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BACKGROUND AND AIMS: Diagnosis of monogenic disease is
increasingly important for patient care and personalizing therapy.
However, the current process is nonstandardized, expensive, and
time consuming. There is currently no accepted strategy to help
identify disease-causing variants in monogenic inflammatory
bowel disease (IBD). The aim of the study is to develop a priori-
tization strategy for monogenic IBD variant discovery through
detailed analysis of a whole-exome sequencing (WES) data set.
METHODS: All consenting pediatric patients with IBD presenting
to our tertiary care hospital during the study periodwere enrolled
and underwent WES (n ¼ 1005). Available family members also
underwent WES. Variants were analyzed en masse using the
GEMINI framework and were further annotated using data from
dbNSFP, Combined Annotation Dependent Depletion, and gno-
mAD. Known disease-causing variants (n ¼ 36) were used as
positive controls. Machine learning algorithms were optimized
and then compared to assist with identifying monogenic IBD case
characteristics. RESULTS: Initial gene-level analysis identified 11
genes not previously linked to IBD that could potentially harbor
IBD-causing variants. Machine learning algorithms identified 4
primary variant characteristics (Combined AnnotationDependent
Depletion score, dbNSFP score, relationship with a known im-
munodeficiency gene, and alternate allele frequency), and optimal
threshold values for each were determined to assist with identi-
fying monogenic IBD variants. Based on these characteristics, an
automated variant prioritization pipeline was then created that
filters and prioritizes variants from>100,000 variants per patient
downtoameanof15. Thispipeline is available online for all touse.
CONCLUSION: Leveraging a large WES data set, we demonstrate
a statistically rigorous strategy for prioritization of variants for
monogenic IBD diagnosis.

Keywords: Whole-exome Sequencing; Monogenic Disease; Pe-
diatric IBD; Machine Learning

Background

Inflammatory bowel disease (IBD) is a chronic lifelong
disorder that affects millions throughout the world1
and results in substantial long-term health care costs.2 It
has been estimated that 3% of pediatric patients with
IBD3 have monogenic IBD, where pathogenic variants in
the genome lead to disease. Monogenic IBD cases are
amenable to personalized therapy, including about one-
third of whom become eligible for curative hematopoietic
stem cell transplant.3 Thus, next-generation sequencing is
currently recommended for very young patients presenting
with IBD and those with features of a genetic disease, to
improve prognosis and inform treatment decisions.4

Although valuable, the process of identifying monogenic
forms of IBD through next-generation sequencing is time
consuming and challenging because of many factors: the
very high number of nonmonogenic variants returned per
person (usually >100,000), the rarity of disease-causing
variants in most populations, and the complex mecha-
nisms through which variants cause pathogenicity.5 Dozens
of pathogenic variants leading to monogenic forms of IBD
have been described.4,6 Monogenic disease-causing variants
are often discovered by an unstructured process after sub-
jective manual analysis on a patient-by-patient and variant-
by-variant basis, even in large-scale cohorts.3,7 There is
currently no widely accepted analysis pipeline available to

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.gastha.2021.11.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gastha.2021.11.002&domain=pdf


172 Mulder et al Gastro Hep Advances Vol. 1, No. 2
help identify disease-causing variants in monogenic IBD,
limiting diagnosis to expert centers with previous experi-
ence. This is a widespread challenge across many fields
involved in rare genetic diagnosis, including identification of
cancer-driving variants in oncology.8 A variant prioritization
strategy for identifying candidate monogenic IBD variants
could assist investigators and clinicians worldwide in this
difficult but invaluable process to help reduce diagnostic
odysseys.

Statistical analysis of large complex data sets, such as
genomic databases, can be challenging to manually analyze.9

Trial-and-error approaches to testing a hypothesis may not
always be able to uncover meaningful patterns in vast data
sets. Thus,machine learning algorithms can be used to identify
important relationships between specific aspects of a data set
that would otherwise be obscured by the size of the data.

