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Abstract: The increase in the consumption of antidepressants is a public health problem worldwide,
as these are a class of compounds widely used in the treatment of several illnesses, such as depression
and anxiety. This work aimed to develop and optimize a method for the quantification of a number of
antidepressants and their metabolites (fluoxetine, venlafaxine, O-desmethylvenlafaxine, citalopram,
sertraline, and paroxetine) in 100 µL of oral fluid using the dried saliva spots (DSS) sampling approach
and gas chromatography coupled with tandem mass spectrometry (GC–MS/MS). The method was
validated, presenting linearity within the studied range, with detection and quantification limits
ranging between 10 and 100 ng/mL, and coefficients of determination (R2) of at least 0.99 for all
analytes. Recoveries were between approximately 13 and 46%. The analysis of precision and accuracy
presented acceptable coefficients of variation and relative errors, considering the criteria usually
accepted in the validation of bioanalytical procedures. The method herein described is the first to be
reported using DSS for the extraction of antidepressants, proving to be a sensitive, simple, and fast
alternative to conventional techniques, and capable of being routinely applied in clinical and forensic
toxicology scenarios.

Keywords: antidepressants; biological samples; dried saliva spots; GC–MS/MS; drug monitoring

1. Introduction

Depression is considered to be a serious and chronic mental illness characterized by
low mood, loss of interest and desire, sleep disorders, fatigue, suicidal behavior, the ability
to compromise social and occupational functions, and affecting individuals regardless
of their social or economic status [1–5]. The World Health Organization predicted that
this disorder would affect individuals of both sexes and of all ages, being considered the
second-leading cause of global disease by 2020, and leading consequently to early deaths
due to physical health problems and difficulty accessing health services [1,6].

The most common and effective treatment for moderate-to-severe depression is the ad-
ministration of antidepressants, which have been increasingly prescribed in recent decades
to treat this disorder, but also for other mental health problems such as anxiety, which
has led to several expert warnings [7–9]. Currently, second-generation antidepressants
are the choice of first-line treatment due to their similar efficacy to classic antidepressants
and fewer side effects [10,11]. This medication can be prescribed along with other classes
of compounds and can, consequently, lead to drug interactions that can be exacerbated
by the uncertainty of the dose to be administered. In addition, antidepressants show
inter-individual differences, and their therapeutic windows are narrow; as a result, ther-
apeutic drug monitoring is of great interest and importance for patient compliance and
safety [7,12,13]. Monitoring allows for the optimization of treatment with these drugs,
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adjusting and customizing the dosages for each patient and, thus, minimizing toxicity and
side effects, avoiding poisoning, lack of response, or non-adherence to treatment, saving
costs through the rational use of drugs and resources, and achieving better quality of
life [13–16]. For this monitoring to be possible—and also because the excessive use and
abuse of these drugs is verified, culminating in clinical and forensic cases of accidental or
voluntary overdose—it is extremely important that analytical methodologies are devel-
oped and made available for the identification of antidepressants and their metabolites in
biological fluids [10,16].

One of the steps to take into account in an analytical method is the isolation and
concentration of analytes of interest from the biological samples under study; the most
used procedures for extracting antidepressants are liquid–liquid extraction (LLE) [6,17],
solid-phase extraction (SPE) [6,18–20], and some miniaturized techniques—such as solid-
phase microextraction (SPME) [6,21,22], microextraction by packed sorbent (MEPS) [6,23–25],
and dispersive liquid–liquid microextraction (DLLME) [6,26–31]. There are also several
methods involving gas chromatography (GC) and liquid chromatography (LC) coupled
with mass spectrometry (MS) [26,30–38] or tandem mass spectrometry (MS/MS) [27,39–43],
ultraviolet (UV) [22,28,44–48], fluorescence [25], diode array (DAD) or photodiode array
(PDA) [24,37,49–51], and flame ionization (FID) [29,52–54] detectors; more recently, coupling
with time-of-flight mass spectrometry (TOF-MS) [21] or quadrupole time-of-flight mass
spectrometry (QTOF) [55] has been reported. However, analyses by GC–MS and GS–MS/MS
are still the methods of choice, due to their sensitivity and selectivity, which allow them to
obtain low limits of quantification, possess separation power for volatile compounds such as
the compounds under study, and are robust and generally available in most laboratories.

Presently, oral fluid is considered an excellent alternative in both the clinical and
forensic areas for drug determination in biological samples, presenting advantages such as
ease of collection, lower risk of adulteration, and a smaller drug detection window, allowing
a better correlation with drug effects [56–58]. As a way to overcome the disadvantage of
classical extraction methods that apply a larger volume of biological sample, miniaturized
techniques such as dried matrix spots have been explored, representing a simple and
fast procedure compared to other extraction techniques. Applied to blood samples, the
technique of dried blood spots (DBS) has been used to determine antidepressants [40,42].
Both the DBS and the dried saliva spots (DSS) techniques have been used in several areas,
such as pharmacology, in clinical pharmacokinetic studies, monitoring of drugs, and in the
determination of several drugs [59–61]. Our group has extensive experience in this area
of research, and has already published several papers on methods for the quantification
of pharmaceutical compounds based on the DSS sampling approach. Using only 50 µL
of oral fluid, Carvalho et al. [62] have determined antiepileptic drugs, Ribeiro et al. [63]
have determined methadone and its main metabolite EDDP, and Caramelo et al. [64] have
determined antipsychotic drugs. These techniques apply a smaller volume of biological
sample and have lower costs of storage and transport compared to classical sampling
techniques [60,61], and the DSS, by applying an alternative specimen, becomes an excellent
alternative in situations where the amount of sample is limited, as in the case of oral
fluid [57,65].

