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Porphyromonas gingivalis activates NFκB
and MAPK pathways in human oral
epithelial cells
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Abstract

Background: The bacterial biofilm at the gingival margin induces a host immune reaction. In this local inflammation
epithelial cells defend the host against bacterial challenge. Porphyromonas gingivalis (P. gingivalis), a keystone pathogen,
infects epithelial cells. The aim of this study was to investigate the activation of signaling cascades in primary epithelial
cells and oral cancer cell lines by a profiler PCR array.

Results: After infection with P. gingivalis membranes the RNA of 16 to 33 of 84 key genes involved in the antibacterial
immune response was up-regulated, amongst them were IKBKB (NF-κB signaling pathway), IRF5 (TLR signaling) and
JUN, MAP2K4, MAPK14 and MAPK8 (MAPK pathway) in SCC-25 cells and IKBKB, IRF5, JUN, MAP2K4, MAPK14 and MAPK8
in PHGK. Statistically significant up-regulation of IKBKB (4.7 ×), MAP2K4 (4.6 ×), MAPK14 (4.2 ×) and IRF5 (9.8 ×) (p < 0.01)
was demonstrated in SCC-25 cells and IKBKB (3.1 ×), MAP2K4 (4.0 ×) MAPK 14 (3.0 ×) (p < 0.05), IRF5 (3.0 ×) and JUN (7.
7 ×) (p < 0.01) were up-regulated in PHGK.

Conclusions: P. gingivalis membrane up-regulates the expression of genes involved in downstream TLR, NFκB and MAPK
signaling pathways involved in the pro-inflammatory immune response in primary and malignant oral epithelial cells.
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Background
Porphyromonas gingivalis (P. gingivalis), an anaerobic
Gram-negative rod, is a member of the oral bacterial
biofilm and considered as an important etiologic agent
of gingival and periodontal inflammation [1]. P. gingiva-
lis is able to invade oral epithelial and endothelial cells
[2–4] and effectively induces pro-inflammatory cytokine
production of monocytes, neutrophils, as well as macro-
phages. It is also able to modify the functions of immune
cells in vitro and in vivo [5, 6].
Epithelial cells not only provide a barrier against bac-

terial challenge and invasion but also participate in the
innate immune defense. Infection of epithelial cells by P.
gingivalis activates signaling cascades that control tran-
scription of target genes encoding for immune response
and inflammatory reactions such as interleukin (IL)-1β,
IL-6, IL-8 and tumor necrosis factor (TNF)-α in

monocytic and epithelial cells and interferon regulating
factor (IRF) 6 in oral epithelial cells [7–9].
Pattern recognition receptors (PRRs) recognize micro-

bial components formed as pathogen-associated molecu-
lar patterns (PAMPs). PAMPs show structural similarities
between a great numbers of microorganisms, thus differ-
ent PRRs usually recognize well-defined PAMPs. Toll-like
receptors (TLRs) form a well-known PRR family [10].
PRRs are present on epithelial cells, neutrophils, macro-
phages and dendritic cells (DCs) [11]. Activation of these
receptors by PAMPs initiates the innate response to mi-
crobial challenge and induces adaptive immunity to clear
infections [12, 13].
Recent studies suggest that PRRs are responsible for

constant surveillance of the microbial colonization by
detecting conserved microbial structures such as lipo-
polysaccharides (LPS) [14, 15].
Intracellular invasion of pathogens is recognized by

nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs) which are located in the cytoplasm.
Purinergic P2X receptors on the plasma membrane are
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activated by damaged cells [16, 17]. Ligation of the pur-
inergic receptor, P2X7, induces the assembly of the
inflammasome, a protein complex of caspase-1 and an
adaptor protein ASC. Activation of caspase-1 initiates
the production and release of the pro-inflammatory cyto-
kines IL-1β and IL-18. The adaptor protein, apoptosis-
associated speck-like protein NLRP3 is the best studied
NLR member. It contains a CARD (ASC) domain and the
protease caspase-1 [18, 19].
Gingival epithelial cells (GECs) may exhibit a func-

