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Abstract: The accuracy of bearing fault diagnosis is of great significance for the reliable operation of
rotating machinery. In recent years, increasing attention has been paid to intelligent fault diagnosis
techniques based on deep learning. However, most of these methods are based on supervised learning
with a large amount of labeled data, which is a challenge for industrial applications. To reduce the
dependence on labeled data, a self-supervised joint learning (SSJL) fault diagnosis method based on
three-channel vibration images is proposed. The method combines self-supervised learning with
supervised learning, makes full use of unlabeled data to learn fault features, and further improves the
feature recognition rate by transforming the data into three-channel vibration images. The validity of
the method was verified using two typical data sets from a motor bearing. Experimental results show
that this method has higher diagnostic accuracy for small quantities of labeled data and is superior
to the existing methods.

Keywords: self-supervised learning; fault diagnosis; three-channel vibration images; bearing

1. Introduction

Rotary machinery is widely used in helicopters, engines, turbines, and other mechan-
ical equipment, and is a vital component in industrial applications. As one of the most
common parts in rotating machinery, bearings are widely used in the industry. Modern
industrial production environments are harsh and variable. As a result, bearings are often
used in difficult working environments. Bearing defects, if not rapidly detected, can cause
unnecessary mechanical shutdowns, economic loss, and risks to personal safety. Therefore,
monitoring of bearing health is important for the safe and reliable operation of rotary
mechanical equipment and production.

At present, commonly used fault diagnosis methods are based on analysis models,
knowledge, and data-driven. However, it is difficult to establish an accurate mathemat-
ical model or a complete empirical knowledge base for the fault diagnosis of complex
mechanical systems. Data-driven fault diagnosis, which does not rely on mathematical
models or expert experience, is a better choice in industrial practice. Signal acquisition,
feature extraction and selection, and fault classification are the three main steps of the
data-driven fault diagnosis method. First, in the process of signal acquisition, it is usually
necessary to measure vibration, temperature, sound wave, current, etc. Among these
signals, vibration signals are most widely used as they are relatively easy to measure and
provide the most basic information about mechanical failures. Second, the original signal
features are extracted by signal processing techniques, such as those in [1–4], and artificial
feature selection is carried out. Finally, machine learning methods, such as artificial neural
network (ANN), support vector machine (SVM), and random forest are used to classify
faults and perform a health diagnosis of the rotating machinery. Although these methods
have achieved positive results, defects remain. First, the traditional intelligent diagnosis
model based on shallow machine learning cannot automatically learn the characteristics
of complex classification tasks. Therefore, additional feature engineering processing is
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an essential process, and requires a significant amount of labor input and engineering
experience. Second, due to poor generalization ability, features selected with a strong
specific relevance cannot be applied to situations outside a specific scenario. Third, the
characteristics of artificial selection are often based on high dimension data, which leads to
over-fitting of the model.

Intelligent fault diagnosis methods based on deep learning have become a popular
research topic. Diagnosis methods based on deep learning can be used to effectively
classify fault states from recorded data samples without manual intervention. However,
deep learning-based fault diagnosis is achieved using a supervised learning framework,
which not only requires a large amount of labeled data, but ignores the fact that most
of samples do not include marker information. Supervised learning is only suitable in
situations in which a large number of labeled samples can be obtained [5,6]. The lack of a
large amount of data annotation for supervised training can often result in poor training
results from these algorithms. In mechanical fault diagnosis, sample labeling is highly time-
consuming and expensive, and it may be impossible to obtain a large number of samples.
Therefore, fault diagnosis methods based on supervised learning are not commonly used
in practice.

Compared with that of supervised learning, the accuracy of unsupervised learning
in the absence of labeled data and any distinguishing information is usually lower. In
addition, unsupervised learning is unable to perform classification or recognition tasks
well due to the lack of distinguishing information. Moreover, in the field of fault diagnosis,
the accuracy of diagnosis is essential for the maintenance and operation of machinery,
and human safety. To address the problem of the low accuracy of unsupervised learning,
researchers proposed semi-supervised learning. The semi-supervised method combines
the unsupervised and supervised learning techniques to train labeled and unlabeled data
in a model, thereby improving the accuracy of recognition. Semi-supervised learning
simultaneously addresses the limitations of supervised and unsupervised learning, and is a
feasible scheme for fault diagnosis. However, in previously reported semi-supervised fault
diagnosis methods [7–10], unsupervised pre-training was carried out on the unlabeled
dataset, and supervised fine-tuning was then carried out on the resulting learned features.
For example, unsupervised sparse filtering for feature extraction and a softmax classifier
for fault diagnosis, which is a two-stage intelling diagnosis method, was proposed by Lei
et al. [11]. A fault diagnosis method for transmission and rolling bearings of an electric
locomotive based on an automatic encoder, which uses a combination of the automatic
encoder and softmax to identify the fault state, was developed by Shao et al. [12]. The key
to the above methods is the separate handling of labeled and unlabeled data, which is not
consistent with semi-supervised learning.