This article reports a methodology for the identification of some of the most fre-
quently prescribed antidepressants, such as fluoxetine (FLX), norfluoxetine (NFLX), citalo-
pram (CIT), sertraline (SRT) and paroxetine (PXT)—which are selective serotonin reuptake
inhibitors—and venlafaxine (VLX) and O-desmethylvenlafaxine (DVLX) as an antidepres-
sant and metabolite-selective serotonin–norepinephrine reuptake inhibitor, respectively,
within the limits of their therapeutic range in only 100 µL of oral fluid samples, using DSS
as an extraction procedure and GC–MS/MS analysis. To the best of our knowledge, this is
the first application of DSS as an extraction technique to identify these drugs in oral fluid
samples, which can be considered as an alternative to the classical techniques normally
used in routine laboratory analysis.
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2. Results and Discussion
2.1. Cross-Contribution Evaluation

In the development of the chromatographic method, an important parameter to be
evaluated is the cross-contribution of quantifying transitions of each antidepressant under
study to the remaining compounds. For this evaluation, the pure and derivatized standards
of each antidepressant were injected individually at a concentration of 20 µg/mL, and then
analyzed by extracting the chromatograms of the transitions of the remaining analytes in
MRM mode (not injected).

The cross-contribution for all compounds was calculated according to the follow-
ing formula:

Contribution (%) =
absolute peak area of the non-injected antidepressant quantifying transition

absolute peak area of the injected antidepressant quantifying transition
× 100 (1)

The results obtained for the cross-contribution evaluation are presented in Table
S1 (Supplementary Materials). Because the validation of the analytical method could
be compromised for great cross-contributions, for this study it was considered that the
contribution would be significant when greater than 5% [66], for which, when present
in the same sample, the compounds may present larger areas than those observed when
analyzed alone, and which would result in the presence of peaks in the retention times of
non-injected analytes in the extraction of their transitions in MRM mode.

As can be seen from the analysis of Table 1, it is possible to conclude that no cross-
contribution was observed between the studied antidepressants; consequently, method val-
idation will not be impaired if these drugs are present in the same solution. Thus, it was
necessary to use only a mixture of these antidepressants, without changing any of the charac-
teristic transitions of each compound. It was also possible to conclude that there were also no
contributions when evaluating the qualifying transitions of the analytes. Therefore, if some of
these compounds are present in the same biological specimen, it is still possible to provide a
quantitative result for all of them in the therapeutic concentration range.

Table 1. Linearity data.

Analytes Weight Linear Range (ng/mL)
Linearity

R2 a LOD/LLOQ (ng/mL)
Slope a Intercept a

FLX 1/× 100–500 0.0022 ± 0.0006 −0.0923 ± 0.0839 0.9965 ± 0.0022 100

VLX 1/× 100–500 0.0079 ± 0.0059 0.1559 ± 0.1499 0.9935 ± 0.0028 100

DVLX 1/× 50–500 0.0083 ± 0.0038 −0.0450 ± 0.0888 0.9954 ± 0.0025 50

CIT 1/× 20–200 0.0021 ± 0.0006 −0.0085 ± 0.0110 0.9935 ± 0.0040 20

SRT 1/× 40–250 0.0003 ± 0.0003 −0.0023 ± 0.0024 0.9964 ± 0.0032 40

PXT 1/× 10–100 0.0041 ± 0.0029 −0.0247 ± 0.0227 0.9959 ± 0.0013 10
a: Mean values ± standard deviation.

2.2. Optimization of the Extraction Procedure

The evaluation and optimization of the extraction process were performed with
samples spiked at 1 µg/mL, starting with the proper selection of the extraction solvent,
which should be able to solubilize the analytes of interest, minimizing the co-extraction of
other matrix components that can interfere with the chromatographic analysis; in addition,
it must be compatible with the analytical technique, and its volatility and polarity must be
taken into account. For this univariate study, several solvents were evaluated in triplicate
(n = 3), in order to choose the one that could obtain the best recoveries of the target analytes.
The chosen solvents were methanol, acidified methanol (pH 5), acetonitrile, acidified
acetonitrile (pH 5), methanol:acetonitrile (50:50, v/v), isopropanol, ethyl acetate, hexane,
and dichloromethane. These solvents were chosen based on existing scientific literature
on the topic [62–64,67]. In addition to using methanol and acetonitrile, and taking into
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account the neutral pH of oral fluid, these solvents were also tested at pH 5 in order to
understand whether using these acidified solvents would result in a better extraction yield
of the analytes of interest from the DSS cards. The use of this pH is related to the pKa of
the compounds.