tional NALP3 inflammasome. Stimulation of GECs with
LPS or infection with P. gingivalis caused induction of
the IL-1β gene and accumulation of IL-1β in the cells.
However, IL-1β release did not occur unless the LPS-
treated or infected cells were stimulated with adenosine
triphosphate (ATP). GECs showed caspase-1 activation
after treatment with ATP [20]. P. gingivalis expresses a
nucleoside-diphosphate kinase (NDK) homolog that is
able to inhibit innate immune reaction caused by stimu-
lation with extracellular ATP. Thus, P. gingivalis infec-
tion inhibits ATP-induced caspase-1 activation in GECs.
Furthermore P. gingivalis NDK may modify high- mobil-
ity group protein B1 (HMGB1) release. HMGB1 is a
pro-inflammatory danger signal that, in intact cells re-
mains associated with chromatin. HMGB1 is released
into the extracellular area after stimulation of uninfected
GECs with ATP instead of being translocated from the
nucleus into the cytosol. In comparison to wild-type P.
gingivalis higher amounts of HMGB1 are released when
cells are infected with a NDK-deficient mutant stimulated
with ATP, suggesting that NDK is crucial in inhibiting the
initiation of the P2X7-dependent inflammasome and
HMGB1 release from infected GECs [21].
GECs belong to the first host cells which encounter

with colonizing oral bacteria. The bacterial–host com-
munication is managed by signal transduction pathways,
i.e. the mitogen-activated protein kinase (MAPK) and
TLR pathway that are activated by infection with Fuso-
bacterium nucleatum (F. nucleatum) and Streptococcus
gordonii and other bacteria of the oral biofilm [22–24].
Molecules supporting antimicrobial clearance and the

control of adaptive and innate immune responses are
human beta-defensins (hBDs) produced by various cell
types. Investigation of the macrophage cell line RAW
264.7 revealed that treatment with synthetic hBD3-3
peptide inhibited the LPS-induced production of indu-
cible nitric oxide synthase and nitric oxide. Furthermore
this treatment inhibited the production of secretory cy-
tokines, such as IL-6 and tumor necrosis factor (TNF)-α
in cells stimulated with LPS. This inhibition was found
to be concentration-dependent. Additionally, in a model
of lung inflammation, hBD3-3 was shown to reduce
interstitial infiltration by neutrophils. HBD3-3 was able
to downregulate the nuclear factor-kappa B (NF-κB)-

dependent inflammatory response via direct suppression
of the phosphorylated-nuclear factor of kappa light poly-
peptide gene enhancer in B-cells inhibitor alpha (IκBα)
degradation and downregulation of the p65 unit of acti-
vated NF-κB [25].
P. gingivalis is capable of inducing immune tolerance

in antigen-presenting cells (APCs) by desensitizing them
against second activation, a process that involves induc-
tion of the expression of the tolerogenic molecules
immunoglobulin-like transcript 3 (ILT-3) and B7-H1
[26]. It is known that T cell activation requires a co-
stimulatory signal usually provided by APCs. This add-
itional signal regulates activation or inhibition of T cell
action.
In a previous study, we demonstrated that P. gingivalis

induces B7-H1 expression in different carcinoma cell
lines (SCC-25 cells, BHY cells) as well as in primary hu-
man gingival keratinocytes [27]. The B7-H1 receptor
(synonymous PD-L1) belongs to the B7-family exhibiting
regulatory properties that modify cell-mediated immune
reactions [28, 29]. B7-H1 ligands are induced on acti-
vated T and B cells, on endothelial and epithelial cells as
well as on macrophages. Dendritic cells (DCs) and APCs
exhibit constitutive B7-H1expression [30–32]. The bind-
ing receptor for B7-H1 is the CD28/CTLA-4 like pro-
grammed death-1 (PD-1) receptor which is expressed on
activated T cells, B cells, monocytes and macrophages.
This molecule is a member of the immunoglobulin (IG)
superfamily [33]. Signals mediated by B7-H1 are essen-
tial in regulating T cell activation and tolerance [34], by
inhibiting functions of activated T cells. Pro-
inflammatory cytokines i.e. interferon (IFN)-γ are known
to up-regulate B7-H1 expression [35, 36]. Activated T
cells, B cells and monocytes show PD-1 expression [37].
B7-H1 ligand binding triggers the development of

regulatory T cells (Treg). This phenotype is essential in
regulating peripheral tolerance by active suppression of
effector T cells and inhibition of tissue damage caused
by the inflammatory response [38–40]. Blockade of B7-
H1 affected the inhibitory effect of Treg [41]. Addition-
ally, blockade of B7-H1/PD-1 ligation abolished Treg