To address the problem of data annotation and improve the learning of unlabeled
data, numerous self-supervised learning methods have been recently proposed and sum-
marized [13–16]. The basis of self-supervised learning is the acquisition of pseudo-tags
with unlabeled data via the setting of auxiliary tasks. These pseudo-tags do not artificial
annotation and can be generated using the image or video attributes; these false tags are
then used to learn the characteristics of untagged data [13,16]. Self-supervised learning
can be divided into many forms according to the research goal of the auxiliary tasks [14],
including generative grammar, contrastive grammar, and generative grammar. Researchers
have also found that self-monitoring can not only learn the representation of an unlabeled
dataset without the need for manual annotation monitoring, but can also significantly
improve the accuracy of the model, also, even in a fully labeled dataset [15]. However,
self-supervised learning is usually divided into two stages: the first stage is to learn the
potential features of unlabeled data via auxiliary tasks, and the second stage is to transfer
the features learned in the first stage to other downstream tasks, for example, image clas-
sification, target detection, and segmentation. This multi-stage self-supervised learning
method suffers from two problems: (1) it increases the complexity of the model, and (2) the
pre-training features of the unlabeled data cannot be fully applied to the downstream tasks.
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Therefore, identification of approaches to effectively use the potential characteristics of
self-supervised learning to complete the downstream tasks has received attention among
researchers [14,15]. Considering the above problems, this paper combines self-supervised
learning with the fault diagnosis task, and proposes a fault diagnosis method that combines
self-supervised learning with hyper-visual learning. This method uses self-supervised
learning to extract general features of fault samples from unlabeled samples, and to extract
detailed features of fault samples from labeled samples by supervised learning. In addition,
a training method that combines the self-supervised loss with the supervision loss was
adopted. Among these, the supervised cross-entropy loss operation for labeled samples
can significantly improve the recognition performance. In addition, further improvement
can be made in the self-supervised MSE reconstruction loss operation and counter-loss
operation for the labeled distribution of original unlabeled samples, model recognition
performance, and generalization ability. The health status of the machine was diagnosed
according to the coding features of the marked vibration samples. Taking a motor bearing
as an example, the effectiveness of the method was verified. Compared with other methods,
the method presented in this paper achieved remarkable results. In conclusion, the main
contributions of this paper are as follows.

(1) A new fault diagnosis method based on self-supervised joint learning and three-
channel vibration images is proposed;

(2) To improve the existing multi-stage self-supervised learning approach, an end-to-end
self-supervised learning method is proposed that simplifies the model training process;

(3) Automatic fault feature extraction and learning with self-supervised learning can not
only avoid the process of artificial feature extraction in traditional fault diagnosis
methods, but also improve the robustness of the model;

(4) A new method for constructing three-channel vibration images is proposed that has
competitive performance compared with commonly used data processing methods;

(5) We combine self-supervised learning with fault diagnosis, and the obtained results
are superior to those obtained with previous methods based on supervised learning
and semi-supervised learning.

The remainder of the paper is organized as follows. In Section 2, the basic theories
used in this paper are briefly introduced. Section 3 details the method presented in this
paper. Section 4 introduces the performance evaluation of the proposed method and
presents experimental verification. Finally, Section 5 provides the conclusion of this paper.

2. Related Theory
2.1. Time-Domain 2D Image Conversions

According to both theory and experience, traditional 1D analysis is not usually able to
capture the inherent mode of fault conditions. In the learning process [17,18], it is more
appropriate to use images to represent information. In addition to time-frequency analysis,
1D original fault signals can be directly converted into 2D gray images [19]. Chong [20]
proposed a method to transform the 1D vibration signal into 2D gray images, which can be
used to effectively extract the fault characteristics of rotating machinery.

Figure 1 provides a visual explanation of the transformation. In the graph, the number
of samples contained in the vibration signal is M × N, where M × N represents the size
of the image (M and N values are the rows and columns of the image, respectively). The
values of M and N depend on the length of the vibration signal. The computational
complexity of the method is directly proportional to these values. Therefore, M and N
values should be selected to be as small as possible to reduce complexity; however, it
should also be ensured that these values are sufficiently large to retain the most important
features of the original. The values suggested by Chong [20] for M and N are: M = 128, 256,
or 512, and N = 128, 256, or 512. The conversion process of the time-domain 2D image is
clearly shown in Figure 1.
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Figure 1. Vibration signal to image translation scheme.