In this study, we developed a prioritization strategy for
identifying candidate variants that could lead to monogenic
IBD by performing in-depth statistical analysis using a
previously curated large whole-exome sequencing (WES)
data set. We approached this problem by combining our
prior experience in variant identification with a statistical
approach through machine learning techniques. This open-
access variant prioritization pipeline could aid clinicians
worldwide in rapidly identifying disease-causing variants in
monogenic IBD cases with high sensitivity.
Methods
Patients

We performed WES on a single-center cohort of 1005
ethnically diverse (Figure A1) pediatric patients with IBD and
their relatives. Previously, approximately 3% of patients in our
cohort were found to have monogenic variants, which was sup-
ported by functional studies.3 From the initial 40 known variants
from 31 patients, there were 4 variants excluded from the pre-
sent study because of having been sequenced using different
methods from the remainder of the patients. The full details of
the variants, including the patient clinical information, variant
location, and impact of the variants, are detailed in Table 2 and
further in Table S6 in the study by Crowley et al3 (excluded from
the present study were patients 11, 15, and 26). In the present
study, these cases served as the positive controls for the algo-
rithms developed and validated in this study. This study was
approved by theHospital for Sick ChildrenResearch Ethics Board
(REB 1000024905), and all patients or guardians provided
informed consent. Any consenting, eligible patients younger than
18 years old with a diagnosis of IBD who were followed at
Hospital for Sick Children were enrolled. All probands and
available primary family members underwent WES (total n ¼
2305). Patients were excluded if they were referred for a second
opinion or had known syndromic disease, chromosomal abnor-
malities, or previously diagnosed primary immunodeficiency.

Whole-exome Sequencing
Peripheral venous blood samples were collected in

ethylenediaminetetraacetic acid-containing tubes. Genomic
DNA was extracted using a Puregene Blood Kit (Qiagen, Hilden,
Germany) as per the manufacturer’s instructions. Approxi-
mately 2 mg of DNA was used for WES. DNA was fragmented
through ultrasonication to a mean size of approximately 150
base pairs. Exomes were captured using the NimbleGen
VCRome capture design kit, version 2.1 (Roche, Basel,
Switzerland). Samples were sequenced by our collaborators at
the Regeneron Genetics Center on the Illumina HiSeq 2500
platform using paired-end 75 bp reads and 2 indexing reads.10

Further details on alignment, variant calling, and annotation
can be found in the Supplemental Methods.
Variant Annotation and Feature Selection
Genetic variant calls from all probands were collected in a

central database created using the GEMINI framework (version
0.18)11 and annotated for basic clinical phenotype (sex and age
at diagnosis), population frequency (minor allele frequency, via
gnomAD v2.1.1),12 evolutionary constraint (loss-of-function
observed/expected upper bound fraction [LOEUF], via gnomAD
v2.1.1), presence of previously reported variants (from ClinVar
Nov 2020),13 and in silico damaging prediction metrics (via
dbNSFP v4.1a14 and Combined Annotation Dependent Deple-
tion (CADD) phred score v1.315).

Lists of genes likely to harbor disease-causing variants were
identified from current literature in 4 gene lists (Table A2). For
the known monogenic IBD-associated genes, we reviewed
current definitive guidelines4,16 and recent publications.17,18

The Closest Disease-causing Gene (CDG) list was created from
the 99 known monogenic IBD genes, using the online Human
Gene Mutation Database CDG server (http://pec630.rockefeller.
edu:8080/CDG-OMIM/).19 The primary immunodeficiency
(PID) gene list was created using the latest summaries of
known monogenic PID genes.6,7,20 The IBD genome-wide as-
sociation list was created using the latest genes identified in the
literature.21–23 Variants were identified as being in proximity to
a gene of interest if found within the start or end of the gene
coordinates as per current Ensembl coordinates (v102, http://
ensembl.org,24 þ/�5000 bp).

