoff of unity gives similar results, but requires a much longer run time of the
system). We note that these continuous simulations are not completely equivalent to
true ODE and RD models, as they use discrete time steps with average probabilities. In
practice however, within the parameter range in question, the differences are neg-
ligible, as can be gleaned from the phase transition lines in Fig. 2a. These lines were
derived from a linear stability analysis of the true ODE system.

The systems were studied either on a 1D (Fig. 2,3,5,6,7) or 2D (Fig. 4,6) lattice with
periodic boundary conditions, or a fully connected system, with each site connected
to all others via migration (Fig. 6c). The system is initially seeded with a certain
number of A agents which are randomly placed, as well as 4 ? N B agents, a number
large enough so that for all the simulations, sites with A agents will be potentially
inhabited by B agents. The system is then run until it reaches a semi-steady state of A’s
and B’s (t 5 106 was found to be sufficient for that purpose, throughout the parameter
space investigated). Here a steady-state indicates that doubling the system initiali-
zation time results in a qualitatively identical system. At that time, 10 C agents are put
into the site with the highest B density (enough so that the predators can have a
chance at predating before demographic fluctuations might eliminate them), and the
simulation continues until the phase of the system is determined, as detailed below.
All simulations were made using a custom code written in C, using the Tausworthe
generator for random number generation available through the gsl library63. For
building a parameter-space, 100 different realizations were carried out, each real-
ization having a different randomization seed used for the stochastic simulations.
Averaging over additional realizations did not show any qualitative difference on the
parameter-space, and hence a 100 realizations was considered sufficient. This was
repeated for different values of b and c, mapping the range of these parameters from
100 to 1027 with logarithmic resolution of 100.1. The average result from these reali-
zations was used for the analysis and for coloring each pixel in the parameter-space
maps, with the different phases Coexistence, Survival and Extinction colored by cyan,
green and black respectively. These phases were defines as:

. Coexistence (cyan) - After the introduction of C agents a system is run for
additional 2 ? 104 time steps, and still has both B and C agents in it.

. Survival (green) - A system that has no more C agents, after these were already
introduced, and has a viable number of B agents (NB . 100) in sites with A agents,
(that is, the B agents will continue to survive for a long time). Here we make no
further time requirement as in the coexistence phase, since a system with only B
agents is generally much more stable than when C’s also inhabit the system.

. Extinction (black) - A system that has neither B or C agents, before or after the C
agents are introduced. No time requirement is necessary as this is an absorbing state.

The Survival phase was further differentiated into three cases, depending on the
history of the system that led to this phase (as seen in Figs. 5–7). These are:

. Survival by weak predator (red) - No islands of B agents have been wiped out by
the C invasion.

. Survival by Ebola (green) - At least one island of B agents is left untouched by the
C invasion.

. Survival by Diaspora (orange) - All islands of B agents have been wiped out by the
C invasion.

Cluster toy model. The phase probabilities derived from the IPS model were also
analyzed using a cluster model, see Fig. 5a&b. Here, it is assumed that for each A
agent an island of B agents exists around it. Since the C’s have a higher decay rate
than diffusion rate, they can only (on average) pass through sites with a minimum
number of B agents. In this respect, each island has an effective radius in which the
C’s are able to propagate, defined as a d-sphere (d being the the dimension of the
system). Under the assumptions of this model, if d-spheres with a given radius are
randomly placed in the system, then as one increases the radius and the number of
spheres, initially the spheres will not be connected (NC), but eventually they will
make one connected cluster (OC), and finally they will cover the whole system (WS).
Although all systems that are WS are also OC, we will refer to these systems as only
WS. For a given number of spheres with a certain radius, there is therefore a
probability of having either a WS, OC or NC system. The WS state implies an
Extinction phase, since the C’s propagate through the whole system, killing off all B’s,
while the NC implies a Survival phase (via the Ebola Mechanism), since the C’s
cannot reach the different islands. Between these, the OC state gives either a Survival
phase (via the Diaspora Mechanism), assuming the surviving B’s on the fringe
manage to reach an A agent, or an Extinction phase, if they fail to do so.