For this first assay, a solvent volume of 2 mL was added to all samples, and the
remaining conditions were kept constant, with a 15 min agitation time, overnight drying
time, and 5 min of centrifugation at 3500 rpm. The results obtained are shown in Figure 1
and Table S2 (Supplementary Materials). The last three solvents mentioned above were
excluded because they yielded the worst chromatographic results and their evaporation
time was longer. For the remaining solvents, and after analyzing the results and performing
the statistical analysis, it was observed that, in general, methanol seemed to be the solvent
with the best extraction recovery, and for which there were no significant differences in
relation to the methanol:acetonitrile mixture for any of the compounds, which appeared
to be the second best choice for some of the analytes. However, for VLX, DVLX, CIT, SRT,
and PXT, there were significant differences between methanol and isopropanol, as well as
between methanol and acidified acetonitrile (pH 5), with Friedman’s statistics p = 0.005
and p = 0.029, respectively, for VLX and CIT; p = 0.002 and p = 0.016, respectively, for DVLX;
p = 0.009 and p = 0.005, respectively, for SRT; and p = 0.009 for the two groups of PXT.
The extractions were found to be more efficient when the compounds were not ionized;
therefore, methanol was chosen as the extraction solvent. Furthermore, lower standard
deviations and associated errors were also observed when methanol was used.

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 4 of 21 
 

 

For this first assay, a solvent volume of 2 mL was added to all samples, and the 
remaining conditions were kept constant, with a 15 min agitation time, overnight drying 
time, and 5 min of centrifugation at 3500 rpm. The results obtained are shown in Figure 
1 and Table S2 (Supplementary Materials). The last three solvents mentioned above were 
excluded because they yielded the worst chromatographic results and their evaporation 
time was longer. For the remaining solvents, and after analyzing the results and 
performing the statistical analysis, it was observed that, in general, methanol seemed to 
be the solvent with the best extraction recovery, and for which there were no significant 
differences in relation to the methanol:acetonitrile mixture for any of the compounds, 
which appeared to be the second best choice for some of the analytes. However, for VLX, 
DVLX, CIT, SRT, and PXT, there were significant differences between methanol and 
isopropanol, as well as between methanol and acidified acetonitrile (pH 5), with 
Friedman’s statistics p = 0.005 and p = 0.029, respectively, for VLX and CIT; p = 0.002 and 
p = 0.016, respectively, for DVLX; p = 0.009 and p = 0.005, respectively, for SRT; and p = 
0.009 for the two groups of PXT. The extractions were found to be more efficient when 
the compounds were not ionized; therefore, methanol was chosen as the extraction 
solvent. Furthermore, lower standard deviations and associated errors were also 
observed when methanol was used. 

 
Figure 1. Effects of the different organic solvents and/or mixtures in the extraction process (n = 3). 

Extraction time, volume of solvent, and drying time were evaluated using the 
statistical tool Design of Experiments (MINITAB, version 17). The results obtained are 
shown in the main effects diagrams of Figure S1 (Supplementary Materials). Extraction 
time showed to generally have little effect, as can be seen in the third column of the main 
effects graphs; therefore, it was decided to implement a 5 min extraction in order to take 
full advantage of the speed of this extraction process. On the other hand, the factor 
extraction volume and sample drying time proved to be the most important conditions 
in the recovery of most compounds and, therefore, a univariate study was carried out to 
optimize both parameters. 

Three extraction solvent volumes were studied—1, 2, and 3 mL—while 1, 6.50, and 
12 h were tested for the drying time, keeping all remaining factors constant. The 
selection of the solvent volume to be studied must take into account the minimum 
volume capable of extracting the entire spot, the compromise between the solvent 
volume and its evaporation speed, and the fact that it is a miniaturized technique. 

0.00

0.05

0.10

0.15

0.20

FLX VLX DVLX NFLX CIT SRT PXT

Re
la

tiv
e 

Pe
ak

 a
re

a

MeOH
MeOH pH 5
ACN
ACN pH 5
MeOH:ACN
Isopropanol

Figure 1. Effects of the different organic solvents and/or mixtures in the extraction process (n = 3).

Extraction time, volume of solvent, and drying time were evaluated using the statisti-
cal tool Design of Experiments (MINITAB, version 17). The results obtained are shown in
the main effects diagrams of Figure S1 (Supplementary Materials). Extraction time showed
to generally have little effect, as can be seen in the third column of the main effects graphs;
therefore, it was decided to implement a 5 min extraction in order to take full advantage of
the speed of this extraction process. On the other hand, the factor extraction volume and
sample drying time proved to be the most important conditions in the recovery of most
compounds and, therefore, a univariate study was carried out to optimize both parameters.

Three extraction solvent volumes were studied—1, 2, and 3 mL—while 1, 6.50, and
12 h were tested for the drying time, keeping all remaining factors constant. The selection of
the solvent volume to be studied must take into account the minimum volume capable of
extracting the entire spot, the compromise between the solvent volume and its evaporation
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speed, and the fact that it is a miniaturized technique. Regarding the drying time, the speed
of the extraction process must be taken into account, as it is an alternative to classic extraction
methods, and the possibility of processing and analyzing the samples on the same day or, at
the latest, the day after their arrival at the laboratory, must also be considered.

The obtained results are shown in Figure 2a,b (Supplementary Materials, Tables S3 and S4).
Significant differences were observed between 1 and 3 mL for the extraction solvent for CIT,
with a Friedman’s statistic of p = 0.014; as such, 1 mL of solvent was chosen. With regard to
drying time, when comparing the relative areas obtained for 1 and 6.5 h, there was a significant
difference, with a Friedman’s statistic of p = 0.014, for five of the compounds under study (FLX,
VLX, DVLX, CIT, and SRT); therefore, 1 h was selected.
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Figure 2. (a) Effects of the different solvent volumes (n = 3), and (b) evaluation of the influence of the
drying time of the samples (n = 3) in the extraction process.