mediated immune-regulation [42]. This was demon-
strated in a mouse model expressing a phenotype with
B7-H1 deficiency that caused diminished Treg cell dif-
ferentiation in vivo [43]. The underlying mechanisms
are not completely understood. Using bladder cancer cells,
B7-H1 up-regulation was shown to be induced by TLR4
signaling [44], and in oral Langerhans cells activation of
TLR4 caused induction of B7-H1 in vitro [45, 46].
The aim of this study was to investigate the regulation

of a selected number of genes after infection with P. gin-
givalis. The study was conducted to analyze mechanisms
that are induced in epithelial cells after bacterial chal-
lenge. The analysis was performed on genes coding for
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receptor activation, downstream signal transduction,
apoptosis, inflammatory response, cytokines and chemo-
kines, and antimicrobial peptides.

Materials and methods
Bacteria and growth conditions
P. gingivalis strain W83 was purchased from the American
Type Culture Collection (ATCC BAA-308™, LGC Stan-
dards GmbH, Wesel, Germany) and grown at 37 °C in
brain-heart-infusion broth (Difco, BD, Heidelberg, Germany)
with hemine (5 μg/ml) and menadione (1 μg/ml)
(Sigma-Aldrich, Munich, Germany) under anaerobic condi-
tions using the Anaerocult A System (Merck, Darmstadt,
Germany).

Cell cultures
The human squamous cell carcinoma cell line SCC-25
was purchased from the DSMZ (German Collection of
Microorganisms and Cell Cultures, Braunschweig,
Germany, DSMZ number ACC 617) and cultured in a
medium containing Dulbecco’s minimal essential medium
(DMEM):Ham’s F12 (1:1, vol:vol), (Invitrogen, Karlsruhe,
Germany) and 20% fetal calf serum (FCS, Greiner,
Frickenhausen, Germany). Primary human gingival ker-
atinocytes (PHGK) were obtained from gingival biopsies
of healthy volunteers, prepared and cultured in a serum-
free medium containing DMEM:Ham’s F12 (4:1, vol:vol),
10 mM HEPES (Invitrogen, Karlsruhe, Germany).

Bacterial cell fractionation
The bacteria were harvested in the late exponential
growth phase (OD600 of 1.0) by centrifugation for 20 min
at 6,500 × g and 25 °C. The bacterial pellet was re-
suspended in 50 ml of 10 mM HEPES, pH 7.4, containing
protease inhibitor cocktail (4 mini-tablets of Complete,
EDTA-free, Roche) and DNase I/RNase A (20 μg/ml
each). Bacteria were disrupted by four passages through a
high-pressure cell disruption system (Model TS, 0.75 KW,
Constant Systems Ltd.) at 40,000 psi. The cellular debris
was removed by centrifugation at 8,000 × g for 30 min at
4 °C, and the membranes were sedimented from the
cleared lysate at 150,000 × g for 2 h at 4 °C. The super-
natant (cytosolic fraction) was stored, and the total mem-
brane fraction was washed three times with 10 mM
HEPES, pH 7.4. The membrane pellet was subsequently
re-suspended in 10 mM HEPES, pH 7.4. The protein
concentrations of all samples, i.e. cleared lysate, cyto-
solic fraction and total membranes, were determined
using Bio-Rad’s protein assay reagent. The purity of the
fractions was confirmed by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS PAGE) using a
10% gel following staining with coomassie brilliant blue
(SERVA Electrophoresis GmbH, Heidelberg, Germany).

Infection of SCC-25 cells and membrane-stimulation of
SCC-25 cells and PHGK
For infection of SCC-25 cells and primary human gin-
gival keratinocytes (PHGK), the cells were seeded in 6-
well plates (1×106 cells/well) in antibiotic-free medium
containing 1.8 mM calcium chloride and 10% FCS
(Thermo Fisher Scientific, Darmstadt, Germany) and
grown at 37 °C in a humidified atmosphere with 5% CO2
to 80% confluency before stimulation.
Cells were infected with whole bacterial cells as well as