Gene interaction data were extracted from the STRING
database (https://string-db.org, v11).25 Interconnections be-
tween the 99 previously known monogenic IBD genes were
quantified by the following parameters: “full network” type,
“confidence” value (for network edges), “experiments, data-
bases, co-expression, neighborhood, and gene fusion” interac-
tion sources, and minimum confidence was set to 0.7 (high).

Variant frequency histograms and curves for the annota-
tions are found in Figure A2. Two ClinVar features were eval-
uated for each variant. The “ClinSig Simple” value, provided by
ClinVar, denotes variants that have at least one reported
pathogenic or likely pathogenic variant at that location in the
database. Given that the “ClinSig Simple” value can be restric-
tive and that the aim of this study was to search broadly, we
created a “ClinVar Broad” value for each variant calculated
using a custom R script where a variant was identified as
positive if its ClinVar entry contained at least one label of the
following: “affects”, “risk factor”, “association”, “likely patho-
genic”, “pathogenic”, or “uncertain significance”, while
excluding any variants with labels of “benign” or “likely benign”
or “protective”.

For dbNSFP annotation, a custom R script was created to
summarize only the dbNSFP (version 4.1a) scores that provide
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classification of a variant (rather than only numerical values)
by the database or by the prediction algorithm authors (eg,
‘benign’ or ‘damaging’ rather than only a raw score). Full details
of the classification recommendations for each score are
available in the dbNSFP readme file. This functionality is
included in the final pipeline (https://github.com/DanJMulder/
monoibdpriority). Given that each algorithm can give multiple
predictions, the summary recommendations were given a value
of one if more than 50% of the total predictions for that algo-
rithm were damaging (or “high” or “medium”); otherwise, the
algorithm’s prediction was given a value of zero. There are 21
prediction algorithms in dbNSFP that have a recommendation
that can be summarized in this way. Thus, the total number of
algorithms predicting a variant to be damaging by this criterion
was summarized as a numeric score out of 21 for each variant
in the database.

Machine Learning
Several machine learning models were used in the data

analysis pipeline to explore the predictive value of each of the
16 annotated features (the selection process detailed in the
Supplemental Methods section) to identify disease-causing
variants compared with identification previously carried out
through manual filtration (Figure 1). This process then guided
the construction of our final filtering strategy. Algorithms
(univariate logistic regression, multivariate logistic regression,
classification and regression trees [CART], k nearest neighbors
[kNN], support vector machine [SVM], and random forests)
were selected for their applicability to the problem type (binary
classification), performance with an unbalanced data set, and
explainability (interpretability of feature contribution to the
model).

Data Preprocessing. Overall, a total of >5 million
variants were called in the cohort. Sixteen commonly used
variant annotation features were evaluated (Table A1), as
available, for each variant. The expected distributions of each
annotation were evaluated by exploratory data analysis
(Figure A2). Variants with missing data (6.2%) were removed
for the machine learning data analysis step. Numerical features
were normalized using the caret R package (v6.0) to a value
between 0 and 1.

Logistic Regression. Univariate and multivariate lo-
gistic regressions were performed using the base R glm
function to examine the association between the various
annotation features and the confirmed monogenic variants.
Once a univariate model was created for each individual
feature, multivariate models were created using a stepwise
forward addition approach, starting with the features with the
lowest Akaike information criterion (AIC) value in the uni-
variate models. The data were not resampled for the logistic
regression models.

Resampling. Given that most machine learning algo-
rithms have optimal performance with a 1:1 balanced data set,
the highly unbalanced nature of the binary classifier in this
study (36 known monogenic variants out of approximately 5
million variants total, a w1:130,000 ratio) was addressed by
resampling using the synthetic minority over-sampling tech-
nique (SMOTE) method26 from the DMwR R package (v0.4.1,
settings: k ¼ 5, per.over ¼ 1000, perc.under ¼ 2000). After
resampling, there were 286 synthetic monogenic variants and
5200 randomly selected nonmonogenic variants. After SMOTE
resampling (and after the logistic regression analysis per-
formed previously), the data set was then randomly separated
into training and test sets (80% and 20%, respectively).