As shown in Figure 1, the coordinates of the corresponding pixels of sample i in the
vibration signal are pixel (j, k), where j = floor (i/N), and K = modulo (i/N).

2.2. Self-Supervised Learning

To avoid time-consuming and expensive data annotation in supervised learning,
the researchers propose a self-supervised learning method that can learn visual features
directly from large-scale unlabeled data without any manual annotations. The pretext task
is the basis of self-supervised learning. To date, various pretext tasks of self-supervised
learning have been proposed, including gray image coloring [21], image repairing [22],
jigsaw puzzle [23], and other methods [24–26].

Self-Supervised Learning Steps:

(1) In the self-supervised training stage, a pre-defined pretext task that needs to be
solved is designed, and a pseudo-label for the pretext task is automatically generated
according to some attributes of the data. Then, the model is trained to learn the
objective function of the pretext task;

(2) Following the self-supervised training, the learned visual features can be used as a pre-
trained model to be further transferred to downstream tasks to improve downstream
task performance and overcome overfitting problems.

3. Proposed Methods

In this section, the SSJL fault diagnosis method based on three-channel vibration
images is introduced in detail. First, the original vibration signal is transformed into
a three-channel vibration image by the data processing module and, second, the fault
feature is extracted by the self-supervised learning module of the SSJL method. Finally,
the unlabeled samples and labeled samples are jointly studied and optimized by the joint
learning module of the SSJL method.

3.1. Data Processing

In the field of fault diagnosis, most algorithms use single time-frequency analysis
technology to transform the two-dimensional gray image into a single-channel image as
the input, or directly take the original vibration signal as the input. These methods have
the following shortcomings: (1) the fault features of single-channel vibration images are
not abundant compared with those of three-channel RGB images; (2) the time-frequency
analysis technique describes the trend change in the spectrum content of the signal with
time, which may lead to information loss and incompleteness of the original time-domain
signal; and (3) previously, only a single time-frequency analysis technique was used—it is
difficult for a single time-frequency analysis technique to encompass the characteristics
of different faults. Therefore, this paper presents a new data processing method for
constructing three-channel RGB vibration images. To make full use of the original time and
frequency domain information, the vibration image is transformed into a three-channel
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RGB image, thus improving the feature distinguishability and information richness of
the input data. The process of the data processing method includes three steps: signal
segmentation, signal conversion, and channel fusion. Figure 2 shows the process of
this method.
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As can be seen from Figure 2, in the signal segmentation stage, we need to segment
the original signals of different fault types according to a fixed length. The segmentation
length of the signal is related to the period of the original signal, and it needs to meet three
conditions: (1) the segment length should contain at least two cycles of the fault signal
(fault signal periodically, with complete fault information included in each cycle); (2) the
upper limit of the segmentation length needs to be adjusted appropriately according to
the requirements of specific actual scenes and different data sets. The excessive value of
this value will lead to excessive-resolution of the final three-channel color image, thus
affecting the training and diagnosis time of the model. At the same time, it should also
ensure that the number of samples after segmentation is sufficient; and (3) the number of
samples contained in the segmentation length should be equal to the product m × n of the
length and width of the two-dimensional image transformed by time-domain conversion,
where m × n denotes the size of the image (m and n denote the rows and columns of the
image, respectively). In this paper, to expand the training data set while also reducing
the complexity, we set the segmentation length to 1024 and the segmentation process to
overlap. Finally, we used resize to scale the image.

It is worth noting that the resulting images are slightly different due to different
segmentation lengths. However, no matter how it changes, as long as the above three
conditions are met, the final three-channel color image preserves the information of the
overall fault characteristics; at the same time, the difference in the same fault signal is
much smaller than the difference between the different faults themselves; for supervised
learning, the difference is classified as the same type of fault by the label that is marked
in advance, thus prompting the model to learn the difference as the same type of fault.
In the case of self-supervised learning, the learning itself detects potential universal fault
feature. This variability also increases the diversity of samples; the model based on a deep
convolution network has translation invariance, so it can recognize the object correctly even
if its appearance has changed due to shifting. Therefore, the difference in image features
generated by different segmentation lengths does not affect the model’s learning of fault
features, which is also an advantage of fault diagnosis methods based on deep learning.