treated with bacterial fractions. To prepare P. gingivalis
W83 for infection, the bacterial cells were harvested in
the late exponential growth phase (OD600 of 1.0) by
centrifugation at 25 °C for 20 min at 6,500 × g. The
supernatant was discarded, and the cell pellet was re-
suspended in DMEM:Ham’s with 10% FCS, adjusting
the bacterial cell number on the basis of spectrophoto-
metric measurements of the optical density of the bacter-
ial suspension at 600 nm (OD1 = 109 cells/ml). Infection of
the SCC-25 cells was performed at a multiplicity of infec-
tion (MOI) of 100 for 24 h. The bacterial membrane frac-
tions from P. gingivalis W83 was used in a concentration
of 50 μg/ml. A non-treated control containing cells only
in culture medium was carried in every experiment.
SCC-25 cells and PHGK were treated with the bacterial
fractions for 24 h at 37 °C, 95% air, 5% CO2 and 92%
relative humidity and harvested by scraping in RNA
protect solution (Qiagen) for RNA extraction. All analyses
were performed in three independent experiments.

RNA extraction
Total RNA was extracted using RNeasy mini columns
with on-column DNase treatment following the manufac-
turer’s instructions (Qiagen). The concentration and qual-
ity of the RNA were analysed using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Darmstadt,
Germany). The integrity of the RNA was verified using
RNA gel electrophoresis.

Human Antibacterial Response RT2 Profiler Array
The Human Antibacterial Response RT2 Profiler PCR
Arra/cat. No. 330231 PAHS-148Z (Qiagen, Hilden,
Germany) was used to profile the expression of 84 key
gens involved in innate immune response to bacteria.
Synthesis of the cDNA was performed with the RT2

first strand kit (Qiagen) according to the manufacturer’s
instructions at 42 °C for 15 min with a 5-min deactiva-
tion step at 95 °C in an BioRad CFX96 Real-Time Sys-
tem C1000 Thermal Cycler (Biorad, Munic, Germany).
The RT2 SYBR green master mix (Qiagen) (1350 μl

per 96-well plate) was mixed with 1248 μl RNase free
water and 102 μl cDNA synthesis reaction template, and
25 μl PCR components were added to each well of the
array. Quantitative real time polymerase chain reaction
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(qRT-PCR) was performed in accordance with the rec-
ommendations of the manufacturer. Cycling and detec-
tion were done in a Bio Rad CFX96 real time system
C1000 thermal cycler (Bio Rad).

qRT-PCR for verification of profiling
Synthesis of cDNA was performed using the Verso™ cDNA
Kit (Thermo Fisher Scientific) following the manufacturer’s
instructions. qRT-PCR using the SYBR Green Assay was
performed with SensiFast no ROX SYBR Green Mix
(Bioline, Luckenwalde, Germany) according to the manu-
facturer’s recommendations. The following primers were
used: QuantiTect Primer Assay (Qiagen) Hs_NFKB1_1_SG
(NF-κB1), HS_IKBKB_1_SG (IKKβ), Hs_MAP2K4_1_SG
(MAP2K4), Hs_MAPK8_1_SG (MAPK8), Hs_MAPK14_1_
SG (MAPK14), Hs_IRF5_1_SG (IRF5), Hs_JUN_1_SG
(Jun), Hs_IRAK3_1_SG (IRAK3), Hs_TOLLIP_1_SG
(TOLLIP), and Hs-GAPDH_1_SG (GAPDH) as a
housekeeping gene (patents: Roche Molecular Systems).
Cycling and detection was performed in a Biorad CX96
cycler (Biorad, Munic, Germany). All samples were
tested 3 × in triplicate (n = 9).

Data analysis
The analysis of the profiler arrays was performed using
the online analysis tool of the manufacturer based on
changes in gene expression for pair-wise comparison
with the non-treated control using the ΔΔCt method.
The results of the qRT-PCR were analyzed using the
comparative CT (ΔΔCT) method. The amount of target
(2-ΔΔCT) was obtained by normalizing to an endogenous
reference (GAPDH) relative to non-infected control
cells. The results are shown as log2 fold (x) regulation.

Statistical analysis
The results were analyzed using independent two-sample
Student’s t-test. The character of the evaluation was ex-
plorative. Probability of error was set to 5% and shown as
p-values.

Results
SCC-25 cells treated with P. gingivalis W83 isolated
membrane
The analysis of three experiments treating SCC-25 cells
with the membrane fraction for 24 h showed up-regula-
tion of a number of genes that play a role in different bio-
logical processes. Up-regulated were genes involved in the
TLR signaling cascade, in the NF-κB pathway and the
MAPK pathways. Statistically significant with a p- value
of < 0.05 was the up-regulation of IBKB (4.0 ×) and JUN
(8.7 ×). The results of this analysis are shown in Table 1.
The Ct values are shown in Additional file 1: Table S4.