2.3. Validation Procedure

The described method was validated according to the accepted international guide-
lines of the Scientific Working Group for Forensic Toxicology (SWGTOX) [68]. The valida-
tion for FLX, VLX, DVLX, CIT, SRT, and PXT was performed following a 3-day validation
protocol, and the studied parameters included selectivity; linearity and limits; intra-day,
inter-day, and intermediate precision and accuracy; recovery; and stability. NFLX was not



Pharmaceuticals 2021, 14, 1284 6 of 20

included in the validation procedure because it was not possible to achieve linearity; for
this reason, this compound was evaluated qualitatively. Therefore, its cross-contribution,
extraction process optimization, and recovery were the only studied parameters.

2.3.1. Selectivity

The selectivity of the described method was evaluated by analyzing pools of blank
oral fluid samples from 10 different sources, in order to investigate possible interferences
in the retention times and selected transitions for the analytes under study.

Identification criteria taken into account for positivity with associated confidence
included an absolute retention time within 2% or ±0.1 min of the retention time of the same
analyte in the control sample, along with the presence of two transitions per antidepressant.
In order to ensure adequate confidence in the identification of these compounds, the
maximum allowed tolerances for the relative ionic intensities between the transitions (as a
percentage of the base peak) were as follows: if the relative ionic intensity in the control
sample was greater than 50%, an absolute tolerance of ±10% was used; if this value was
between 25 and 50%, a relative tolerance of ±20% was allowed; if it was between 5 and
25%, an absolute tolerance of ±5% was accepted; and for relative ion intensities of 5% or
less, a relative tolerance of ±50% was used [69]. Taking into account these criteria, the
analytical method would be considered selective if no compound could be identified in the
blank oral fluid samples.

After the selectivity assessment, all antidepressants were unequivocally identified in
all fortified samples, and no interferences were observed in blank samples, for which they
could be detected and/or incorrectly identified as the analyte of interest. Therefore, the
method was considered to be selective. Figures 3 and 4 show chromatograms of a blank
sample and the sample fortified at the lower limit of quantification (LLOQ), respectively.

2.3.2. Calibration Curves and Limits

Fortified oral fluid samples were processed and analyzed using the extraction proce-
dure described above in the range of 100–500 ng/mL for FLX and VLX, 50–500 ng/mL for
DVLX, 20–200 ng/mL for CIT, 40–250 ng/mL for SRT, and 10–100 ng/mL for PXT. The
linearity of the method was evaluated using six calibrators with three replicates, and the
calibration curves were obtained by plotting the peak area ratio between each compound
and the internal standard (IS) against the analyte concentration. The IS protriptyline (PTP)
was chosen because it is not commercially available as a therapeutic drug in Portugal;
therefore, the chance of it appearing in authentic samples, making quantitative analysis
difficult, is very unlikely. In addition, the chemical structure of the IS is similar to that
of the studied compounds, which allows for improved linearity, accuracy, and precision,
while also minimizing analyte losses during sample preparation.

The acceptance criteria of the calibration curve included a coefficient of determination
(R2) of at least 0.99, along with accuracy (mean relative error (RE) (bias)) of the calibrators
within ±20% of the nominal value [68]. The calibration intervals considered were wide
and, to compensate for heteroscedasticity, weighted least squares regressions had to be
adopted. The weighting factor 1/× was chosen for all compounds under study. The
method was linear within the adopted calibration ranges for all analytes, covering the
respective therapeutic ranges, and the calibrators’ RE between the measured and spiked
concentrations was within ±20% for all concentrations. With regard to the LLOQ value, this
was defined as the lowest concentration that could be measured with adequate precision
and accuracy—that is, with a coefficient of variation (CV, %) of less than 20% and an RE (%)
within a range of ±20% of the nominal concentration. The limits of detection (LODs) were
determined as the lowest concentrations that showed a discrete peak clearly distinguishable
from the blank, had a signal-to-noise ratio of at least 3, and corresponded to the LLOQ
value for all analytes. The data from the calibration curves and limits are shown in Table 1.
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The limits were considered satisfactory taking into account the purpose of the present
study to develop a method for quantifying these antidepressants in the context of
monitoring—particularly within their respective therapeutic ranges. Some of the pub-
lished studies include the study by Marasca et al. [23], which developed a methodology to
identify some of the antidepressants of this study in oral fluid using volumetric absorptive
microsampling (VAMS) as an extraction technique after microsamples were pretreated by
means of MEPS, along with analysis by liquid chromatography with sequential spectropho-
tometric and spectrofluorimetric detection. The authors achieved limit of quantification
(LOQ) values of 7 ng/mL for FLX and NFLX, 1 ng/mL for CIT, and 5 ng/mL for SRT,
using 100 µL of sample. Shin et al. [20] developed a method for quantifying a wide range
of antidepressants—including all of the compounds quantified in this work—in 1 mL
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oral fluid samples, with extraction by SPE and analysis by LC–MS/MS, achieving an
LOQ of 10 ng/mL for all compounds. Applying the same volume of biological speci-
men, along with the same extraction technique and the same chromatographic analysis,
Coulter et al. [8] achieved an LLOQ of 5 ng/mL for FLX and SRT. Additionally, with LC–
MS/MS analysis and extraction of 200 µL of oral fluid sample via an automated SPE system,
de Castro et al. [70] achieved an LLOQ value of 2 ng/mL for FLX, NFLX, VLX, CIT, SRT,
and PXT. However, those methods employed liquid chromatographic–mass spectrometric
approaches—a kind of technology not accessible to all laboratories. Nevertheless, our less
sensitive instrumentation did not impair the quantification of these antidepressants for the
established values. In addition, our method used a smaller volume of biological sample
and a smaller volume of organic solvents, in addition to being a much simpler and faster
extraction procedure.