Four machine learning algorithms were trained and
hyperparameters were tuned to optimize recall and then ac-
curacy using a grid search approach. The CART model was
created using the rpart R package (v4.1), where complexity was
optimized. The kNN classification model was created using the
caret R package (v6.0) by the inflection point on the receiver
operator characteristic at area under the curve (ROC AUC) vs k
graph (determined to be optimal at k ¼ 9). The single classifier
SVM model was created using the caret R package (with a radial
basis kernel and sigma ¼ 0.6310028 and cost ¼ 1). The random
forest model was created using the randomForest R package
(v4.6, with the optimized parameters being mtry ¼ 14 and
ntree ¼ 500). Once hyperparameter tuning was complete, a 10-
fold repeated cross-validation approach was used to finalize the
models.

A final variant filtration strategy was created using the
features that were consistently most predictive of monogenic
disease in both the logistic regression and random forest
models. Threshold values for numeric predictors were deter-
mined by the value that had the optimal specificity, while
maintaining 100% sensitivity (ie, without excluding any of the
known monogenic cases).

Software, Dependencies, and Statistical Analysis
All custom scripts were written in R v3.6.1. Custom scripts

are available on GitHub (https://github.com/DanJMulder/
monoibdpriority). R software packages and versions used for
both data processing and statistical analysis can be found in
Table A3. Logistic regression models were evaluated by AIC, P-
value, and area under the ROC curve. CART, kNN, SVM, and
random forest models were evaluated primarily by area under
the precision-recall curve, but evaluation also included recall,
Cohen’s kappa, F1 statistic, and area under the ROC curve.
Statistics were calculated by the R packages used to create the
models. Random forest feature relative importance was calcu-
lated by the inTrees R package (v1.2).

Results
Overall, custom annotated variants were analyzed and

prioritized by 2 processes: manual prioritization of filtered
variants (as previously described by Crowley et al3) and
machine learning. Strongly predictive variant features were
incorporated into the final prioritization strategy.
Gene-level Analysis Reveals Novel Potential Mono-
genic Genes and Relationships

Current guidelines suggest starting with known genes
when searching for disease-causing variants.27 Genes from
all 4 lists of potential candidate genes (monogenic IBD
genes, IBD genome-wide association study study genes,
primary immunodeficiency genes, and the closest disease-
causing genes database genes, Table A2) were noted to
have substantial overlap (Figure 2A). Notably, of the 4 lists,
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Figure 1. Study flow diagram. Patients were enrolled through local clinical referral and recruitment. Available family members
were also enrolled. Whole-exome sequencing was then performed, and variants were identified based on standard alignment
and quality control. The GEMINI framework was used to organize variant calls into a central database. Variants were then
annotated with 16 separate features, including minor allele frequency (MAF), evolutionary constraint (LOEUF), damaging
prediction (from CADD and dbNSFP databases), and occurrence in known genes (from conditions including monogenic IBD,
IBD genome-wide association studies, primary immunodeficiency, and the closest disease-causing gene database). Char-
acteristics most likely to be associated with causative variants for monogenic IBD were prioritized using parallel manual
curation and machine learning strategies. Manual curation for the local cohort had previously identified 36 variants as
monogenic (as described by Crowley et al, Gastroenterology 2020; 158(8):2208–2220), which were used as positive controls
for the present study. The data set was resampled using the SMOTE for machine learning. A stepwise filtering strategy was
then developed to create an easily implementable automated variant prioritization strategy that was then applied individually to
our internal validation cohort (including known positive control cases).
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42 genes were present in at least 3 of the 4 lists and 8 genes
were present in all 4 lists (Figure A3). Eleven of the genes
that appear in at least 3 lists had not previously been
associated with monogenic IBD.