SCC-25 cells infected with P. gingivalis W83 living bacteria
Infection of SCC-25 cells with P. gingivalis W83 for 24 h
induced up-regulation of genes also with biological func-
tions in TLR signaling, the NF-κB pathway and MAPK
downstream pathway, as well as the cytokine IL-12A.
Statistically significant (p < 0.05) was the up-regulation
of IKBKB (3.1 ×) MAP2K4 (2.7 ×), MAPK14 (2.7 ×) and
MAPK8 (2.6 ×). The results of this analysis are shown in
Table 2. The Ct values are shown in Additional file 1:
Table S4.

PHGK stimulated with P. gingivalis W83 membrane
The analysis of three experiments treating PHGK cells
with membrane fraction for 24 h showed up-regulation
of various genes as well. Up-regulated were genes that
participate in the TLR signaling, in NLR signaling, apop-
tosis, inflammatory processes, the NF-κB pathway and
the MAPK downstream signaling. Further up-regulated
genes were related to inflammatory response, chemokines,
apoptosis and antimicrobial peptides. Also DMBT1, a
tumor suppressor gene that participates in various bio-
logical processes like mucosal immune response, was
up-regulated. The up-regulation of IRF5 was significant
(p < 0.05, 14.3 ×). The results of this analysis are shown
in Table 3. The Ct values are shown in (Additional file 2:
Table S5).

Quantitative real time polymerase chain reaction (PCR)
Quantitative real time PCR (qRT-PCR) of RNA in SCC-25
cells after 24 h of infection with P. gingivalis total

Table 1 Up-regulated genes in SCC-25 cells after stimulation
with the membrane fraction of P. gingivalis W83.

Gene Symbol Fold Regulation Biological Function

IRAK1 2.5 TLR Signaling

IRAK3 2.2

IRF5 3.1

TICAM1 2.6

TOLLIP 2.3

TRAF6 2.8

HSP90AA1 2.0 NLR Signaling

IKBKB* 4.0 NF-κB Pathway

NFKB1 2.6

RELA 2.5

Jun* 8.7 MAPK Pathway

MAP2K1 1.5

MAP2K4 2.9

MAPK1 2.6

MAPK14 2.9

MAPK8 2.4

Mean values from 3 experiments as x-fold regulation compared to the
non-infected control. * = p < 0.05
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membrane (Fig. 1) showed statistically significant up-
regulation of the following genes: IκBκB (4.7 ×), MAP2K4
(4.6 ×), MAPK14 (4.2 ×) and IRF5 (9.8 ×) (p < 0.01) (n = 9).
Slightly up-regulated were NFκB1 (4.4 ×), MAPK8 (2.6 ×),
JUN (3 ×), IRAK3 (3.0 ×) and TOLLIP (3.5 ×) (p > 0.05).
Real-time RNA quantification of SCC-25 cells upon

stimulation P. gingivalis whole bacteria (Fig. 2) showed
statistically significant up-regulation of IκBκB (2.3 ×),
IRAK3 (3.3 ×) (p < 0.05), IRF5 (4.1 ×), MAPK8 (3.6 ×)
and MAPK 14 (3.0 ×) (p < 0.01) (n = 9). Only slightly up-
regulated were NFκB1 (1.5 ×), MAP2K4 (2.5 ×), JUN
(1.7 ×) and TOLLIP (2.3 ×).
In primary human epithelial cells stimulation with P.

gingivalis total membrane (Fig. 3) resulted in up-
regulation of IκBκB (3.1 ×), MAP2K4 (4.0 ×) MAPK 14
(3.0 ×) (p < 0.05), IRF5 (3.0 ×) and JUN (7.7 ×) (p < 0.01)
(n = 9). NFκB1 (1.4 ×), MAPK8 (1.8 ×), IRAK3 (6.1 ×)
and TOLLIP (4.7 ×) were also up-regulated as well (n =
9) (p > 0.05).
Fig. 4 shows the nuclear- factor kappa B (NF-κB) and

mitogen activated protein kinase (MAPK or MKK) signal-
ing pathways induced by activation of toll-like receptors
(TLRs) and nucleotide-binding oligomerization domain
receptors (NODs). Upregulated genes in oral epithelial
cells induced by P. gingivalis and its total membrane are
indicated by red arrows.