2.3.3. Intra-Day, Inter-Day, and Intermediate Precision and Accuracy

Considering the validation criteria, the precision of the method was expressed in terms
of CV (%), for which the accepted limit was ≤20% for all concentrations, and the accuracy
was characterized in terms of the mean RE (%) between the concentrations measured using
the calibration equation and the nominal concentrations, within a ±20% interval.

Regarding intermediate precision and accuracy, quality controls (QCs) were evaluated
by analyzing samples at three concentration levels, in triplicate (n = 9). CVs typically less
than 18% were obtained, with accuracy within a ±14% interval; these results are shown in
Table 2.

Table 2. Intermediate precision and accuracy (n = 9) in oral fluid samples.

Analytes Spiked (ng/mL) Measured a (ng/mL) CV (%) RE (%)

FLX
125 133.65 ± 13.57 10.15 6.92
275 298.07 ± 18.17 6.09 8.39
450 468.57 ± 58.50 12.48 4.13

VLX
125 126.05 ± 20.47 16.24 0.84
275 280.38 ± 42.13 15.03 1.96
450 434.36 ± 51.96 11.96 3.47

DVLX
62.5 66.57 ± 10.17 15.28 6.51

137.5 141.81 ± 21.86 15.42 3.14
450 469.84 ± 54.61 11.62 4.41

CIT
25 26.73 ± 3.29 12.30 6.94
55 49.14 ± 5.87 11.94 −10.65
180 183.10 ± 27.42 14.97 1.72

SRT
50 49.73 ± 8.61 17.31 −0.54
110 108.69 ± 13.43 12.35 −1.19
225 234.13 ± 33.14 14.15 4.06

PXT
12.5 14.18 ± 0.74 5.19 13.43
27.5 26.42 ± 1.59 6.01 −3.94
90 100.20 ± 4.33 4.33 11.33

All concentrations in ng/mL; relative error [(measured concentration—spiked concentration/spiked concentra-
tion) × 100]. CV: coefficient of variation; RE: relative error. a: Mean values ± standard deviation.

Inter-day precision and accuracy were evaluated at six concentrations within a 3-day
period, for which CVs less than 12% were normally obtained, with an RE value within
±14%; the results are presented in Table 3.
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Table 3. Inter-day and intra-day precision and accuracy in oral fluid samples.

Analytes Spiked (ng/mL)
Inter-Day (n = 3) Intra-Day (n = 6)

CV (%) RE (%) CV (%) RE (%)

FLX

100 1.86 2.44 8.83 7.89
200 4.19 −0.55 - -
250 5.61 −2.34 - -
300 2.88 −1.30 4.00 −4.83
400 1.18 0.35 - -
500 0.75 1.40 6.31 −5.39

VLX

100 5.04 0.62 14.64 −0.95
200 9.63 −1.77 - -
250 3.94 1.06 - -
300 2.59 −0.38 5.23 −12.99
400 2.83 0.42 - -
500 3.10 −0.22 3.23 −8.39

DVLX

50 7.65 6.34 8.98 −2.52
100 8.56 −3.73 - -
125 11.26 −3.47 - -
300 2.79 −1.63 11.63 −12.04
400 2.24 2.66 - -
500 2.01 −0.17 3.35 −3.89

CIT

20 10.27 13.16 13.31 6.10
40 7.61 −7.00 - -
50 8.82 −8.42 - -
120 2.88 0.68 8.37 −9.22
160 1.10 −0.98 - -
200 2.14 2.57 5.07 −10.16

SRT

40 3.75 5.23 7.76 1.75
80 2.57 −6.29 - -
100 5.77 −0.70 - -
150 1.83 0.83 3.85 −10.15
200 1.41 −0.14 - -
250 1.62 1.07 5.19 −9.56

PXT

10 1.48 12.83 1.44 9.72
20 1.58 −5.88 - -
25 3.78 −9.05 - -
60 2.42 −1.04 7.02 −6.55
80 0.95 1.80 - -
100 1.60 1.34 5.57 2.53

All concentrations in ng/mL; relative error [(measured concentration—spiked concentration/spiked concentra-
tion) × 100]. CV: coefficient of variation; RE: relative error.

With regard to intra-day precision and accuracy, three concentration levels were evalu-
ated by analyzing six replicates on the same day. The CVs obtained were below 15% at the
concentration levels studied, and the mean RE was within the range of ±13% (Table 3).