Relationships and proximity between known monogenic
IBD-causing genes were investigated using network anal-
ysis. Figure 2B illustrates a central group of highly inter-
related genes associated with monogenic IBD
(approximated by the gray circle). The curated gene lists
and network analysis were added to the variant annotation
pipeline and could also serve as reference for further
manual variant curation by phenotype-genotype-mechanism
connections.
StatisticalEvaluationofGeneticAnnotationFeatures
in Identifying Monogenic IBD Variants

Initial univariate logistic regression identified and
quantified the contribution of individual variant character-
istics to identifying known monogenic variants. The AIC, an
estimation of prediction error relative to other features,



Figure 2.Genes common to IBD and IBD-related conditions have substantial interconnections. (A) A Venn diagram illustrating
the substantial number of overlapping genes identified between 4 related groups of important IBD-related genes. Gene lists
included the following: known monogenic IBD genes (n ¼ 99), genes identified on IBD genome-wide association study (n ¼
438), known monogenic primary immunodeficiency genes (n ¼ 400), and genes identified through the Closest Disease-causing
Gene tool (input was the 99 known monogenic genes, output n ¼ 468 genes). (B) STRING network analysis of the subset of
known monogenic genes that had at least one connection with another known monogenic gene. Edge thickness is scaled
based on STRING connection. The central core of genes is circled to highlight the strong interaction in these 19 genes. Genes
that appeared in at least 3 of 4 of our gene lists (as illustrated in panel A) are colored orange; all other nodes are colored blue.
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(Figure 3A) and ROC AUC (Figure 3B) identified 5 charac-
teristics (out of the initial group of 16 characteristics) that
had the highest contribution to prediction of a variant being
monogenic relative to the other characteristics (Table A4).
Multivariate logistic regression models were then built us-
ing combinations of these predictors. A combination of 4
predictors (CADD score, dbNSFP score, PID gene, and allele
frequency) was found to have the strongest statistical power
in predicting a monogenic variant in the multivariate model
(Figure 3C and D). Further feature incorporation beyond
Figure 3. Logistic regression identifies variant characteristics tha
(univariate) logistic regression comparison by AIC and (B) ROC
goodness-of-fit for predicting a monogenic variant. Multivariate
“Top 4” multivariate logistic regression model (highlighted in r
minimizes the AIC and maximizes the AUC, demonstrating this
these 4 features did not result in meaningful improvement
in statistical power (Table A5).

Feature selection using multivariate logistic regression
requires manual stepwise model building and iterative
decision-making. In an attempt to improve on these limita-
tions, a comparison was made between the ability of 4 su-
pervised machine learning models to maximize the AUC for
precision recall (P-R) curves. Positive control data
(Figure A4A) was enriched using SMOTE (Figure A4B).
Comparison between CART, SVM (Figure 4A), kNN
t are associated with monogenic disease. (A) Single predictor
AUC, where a lower AIC and higher AUC indicate relative

model comparison by AIC (C) and ROC AUC (D). Overall, the
ed), that includes the top 4 univariate predictors in panel A,
model as having an optimal goodness-of-fit.
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(Figure 4B), and random forests (Figure 4C) demonstrated
that the random forest model performed best in terms of P-
R AUC and also had the highest F1 statistic of 0.855
(Table A6). Relative feature importance was extracted from
the random forest model (Figure 4D) to help inform further
variant prioritization.