In the phase of signal conversion, after the original signals of different fault types
are segmented, the continuous wavelet transform (CWT) [27–29], the short-time Fourier
transform (STFT) [30,31], and the time-domain 2D image conversion methods are used to
convert the segmented signals, and three different two-dimensional images are obtained.
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In order to accelerate the convergence and learning of the model, we normalized the
transformed data with min-max, and used the normalized two-dimensional image as the
input of the channel fusion stage. Finally, in the phase of channel fusion, three single-
channel two-dimensional images are used as three channels of RGB images to form a
new three-channel color image. Each pixel in a color image contains three components:
R, G, and B. These three components are the values of three two-dimensional images
at the same pixel position. As the final color image is the superposition of the original
three-dimensional images, the fault features of each segment vibration signal are expressed
in different fields, and the details and semantics of the fault features may be different.
Therefore, compared with the single-channel processing method, the multi-channel fusion
method can make the model better understand the characteristics of the fault samples,
especially the subtle differences.

Below, we present the detailed steps for generating a three-channel color image:

Step 1: The original vibration signals of different health conditions are divided into equal
intervals to form a series of segmented vibration signals, and the sample width is
determined by the data points contained in the sample time interval;

Step 2: The segmented vibration signals are converted into a single-channel 2D time-
frequency image using the CWT;

Step 3: The segmented vibration signals are transformed into a single-channel 2D time-
frequency map using the STFT;

Step 4: The segmented vibration signals are transformed into a single-channel 2D time-
domain image using the time-domain 2D image conversion method in Section 2;

Step 5: The 2D vibration images obtained by the three data processing methods noted
above are fused by the channel fusion method. Then, the fused three-channel
vibration image is taken as the input graph of the network. In the fused three-
channel vibration image, each of the R, G, and B values of a pixel at entry (j,k),
where 0 ≤ j < n, 0 ≤ k < m, equals the pixel value at entry (j,k) of each of the three
single-channel 2D time-domain images.

3.2. Proposed SSJL Framework

Figure 3 presents the SSJL framework presented in this paper, which includes a
self-supervised learning module and a joint learning module. Compared with previous
self-supervised learning algorithms, this paper proposes an end-to-end self-supervised
learning method, which directly adds self-supervised learning to the fault diagnosis task.
To express the potential fault features of unlabeled samples, two-stage self-supervised
learning is avoided.
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Image reconstruction is used as a self-supervised assistant task in the proposed algo-
rithm framework. First, the unlabeled data are matted to be the input of the self-supervised
module, based on the pretext task of image reconstruction, to learn the character of the
object itself. The self-supervised module is composed of a generator and discriminator,
and the generator component consists of an encoder and decoder. The encoder takes the
image of the missing region as an input and generates the latent feature representation
of the image. The decoder decodes the features learned by the encoder and generates the
missing image content.

In the data decoding stage, the decoder and the encoder are connected through the
channel’s fully connected layer [32], and the decoder structure is symmetrical to the encoder.
To ensure the output and input spectra of the decoder are the same size, five deconvolution
layers are used to sample the image. To ensure that the output feature of each layer is
twice as large as the input feature, all deconvolution uses the same parameters to obtain a
reconstructed image with the same size as the decoder input.

The main goal of the joint learning module is to realize the joint learning of labeled
and unlabeled data. In this module, the potential universal features of unlabeled data
are learned through self-supervised auxiliary tasks, and the specific features of fault
signals in data are further learned through supervised learning. As shown in Figure 3, the
optimization goal of joint learning is composed of supervised learning and self-supervised
learning. The supervised loss is the standard cross-entropy loss, and the unsupervised loss
is the self-supervised reconstruction loss. As can be seen from Figure 3, joint learning is a
multi-task learning method; thus, the joint learning algorithm can more effectively find the
optimal solution compared to the decision boundary supervised learning algorithm in a
scenario of limited labeled data.

3.3. Optimization Goals

The SSJL method mainly involves self-supervised and supervised optimization, where
self-supervised optimization corresponds to unlabeled data and supervised optimization
corresponds to labeled data. The optimization objectives of the proposed method are
described in detail below.

Self-Supervised Loss:
The self-supervised loss is mainly caused by the auxiliary task of image reconstruction.

The context encoder is trained by recovering the missing part of the image. The self-
supervised loss is mainly composed of two parts: the reconstruction loss (L2) and the
counter loss.