2.3.4. Extraction Recovery

Regarding the study of absolute recovery, two sets of samples (n = 3) were prepared at
low, medium, and high concentrations (Supplementary Materials; Table S5). One of the
groups, representing 100% recovery, was prepared by spiking the blank oral fluid samples
only after extraction, while for the other group the samples were fortified with the analytes
under study before the extraction process. The IS was added only after spot extraction for
both sets of samples. The recovery results were obtained by comparing the relative peak
areas of the analytes from the samples of the second group (obtained via the peak areas of
the IS) with those of the analytes from the samples belonging to the first group; the results
obtained are shown in Table 4. The extraction efficiencies ranged between approximately
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13 and 46% for all compounds which, although low, are acceptable. This may be justified
due to an inefficient extraction from the paper, since the recovery of analytes from the
spots is related to the efficiency of their extraction process. In order to maximize this
recovery, the parameters under study for the optimization of the extraction process were
evaluated between considerable intervals, and complementing the univariate study with
the analysis by experimental design, in order to achieve the best compromise between the
speed of the extraction method and the recovery of analytes. Furthermore, it should be
noted that although the recoveries obtained for some of the antidepressants were low, they
represent the absolute extraction of the compounds, and did not affect the sensitivity of the
method—even when using a low volume of biological sample—since, when using only
a volume of 100 µL, small amounts of the analytes under study could be detected and
quantified with adequate precision and accuracy.

Table 4. Recovery of antidepressants (n = 3) from the oral fluid samples.

Analytes
Recoveries a (%)

Low-Spiked Concentration Medium-Spiked Concentration High-Spiked Concentration

FLX 21.68 ± 0.41 22.70 ± 1.20 23.29 ± 1.28

VLX 46.48 ± 4.44 29.58 ± 3.14 35.79 ± 1.91

DVLX 35.77 ± 2.45 33.88 ± 1.09 38.49 ± 3.21

NFLX 38.30 ± 7.61 13.03 ± 2.38 14.07 ± 2.59

CIT 40.78 ± 6.15 41.57 ± 7.18 35.25 ± 2.04

SRT 24.26 ± 2.70 21.56 ± 2.60 24.42 ± 0.55

PXT 21.53 ± 2.66 21.74 ± 1.91 20.47 ± 0.91
a: Mean values ± standard deviation.

Since this study represents a new applicability of DSS sampling for antidepressant
specimens, the results obtained should be compared to other studies reported in the litera-
ture that use other microextraction techniques, or that use the same extraction technique
but applied to other biological samples—for instance, blood (DBS). Moretti et al. [40] used
DBS sampling followed by SPE to identify a large number of antidepressants, including
the analytes of the present study, obtaining recovery values between approximately 32 and
120% for FLX, 87 and 119% for VLX, 85 and 95% for DVLX, and 67 and 99% for CIT, in
85 µL of postmortem blood. The better recoveries compared to the present study can be
explained by the differences between biological samples and the better extraction efficiency
by the use of SPE after DBS. Marasca et al. [23] developed a methodology to identify
antidepressants in oral fluid using VAMS as an extraction technique after microsamples
were pretreated by means of MEPS. The authors obtained recovery values between 91 and
96% for FLX, 88 and 91% for NFLX, 91 and 95% for CIT, and 90 and 95% for SRT, using
the same volume of 100 µL of oral fluid as in the present work. Similarly to the article
by Moretti et al. [40], these authors also obtained higher recovery values compared to the
described work, which can also be justified by the use of a pretreatment process of samples
via a cleaner microextraction technique than DSS, along with subsequent microsampling
by VAMS, which enhances the extraction efficiency. In addition, this method has good
sensitivity to therapeutic concentration ranges of the antidepressants under study, and DSS
can be considered a powerful technique, resulting in a fast and efficient extraction of target
analytes with lower sample and solvent consumption in less time.

2.3.5. Stability

Compound stability was evaluated under different conditions and intervals between
processed samples, assessed for short-term and freeze/thaw stability, and was studied
at the concentrations of the QCs (n = 3), at 125, 275, and 450 ng/mL for FLX and VLX; at
62.5, 137.5, and 450 ng/mL for DVLX; at 25, 55, and 180 ng/mL for CIT; at 50, 110, and
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225 ng/mL for SRT; and at 12.5, 27.5, and 90 ng/mL for PXT. The samples submitted to
stability studies were compared to freshly prepared samples, analyzed and quantified on
the same day and using the same calibration curve, for which the concentrations were
compared and the respective CVs and REs calculated. Antidepressants were considered
stable if the criteria of CVs below 20% and REs within the range of ±20% were met.

To study the stability in processed samples, previously analyzed extracts were rean-
alyzed again after being stored at room temperature in the equipment’s autosampler for
a period of 24 h. The results obtained allowed us to conclude that none of the studied
compounds were stable, because the values of the CV and RE parameters did not meet the
aforementioned criteria.

Short-term stability was evaluated with oral fluid samples spiked at the above concentra-
tions, and then left at room temperature for 24 h, after which they were applied to the spots for
further extraction. The compounds under study were not stable at the lowest concentration
studied for each of them, but they were shown to be stable for the remaining concentration
levels, with CVs typically lower than 12% and an accuracy within a range of ±20%.

With regard to freeze/thaw stability, oral fluid samples spiked to the concentrations
described above were stored at −20 ◦C for 24 h. After this time, they were thawed at
room temperature and refrozen for another 24 h under the same conditions—a cycle that
was repeated twice more before the samples were applied to the spots and analyzed. The
antidepressants under study proved to be stable for at least three freeze/thaw cycles, since
the CVs obtained were below 12% and the mean RE was within the range of ±20% for all
concentration levels.

The data related to stability allow the sample analysis to be performed within a
comfortable time window, as the analytes under study are not significantly affected by the
storage conditions.