To calculate the probabilities of the three states, for each different sphere radius and
sphere number, 105 different realizations were run with the positions of the spheres
randomly chosen from a uniform distribution. All these simulations were conducted
for a 1D system with 500 sites. To calculate the effective radius of the island (the radius
of the spheres), the profile of B density (its dependence on the distance from an A
agent) was averaged from 100 different realizations of single island stochastic simu-
lations (200 sites in a system with 1 A agent). Assuming the C’s immediately change
all B’s in that site to C’s (which is approximately the case for high predation rates),
then the probability of C’s propagating to the next site Pi, from a site with NB B agents,
is approximately given by the binomial distribution:

Pi~1{ 1{
DC

d

� �NB ið Þ

Where 1/d approximates the lifetime of a single C agent, and hence 1{
DC

d

� �

approximates the probability it will not diffuse to the next site. The probability P(r) of
C’s to reach the site that is r sites away from the A agent is therefore:

P rð Þ~ P
r{1

i~1
Pið Þ

This function has a sigmoid shape, and we can assume that the r value for which it
changes rapidly between 0 and 1, is the effective radius in question. We therefore want
to find the maximum of its derivative with respect to r. A good approximation for this
value is the first moment of the difference function of the probabilities, and we use it as
the effective radius:

R~
X?
i~1

P rð Þ{P rz1ð Þ½ � rz
1
2

� �

We note that for the calculation of probabilities of OC and WS we use a sphere size
of R 2 1 and R respectively, since for WS we do not require the C’s to continue
propagating the last hurdle, only to eliminate the last B’s, while for OC we do. We
finally note that given an OC state, the probability of the surviving B’s to reach the A
agent nearest them is approximately:

PDiaspora~1{ 1{Ppass
� �NB Rð Þ

, Ppass<
DC

b:R2

With NB given by the original B number on a site just outside the effective radius,
and Ppass is a rough approximation of the probability of a single B agent to reach an A
agent, assuming a lifetime of 1/b, and considering the relation of mean square dis-
placement for a random walker.

Comparison to Gillespie algorithm. The de facto standard method of simulating the
dynamics of an agent base model is to use the Gillespie algorithm, as previously
mentioned. While it allows to simulate a specific realization of a system with the exact
probabilities for all processes, it is very inefficient, especially for a large number of agents.
In this study we chose to use a binomial algorithm, as described in the Numerical
methodology subsection, which although being an approximation to a correct
realization of a system, is more computationally efficient. For example, when calculating
the parameter-space (as previously done in this study) for a small system (64 sites), the
binomial algorithm was approximately 500 times faster than the Gillespie algorithm.
However, the question remains whether the binomial algorithm approximates the
dynamics, and more importantly, the values measured in the system. The main
parameter controlling these values is the time step used for the binomial method, which
for consistency, was taken as Dt 5 0.1 throughout this study. We compare the results of
the algorithms for a small system of 64 sites, choosing two values of prey decay rate, and
looking at the phase probabilities as a function of the predation rate (Fig. 7).

The Gillespie algorithm takes a specific state of the system, and stochastically finds
the next event to occur, as well as the elapsed time until it takes place. More specifically
the algorithm is:

1. Choose some initial state of the system (see initial and final conditions below).
2. Calculate for each site in the system, the rates of all possible events in the

system (as detailed below).
3. Choose at random which event will take place, with the probability of choosing

each event taken at its rate as was computed in step 2.
4. Update the system according to the chosen event (that is, for the case of

diffusion randomly choose an adjacent site to move the agent to, or, in the
case of a reaction add and/or remove an agent in the given site).

5. Choose at random a time step, according to an exponential distribution with
the mean value of one over the sum of rates of the different possible events.

6. Update the time using the time step chosen in step 5 and go back to step 2.

Steps 2–6 are repeated until a predefined final condition takes place. The rates of
different events, calculated for each site, are:

. Total prey reproduction rate: Ra 5 aNANB

. Total prey death rate: Rb~bNBzEN2
B

. Total predation rate: Rc 5 cNBNC

. Total predator decay rate: Rd 5 dNC

. Total resource diffusion rate: RDA ~DANA

. Total prey diffusion rate: RDB ~DBNB

. Total predator diffusion rate: RDC ~DCNC

NA, NB, NC are the numbers of the A,B,C agents in a specific site, respectively.
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