Discussion
Periodontitis is mainly caused by an oral microbial bio-
film, however, progression of the disease is regulated by
the immune-inflammatory reaction and the destruction
of the teeth supporting tissues [47]. P. gingivalis plays an
essential role in the pathogenesis and progression of
periodontitis. Among many different mechanisms, it has
been shown that P. gingivalis differentially activates the
NF-κB pathway. After infection with F. nucleatum the

Table 2 Up-regulated genes in SCC-25 cells after stimulation for
24 h with living P. gingivalis W 83.

Gene Symbol Fold Regulation Biological Function

IRAK3 2.8 TLR Signaling

IRF5 2.7

RAC1 3.0

TICAM1 2.5

TOLLIP 2.2

RELA 2.7

CASP8 2.8 NLR signaling, Apoptosis

IKBKB * 3.1 NF-κB Pathway

NFKB1 3.6

JUN 3.2 MAPK Pathway

MAP2K1 3.6

MAP2K4 * 2.7

MAPK1 3.3

MAPK14 * 2.7

MAPK8 * 2.6

CCL5 2.2 Chemokines

IL12A 2.4 Cytokines

CASP1 4.9 Apoptosis

Mean values from 3 experiments as x-fold regulation compared to the
non-infected control. * = p < 0.05

Table 3 Up-regulated genes in primary human gingival
keratinocytes 24 h of infection with membrane fractions of P.
gingivalis W83.

Gene Symbol Fold Regulation Biological Function

IRAK3 2.5 TLR Signaling

IRF5* 14.3

TRAF6 2.6

HSP90AA1 2.7 NLR Signaling

NOD1 2.3

NOD2 2.0

XIAP 2.4

NAIP 2.3

BIRC3 2.2 NLR Sign., Apoptosis

IKBKB 4.0 NF-κB Pathway

NFKB1 2.6

NFKBIA 2.4

MAP2K4 2.6 MAPK Signaling

MAPK14 2.3

MAPK8 2.0

CRP 3.8 Inflammatory Response

LBP 2.6

LY96 2.6

AKT1 2.1 Inflam. Resp., Apoptosis

CCL3 3.2 Chemokines

CCL5 3.0

CXCL2 2.1

IL-12A 2.2 Cytokines

IL-12B 3.3

IL18 2.7

CASP1 2.1 Apoptosis

PYCARD 3.5

RIPK1 3.3

BPI 3.2 Antimicrobial Peptides

CAMP 3.3

MPO 2.3

SLPI 3.6

DMBT1 4.0 Mucosal Immune Response

Mean values from 3 experiments as x-fold regulation compared to the
non-infected control. * = p < 0.05
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oral epithelial cell line H400 responded with activation
of NFκB. However, a significantly higher number of NF-
kB translocations into the nucleus were detected after
H400 cell infection with F. nucleatum suggesting that
these two periodontal pathogens have different molecu-
lar influences on these cells [48]. In human monocyte-

derived macrophages, P. gingivalis gingipains induced
secretion of TNF-α and IL-8 and upon stimulation the
amount of phosphorylated p38α MAPK increased [49].
Upon stimulation of primary oral epithelial cells and

carcinoma cells with bacterial fractions of P. gingivalis, a
number of genes were conjointly up-regulated. The

Fig. 1 Up-regulation of genes in P. gingivalis membrane stimulated SCC-25 cells. Up-regulation of NF-κB, IKBKB, MAP2K4, MAPK8, MAPK 14, IRF5,
JUN, IRAK3 and TOLLIP in SCC-25 cells after 24 h stimulation with P. gingivalis total membrane fraction (= TM) analyzed by ΔΔCt method, shown
as absolute fold induction of RNA expression relative to non-stimulated samples as negative control (= neg), normalized to the house keeping
gene GAPDH, n = 9, ‡ = p < 0.01