2.3.6. Dilution Integrity

For situations where the analytes of interest are present in concentrations that exceed
the upper limit of quantification (ULOQ) of the method, it is necessary to proceed with the
dilution of authentic samples.

To assess the integrity of the dilution, three dilution factors (1:2, 1:5, and 1:10) were
tested for all analytes under study, allowing the concentrations to fall within the linearity
range. Dilutions were made with blank oral fluid, allowing an accurate determination of
antidepressants after multiplication by the dilution factor.

The results showed CVs below 20% and RE values within the interval of ±20%. Conse-
quently, even highly concentrated samples could be correctly analyzed after proper dilution.

2.3.7. Method Applicability

The described and validated procedure was successfully applied in routine analysis of the
target antidepressants in authentic oral fluid samples belonging to patients under treatment at
the Centro Hospitalar Cova da Beira, in order to demonstrate the applicability of the method.
Table 5 shows the results from the analyzed authentic oral fluid samples, and Figure 5 shows the
chromatograms obtained when some of the authentic samples were analyzed using the present
technique. It can be seen that these oral fluid samples belong to consumers of the compounds
under study, with concentration values below but also above the therapeutic range defined
for these antidepressants—namely, sample 1, for which a concentration value of 542.1 ng/mL
for FLX was obtained; sample 2, with a concentration value of 2033.4 ng/mL for VLX and
701.7 ng/mL for the metabolite DVLX; and sample 4, for which a concentration of 242.8 ng/mL
was obtained for CIT. Therefore, the applicability of the method was demonstrated, and
it can be used in routine analysis, allowing for the identification and quantification of the
antidepressant and its main metabolite whenever present.
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Table 5. Analysis of the authentic samples.

Samples Analytes Concentration (ng/mL)

1 FLX/NFLX 542.1/Detected—Identified

2 VLX/DVLX 2033.4/701.7

3 CIT 32.2

4 CIT 242.8

5 VLX/DVLX 136.0/356.8
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3. Materials and Methods
3.1. Reagents and Standards

Standard solutions of fluoxetine hydrochloride (FLX), venlafaxine hydrochloride (VLX),
norfluoxetine (NFLX), citalopram (CIT), and paroxetine (PXT) were provided by Sigma-
Aldrich, (St. Louis, MO, USA). O-desmethylvenlafaxine (DVLX) was acquired from LGC-
Standards (Teddington, London), and sertraline hydrochloride (SRT) was kindly offered by
Pfizer (Groton, MA, USA), and their molecular structures and molecular weights are shown
in Figure S2 (Supplementary Materials). The internal standard (IS) protriptyline (PTP) was
acquired from Sigma-Aldrich (Lisbon, Portugal). Methanol (Merck Co, Darmstadt, Germany)
and acetonitrile (Carlo Erba Reagents, Val-de-Reuil, France) were both of analytical grade.
Ethyl acetate, 2-propanol, hexane, and dichloromethane were acquired from Fisher Scientific
(Loughborough, UK). N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) and trimethyl
chlorosilane (TMCS) were acquired from Macherey-Nagel (Düren, Germany). Whatman™
903 protein saver cards were acquired from Sigma-Aldrich (Sintra, Portugal).

All standards were acquired at 1 mg/mL. Working standard solutions were prepared
by properly diluting the starting solutions with methanol to the final concentrations for the
two compound mixtures. Mixture 1 contained FLX, VLX, DVLX, and NFLX at 10 µg/mL,
CIT at 4 µg/mL, SRT at 5 µg/mL, and PXT at 2 µg/mL, while mixture 2 contained FLX and
VLX at 5 µg/mL, DVLX and NFLX at 2.5 µg/mL, CIT at 1 µg/mL, SRT at 2 µg/mL, and PXT
at 0.5 µg/mL. A working solution of the IS was prepared in methanol at a concentration of
1 µg/mL. All of the above solutions were stored in the absence of light at 4 ◦C.

3.2. Biological Specimens

Blank oral fluid samples used in all experiments for the present work were obtained by
laboratory staff. Authentic oral fluid samples were analyzed routinely and were obtained
from patients under treatment at the Centro Hospitalar Cova da Beira. These samples were
sent to our laboratory (Laboratório de Fármaco-Toxicologia, UBIMedical, Covilhã, Portugal)
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for analysis. All oral fluid specimens were collected by spitting, and without the use of specific
collection devices. These samples were stored refrigerated at −20 ◦C until analysis.

3.3. Sample Preparation

The final extraction procedure for the antidepressants was as follows: After homoge-
nization in the vortex mixer, 100 µL of oral fluid was applied to Whatman® 903 protein
saver cards and dried for 1 h at room temperature. Then, the spots of each sample were
cut with scissors, placed in tubes, and 1 mL of methanol and 20 µL of IS (1 µg/mL) were
added, followed by the extraction process—performed with a roller mixer for 5 min at
room temperature. The samples were centrifuged for 5 min at 3500 rpm, and the spots were
removed from the tubes. The extract was evaporated to dryness under a gentle nitrogen
stream, and was subsequently derivatized with 50 µL of MSTFA with 5% TMCS for 2 min
in a microwave oven at 800 W. Finally, a 2 µL aliquot of the derivatized extract was injected
into the GC–MS/MS system.