Stepwise Variant Filtering and Prioritization Strategy
Informed by the abovementioned analysis of the 7 fea-

tures most predictive of monogenic variants, a variant pri-
oritization strategy was created with the aim that it could be
customized for use by other groups looking to find rare
variants that could be responsible for monogenic IBD cases.
For an individual variant call format file (VCF), after quality
control, the following filters are applied by the pipeline:
RefSeq “protein coding”, CADD score >18, dbNFSP custom
score >2, gnomAD allele frequency <0.003, gnomAD LOEUF
<1.5, and coordinates within a known monogenic IBD or
primary immunodeficiency gene. Thresholds were set by
Figure 4.Machine learning algorithms improve feature selection
compared the ability of machine learning algorithms to identi
evaluated were (A) SVM, (B) kNN, and (C) random forests. The
recall curves. (D) Relative importance of features contributing to
evaluation of the minimum or maximum value in the known
monogenic IBD (positive control) cases in the cohort.
Notably, LOEUF is a gene-level filter, but at the determined
threshold, 2 known monogenic IBD genes (ORA1 and CYBA)
are eliminated. Hierarchical prioritization of the selected
variants was then performed and sorted stepwise by
occurring within a known monogenic IBD gene, RefSeq
“exonic” label, allele frequency (descending), and CADD
score (ascending).

For internal validation, the known monogenic cases
were re-evaluated individually from the raw VCF stage
(before splitting data into testing and training sets and
before SMOTE resampling) using our custom pipeline script
(Figure 5, available online at https://github.com/
DanJMulder/monoibdpriority). After initial filtering using
the strategy described previously, there remained, on
average, 15 variants per proband (an approximate reduc-
tion in variants of about 10,000-fold) with a range of 9–26
variants per patient. None of the known monogenic disease-
for monogenic variant identification. Precision-recall curves
fy the known monogenic cases in the data set. Algorithms
random forest model had the highest AUC on the precision-
the random forest model.
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causing variants were filtered out in this process. The pri-
oritization strategy resulted in a monogenic variant being
prioritized first in 18 of the 27 cases. For the cases with 2
monogenic variants (ie, either autosomal recessive or com-
pound heterozygous cases), both monogenic variants were
ranked in the top 3 variants in 8 of 9 cases. Only 2 variants
were ranked lower than third (fourth and sixth). Inheritance
patterns for every variant are computed in this pipeline if
family member sequencing is available. However, inheri-
tance models were not necessary to enable the high prior-
itization of the disease-causing variants in our positive
control cases. Of note, the open-source nature of this
filtration and prioritization code can be easily customized to
accommodate different thresholds by the end user to assist
with both more and less stringent filtration, as desired.

The final pipeline is open access and requires only the
raw patient sequence (VCF) file and local instances of 4
open-source tools (dbNSFP, Annovar, CADD, and gnomAD)
to run. Once set up, the pipeline runs entirely offline and is
fully customizable.
Discussion
In this study, we used detailed statistical analysis to

create a powerful variant prioritization tool for identifying
disease-causing monogenic IBD variants. On an individual
case basis, our open-source pipeline is able to use a small
number of variant characteristics to rapidly filter the
Figure 5. Variant prioritization pipeline and positive control filterin
thresholds used for initial filtering. Variants remaining after filtratio
known monogenic IBD gene, RefSeq “exonic” label, allele freque
lustrates internal validation of the filtering strategy by applying our
known monogenic IBD cases, where a disease-causing variant w
possible disease-causing variants from tens of thousands
per patient, to approximately 15 per patient. The pipeline is
also able to sort variants effectively, ranking the disease-
causing variants above all others in most cases, and
perform inheritance modeling.

This study addresses the current major success-limiting
step for diagnosis of monogenic IBD: disease causing variant
prioritization. Using rigorously defined, statistically deter-
mined parameters, the present pipeline provides a frame-
work for variant prioritization. Disease-causing monogenic
IBD variant discovery has previously been dependent on
manual trial-and-error curation and lacks any standardized
approach. Genetic sequencing is increasingly touted as cost-
effective, but this claim assumes the genetic variant is
discovered in the process.28 By providing a starting-point
filtering and prioritization strategy, analysts will have a
small and manageable list of high-confidence/probability
variants to more likely be able to identify candidate
monogenic variants for functional validation and diagnosis.