Fig. 2 Up-regulation of genes in P. gingivalis bacteria stimulated SCC-25 cells. Up-regulation of NF-κB, IKBKB, MAP2K4, MAPK8, MAPK 14, IRF5, JUN,
IRAK3 and TOLLIP in SCC-25 cells after 24 h stimulation with P. gingivalis W83, whole bacteria (= W83), analyzed by ΔΔCt method, shown as
absolute fold induction of RNA expression relative to non-stimulated samples as negative control (= neg), normalized to the house keeping
gene GAPDH, n = 9, * = p < 0.05, ‡ = p < 0.01
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genes IKBKB, IRAK3, IRF5, MAP2K4 (MEK4), MAPK14
(p38), MAPK8 (JNK1) and NFKB1 (p50) were upregu-
lated not only in both cell types, but also after infection
with whole bacteria of P. gingivalis W83 as well as with
the membrane fraction. The cytosolic fraction didn’t in-
duce altered gene expression (data not shown). NF-KB1
(p50) is a protein subunit of the NF-κB protein complex,
a transcription factor central for a number of immuno-
logical and inflammatory reactions, including five sub-
unit members – RelA (p65), RelB, c-Rel, p50 (NF-KB1)
and p52 with functions as homodimers and heterodi-
mers [50]. The NF-κB transcription factors are dissoci-
ated in the cytoplasm by a family of inhibitors of κB, the
IκBs. The IκB kinase (IKK) complex, including IKBKB,
initiates the activation and is activated as well. Further
phosphorylation and disintegration of IκB protein results
in activation of NF-κB [51]. Mitogen-activated protein
kinases (MAPKs) are a highly conserved family of Ser/
Thr protein kinases in eukaryotes that are regulating a
number of cellular activities such as managing cellular
responses to cell stress, and pro-inflammatory cytokines.
Epithelial cells, such as GECs, are able to respond to

bacterial challenge by initiation of a deliberated signaling
network. The GECs express different receptors on the
cell surface or in the cytoplasm. Their activation induces
innate immune reactions, including TLRs, nucleotide
binding oligomerization domain receptors (NODs) and
protease-activated receptors (PARs). It has been shown
that surface receptors, such as TLRs and PARs, are acti-
vated when corresponding bacterial motifs or proteases

are detected. Thus, activation of TLRs and PARs leads to
downstream activation of NF-κB and/or MAPK pathways
[52–55]. Activations of TLR and PARs by membrane frac-
tions induce the up-regulation of downstream signaling
molecules that were detected in this study. The TLR
family shares downstream signaling molecules, amongst
them the adaptor molecule myeloid differentiation
primary-response protein kinases 88 (MyD88), a shared
adaptor protein of TLRs triggers the downstream pathways
like NF-κB and MAPK cascades [56]. Among the MAPK,
extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-
Jun N-terminal kinase (JNK) and p38 (also known as
MAPK14) kinases have been intensively studied, from
which JNK and p38 kinases show a higher responsive-
ness [57].
In human oral keratinocytes (HOKs) it was demon-

strated that P. gingivalis LPS could activate both p38
and JNK pathways by inducing phosphorylation of IκBa
and p65 transcription factors. These results indicate
that induction of LPS binding protein (LBP) expression
in HOKs by P. gingivalis LPS involves NF-κB and p38
MAPK signaling pathways[58]. Further members of the
MAPK family are mitogen-activated protein kinase 4
(MEK4 or MAP2K4) and c-Jun NH2 terminal kinase 1
(JNK1 or MAPK8). After stimulation, activated TLR2
may initiate a cascade activation of MAPKs including
MEK4 [59]. JNK1 is a downstream target of MEK4 [60].
In a human lung carcinoma type II epithelial cell line
(A549) stimulation with LPS enhanced phosphorylation
of MEK 4 and JNK1 in a time-dependent manner [61].

Fig. 3 Up-regulation of genes in P. gingivalis membrane stimulated PHGK. Up-regulation of NF-κB, IKBKB, MAP2K4, MAPK8, MAPK 14, IRF5, JUN,
IRAK3 and TOLLIP in PHGK cells after 24 h stimulation with P. gingivalis total membrane fraction (= TM), analyzed by ΔΔCt method, shown as
absolute fold induction of RNA expression relative to non-stimulated samples as negative control (= neg), normalized to the house keeping gene
GAPDH, n = 9, * = p < 0.05, ‡ = p < 0.01
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The results of our study demonstrate that P. gingivalis
and its membrane fraction, induced RNA up-regulation
of the NF-κB and p38 MAPK, MEK4-JNK1 signaling
pathways. Furthermore, it was shown that a malignant
oral epithelial cell line responded in a similar manner as
non-transformed oral keratinocytes. These results are in-
teresting since p38 MAPK and MEK4-JNK1 signaling
pathways are known to be involved in tumor microenvir-
onment and cancer growth control.
Head and neck squamous cell carcinoma (HNSCC)

tissues express high levels of active p38 and the blockade
of its signaling pathway caused significant inhibition of
head and neck squamous cell carcinoma (HNSCC) pro-
liferation [62]. Stromal fibroblasts of a variety of inva-
sive malignant tumors express collagenase-1 (matrix
metalloproteinase (MMP)-1), which was shown to cor-
relate with the activation of c-Jun NH2-terminal kinase
(JNK) and p38 mitogen-activated protein kinase and
phosphorylation of c-Jun. It was also demonstrated that