The amount of the derivatization agent used is a common parameter in the develop-
ment of analytical procedures, but also an internal factor optimized by the research group,
whereby a compromise is required between the amount used and the chromatographic
behavior and signal of the analytes of interest. The derivatizing agent is always added in
excess, so as to not be the limiting reagent of the reaction.

3.4. Gas Chromatographic and Mass Spectrometric Conditions

Chromatographic analysis was performed using an HP 7890A gas chromatography
system equipped with a model 7000B triple-quadrupole mass spectrometer, both from
Agilent Technologies (Waldbronn, Germany), along with an MPS2 autosampler and a PTV
injector from Gerstel (Mülheim an der Ruhr, Germany). Separation of the antidepressants
was achieved using a capillary column (30 m × 0.25 mm I.D., 0.25 µm film thickness) with
5% phenylmethylsiloxane (HP-5MS), provided by J&W Scientific (Folsom, CA, USA).

The initial oven temperature was maintained at 150 ◦C for 1 min, and then increased to
280 ◦C at 5 ◦C/min and held for 4 min, giving a total runtime of 31 min. The injection inlet
temperature was set at 250 ◦C, and the detector temperature was set at 280 ◦C. The 2 µL of
derivatized sample was introduced into the gas chromatograph via splitless injection mode,
and the helium was used as a carrier gas with a constant flow rate of 0.8 mL/min. The
mass spectrometry was conducted with a filament current of 35 µA and electron energy of
70 eV in the positive electron ionization mode, and nitrogen was utilized as a collision gas
at a flow rate of 2.5 mL/min. Data were acquired in the MRM mode using the MassHunter
WorkStation Acquisition Software rev. B.02.01 (Agilent Technologies).

The retention time and mass-to-charge ratio (m/z) spectra were initially obtained
by individually injecting each of the standard antidepressant solutions at a comfortable
concentration (100 µg/mL), and then used to identify the different compounds under
study. Then, two transitions were chosen for each of the compounds, of which the most
abundant transition was used for compound quantitation and the second transition for
confirmation purposes. This choice of these transitions was made in order to obtain better
selectivity and sensitivity for the analytes and less matrix interference, and the choice
of ions for these same transitions was based on the highest masses and most abundant
mass peaks (including more specific masses for each compound) in order to maximize the
signal-to-noise ratio in the matrix extracts. Table 6 shows the detection criteria—such as
retention time, quantifier transition, qualifier transition, and collision energy—selected for
each analyte.
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Table 6. Retention times, selected transitions, and collision energy for the identification of the antidepressants.

Analytes Retention Time (min) Quantifier Transition (m/z) Qualifier Transition (m/z) Collision Energy (eV)

FLX 14.20 261.2–219.1 381.6–116.1 20 (20)

VLX 15.86 134.1–119.1 178.8–134.1 10 (20)

DVLX 16.86 191.7–177.1 391.0–273.3 10 (15)

NFLX b 17.29 319.2–215.1 319.2–86.1 5 (15)

PTP a 21.01 191.2–189.1 - 20

CIT 21.33 237.2–208.2 237.2–220.2 20 (20)

SRT 23.27 346.8–189.2 333.0–73.1 5 (20)

PXT 24.72 250.1–154.2 250.1–140.2 20 (15)
a: Internal standard; b: only for qualitative effect. The values between brackets in the collision energy (eV) column correspond to the
qualifier transition.

4. Conclusions

A fully optimized and validated analytical method, which has been shown to be
accurate, sensitive, and selective, is described for the simultaneous detection and quantifi-
cation of five selective serotonin reuptake inhibitor antidepressants (fluoxetine, citalopram,
sertraline, and paroxetine) and a selective serotonin–norepinephrine reuptake inhibitor
and metabolite (venlafaxine and O-desmethylvenlafaxine) in oral fluid samples using
DSS and GC–MS/MS. This method was linear within the range of 10–100 ng/mL for all
analytes under study, with adequate accuracy and precision, and using only 100 µL of
biological sample. The combination of DSS extraction and GC–MS/MS chromatographic
analysis proved to be adequate for the determination of these drugs in oral fluid samples.
Acceptable recovery values were obtained (13–46%), and good limits of quantification were
achieved considering the therapeutic concentration ranges of the studied antidepressants.
The low volume of specimen applied and the good sensitivity verified provide significant
advantages, especially when there is little specimen availability, which is a problem in the
case of the oral fluid, which allows multiple exams to be performed on the same sample.
As the first report on the use of DSS as a sampling approach for these compounds, our
findings can be considered to provide an alternative to the classical techniques normally
implemented, which will result in lower consumption of sample, solvents, and analysis
time. Furthermore, the ease of operation allows the routine use of this method in the iden-
tification of antidepressants in clinical and forensic toxicology analysis, and its application
in authentic biological samples has proven its usefulness in drug monitoring.

Supplementary Materials: The following are available online https://www.mdpi.com/article/10
.3390/ph14121284/s1. Table S1: MRM response and cross-contribution of quantifying transitions.
Table S2: Effects of the different organic solvents and/or mixtures in the extraction process (n = 3).
Figure S1: Main effects plots of drying time, solvent volume and extraction time for the compounds
under study. Table S3: Effects of the different solvent volumes (n = 3) in the extraction process. Table
S4: Evaluation of the influence of the drying time of the samples (n = 3) in the extraction process.
Table S5: Concentrations used in the recovery study. Figure S2: Molecular structures and molecular
weights of the target analytes.
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