Despite beginning with 16 variant characteristics across
>5 million variants, this study was able to use a machine
learning–based approach to narrow down the strategy to 6
variant characteristics that were highly sensitivity for
monogenic variant discovery. This strength is dependent on
this unique data set which features hundreds of genomes of
patients with IBD analyzed over many years. Variant dis-
covery is plagued in many instances by the “needle in the
haystack” problem, where 1 or 2 diagnostic variants lie
g results. The pipeline illustrates the variant characteristics and
n are then prioritized (purple box) stepwise by occurringwithin a
ncy (descending), and CADD score (ascending). The graph il-
pipeline via the customR script for filtering and prioritization to
as ranked first or second by the pipeline in 25 of the 27 cases.
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within a data set of more than tens of thousands of
nonpathogenic variants. Our multivariate regression analysis,
in particular, clearly demonstrated the minimal improvement
that further variant annotations add to disease-causing
variant identification. Another strength of this proposed
prioritization approach is that providing sequenced family
members is not mandatory and is only used to support
variant prioritization if available, thus making this strategy
more amenable in low-resource settings.

An important limitation of the present study is that the
filtration thresholds identified from this data set may be
different if different methodology is used. For example, if
moving from whole-exome to whole-genome sequencing,
the consideration of an intronic variant would require new
data characteristics that do not include scores that rely on
codon changes or amino acid biochemistry. In addition, it is
likely that the gene lists in the present study will continue to
expand. Given these considerations, we have provided the
open-source code for the filtration pipeline, which can be
customized by end users for the many unique aspects of
other data sets. Validation on external data sets will be an
important future direction for this work. We also will aim to
improve the generalizability of this tool ourselves for
intronic variants as more monogenic IBD cases are identi-
fied through whole-genome sequencing.

Despite the computational power of this pipeline, the role
for humans in the analysis process is still necessary. Impor-
tantly, a statistical approach such as ours is prone to over-
fitting, especially when high-dimensional data are used to
identify a small number of monogenic IBD cases. This should
be taken into consideration when interpreting and adapting
the filtration and prioritization steps and applying them to
external patient exomes. As with other genetic diseases,5

monogenic IBD diagnosis must still rely on expert decision-
making in parallel to predefined pipelines to ensure appro-
priate genotype-phenotype correlation and appropriate
functional validation of mechanistic hypotheses.4 Indeed, the
strategy used in this study follows the current guidelines for
identifying variants implicated in causing disease.27

This prioritization strategy is technically limited by the
use of WES data, which does not allow for interrogation of
structural variants and intronic variants. In addition, despite
the demonstrated broad ethnic diversity of this cohort, this
was a single-center study. It is still likely that the filtering
parameters will need to be altered for cohorts where genetic
diversity is limited, leading to higher allele frequencies and
complicating inheritance patterns. Notably, the open-source
pipeline scripts linked previously can be easily customized
to local specifications. Currently, linking the clinical pheno-
type to monogenic variants suffers from the dual challenge of
lack of standardization in the medical record and the clinical
heterogeneity of diseases, such asmonogenic IBD.29 Previous
work has linked earlier onset and extra-intestinal manifes-
tations with monogenic disease.3 In our machine learning
models, neither sex nor age at diagnosis was statistically
associated strongly enough with monogenic cases to warrant
inclusion in our prioritization pipeline. As electronic medical
records and phenotype entry become more standardized (ie,
through projects like the Human Phenotype Ontology), it
seems likely that clinical phenotypes will soon be easier to
incorporate into the pipeline.

In summary, we present an open-source, novel, gener-
alizable strategy for genetic diagnosis of monogenic IBD.
The filtration and prioritization pipeline is based on a large
cohort experience with monogenic IBD diagnosis. We envi-
sion that this approach could empower multidisciplinary
teams worldwide to rapidly identify monogenic IBD-causing
variants and could also be adapted to other monogenic
diseases. Genetic diagnosis can greatly improve prognosis
through previously established personalized therapy.30
Supplementary Materials
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