JNK2 is required for induction of fibroblast collagenase-
3expression [63].
The data of the present study show a possible link be-

tween infection with P. gingivalis and oral squamous cell
carcinomas, considering that periodontal disease has
been associated with the risk for oral tumors [64].
Huynh et al. (2016) reported that in human oral epi-

thelial cells interleukin regulation factor (IRF) 6 expres-
sion was strongly up-regulated upon challenge with P.
gingivalis. IRF6 thus is acting downstream of IL-1 recep-
tor (IL-1R)–associated kinase 1 to induce the expression
of the IL-1 family cytokine IL-36 gamma responding to P.
gingivalis [8]. The transcription factor IRF5 is a co-
regulator of IFN-β [65] that exhibits a number of func-
tions, including virus-mediated activation of interferon
[66]. The results of the profiler array analysis showed up-
regulation of IRF5 in SCC-25 cells by membrane fractions,
as well as by whole bacteria (also in PHGK). These results
were confirmed by quantitative real time PCR assays.

Fig. 4 Pathogen associated pattern recognition receptor activated signaling pathways. Graphics of the nuclear factor-kappa B (NF-κB) and mitogen-
activated protein kinase (MAPK or MKK) signaling pathways induced by activation of pathogen associated pattern recognition receptor (PAR) toll like
receptors (TLR) and nucleotide-binding oligomerization domain receptors (NOD). TLRs and NODs belong to the key initiators of inflammation in host
defence. Diffferent TLRs recognize differencial microbial components. TLR4 detects lipopolysaccharide (LPS), TLR1/2 and TLR2/6 recognize triacylated
and diacylated lipoproteins from bacterial wall components and TLR5 is activated by flagellin from the flagella of multiple bacteria. TLRs signal via the
adaptor protein MyD88, leading to transforming growth factor-β-activated kinase 1 (TAK1) activation that induces NF-kB and p38/c-Jun N-terminal
kinase (JNK) pathways. Recognition of NOD ligands recruit caspase activation and recruitment domain (CARD) interaction with receptor-
interacting protein kinase RIP2 which leads to activation of RIP2. RIP2 mediates activation IκB kinase. The activation of IκB kinase results in the
phosphorylation of inhibitor IκB which releases NF-κB and its nuclear translocation. NF-κB and p38/JNK activated activator protein 1 (AP-1) function as
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These results suggest that IRFs presumably support in-
flammatory processes upon infection with P. gingivalis.

Conclusions
In malignant and primary human oral epithelial cells, P. gin-
givalis and its membrane fraction induced up-regulation of a
number of genes. These genes are involved in the down-
stream signaling pathway of the pro-inflammatory active
transcription factor NF-κB and some members of the MAPK
family. These kinases participate in the downstream signaling
pathway for gene induction of pro-inflammatory cytokines
and are involved in cancer proliferation and control.
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Additional file 1: Table S4. Ct values of up-regulation of genes in P.
gingivalis membrane and whole bacteria treated SCC-25 cells. Ct values
from qRT-PCR of NF-κB, IKBKB, MAP2K4, MAPK8, MAPK 14, IRF5, JUN,
IRAK3 and TOLLIP in SCC-25 cells after 24 h stimulation with P. gingivalis
membrane fraction = TM or P. gingivalis whole bacteria = WB, analyzed
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relative to non-stimulated samples, normalized to the house keeping
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IRAK3 and TOLLIP in PHGK cells after 24 h stimulation with P. gingivalis
membrane fraction = TM or P. gingivalis whole bacteria = WB, analyzed
by ΔΔCt method, shown as absolute fold induction of RNA expression
relative to non-stimulated samples, normalized to the house keeping gene
GAPDH, n = 9, ‡ = p < 0.01. (DOCX 19 kb)
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