The reconstruction loss is responsible for describing the overall structure of the missing
area and the consistency of the missing area with the background. We use the normalized
mask L2 distance as our reconstruction loss function Lrec(xuld), which is expressed by the
following formula:

Lrec(xuld) = ‖M̂
⊙

(xuld
i − F((1− M̂)

⊙
xuld

i ))‖2

2
(1)

where
⊙

represents the element-wise product operation of the corresponding position
of the matrix (the element-wise product operation), xuld

i represents the number of the
unlabeled input, and M̂ represents the binary mask of the missing image (a pixel value
of 1 is discarded, and a 0 is input). As the L2 loss will cause the decoder to generate a
rough outline of the predicted object, it is usually unable to capture any high-frequency
details. Therefore, the problem can be alleviated by increasing the antagonistic losses.
The mathematical expression for fighting loss is as follows, the objective of which is to
determine whether the input image is a real sample:

Ladv = max
D

Exuld∈χ[log(D(xuld
i )) + log(1− D(F((1− M̂)

⊙
xuld

i )))] (2)
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where F represents a generator composed of an auto-encoder, and D represents a discrim-
inator. The purpose of combating loss is to encourage the entire output of the context
encoder to appear more realistic.

The overall self-supervised loss function of the model is defined as:

Lsel f = λrecLrec + λadvLadv (3)

where λrec and λadv represent the proportion of reconstruction loss and confrontation
loss, respectively.

Supervised Loss:
The supervised learning part, in which a standard cross-entropy term is applied to the

labeled samples as the optimization objective, is used to learn the accuracy of the labeled
samples’ fault classification, which is expressed as follows [33]:

Lld =
min

θ

1
N

N

∑
i=1

yld
i log(Pi(yld

i |xld
i )) (4)

where the input data with labels is represented by xld
i , the label corresponding to the input

xld
i is represented by yld

i , the prediction probability of training samples is represented by Pi,
and N is the total number of training samples.

Joint Loss:
The ultimate joint optimization objective of the proposed method is the sum of the

self-supervised optimization objective and the supervised optimization objective:

Ljoint = λsel f Lsel f + Lld (5)

where λsel f is the weighting factor, which represents the weight of the self-supervised loss
in the overall loss. After errors and experimentation, this value was set to 0.5.

3.4. Fault Diagnosis Method Based on SSJL

In this paper, a new fault diagnosis method, SSJL, is proposed to address the problems
of an insufficient quantity of labeled samples and the low accuracy of limited labeled
samples in the field of industrial fault diagnosis. This method combines the improved
self-supervised learning with three-channel vibration images, and uses a large number of
unlabeled samples and finite labeled samples to learn fault features and diagnose faults.
Superior diagnosis results were obtained compared with previous semi-supervised and
supervised fault diagnosis methods.

In the process of model training, the joint learning loss is used as the objective function
of the model, and the SSJL method is optimized using the gradient descent method. For
unlabeled data, the self-supervised loss is used to evaluate the reconstruction error, and
the cross-entropy classification loss is used to measure the classification results of different
fault types. With the addition of self-monitoring loss, the feature extraction of unlabeled
data can be realized by SSJL, and the cross-entropy classification loss further improves the
accuracy of fault diagnosis. This method combines unlabeled data with labeled data using
an end-to-end learning method, thus allowing better fault diagnosis to be achieved with a
small amount of labeled data. The detailed training procedures of the proposed method
are indicated as in Algorithm 1.
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Algorithm 1. Training procedures of the SSJL method.

SSJL Algorithm

Input: Labeled batch Xld =
{
(xld

b , yld
b ) : b ∈ (1, . . . , B)

}
, unlabeled batchXuld ={

(xuld
b , yuld

b ) : b ∈ (1, . . . , B)
}

, self− supervised loss weight λsel f , reconstruction loss
weight λrec , confrontation loss weight λadv ;
Parameter of training epoch Epoch Number;
Iteration times in one epoch Batch Number;
for e = 1 to Epoch Number do
for q = 1 to Batch Number do
// Self-supervised loss for unlabeled data
Ladv = max

D
Exuld∈χ[log(D(xuld

b ))log(1− D(F((1− M̂)
⊙

xuld
i )))]

Lrec(xuld) = ‖M̂
⊙
(xuld

i − F((1− M̂)
⊙

xuld
i ))‖2

2
Lsel f = λrecLrec + λadvLadv

// Cross-entropy loss for labeled data

Lld =
min

θ
1
B ∑B

b=1 yld
b log(Pb(yld

b |x
ld
b ))

// Joint loss
Ljoint = λsel f Lsel f + Lld

end for
end for

Figure 4 shows a fault diagnosis flow chart based on SSJL, in which vibration signals
are measured by sensors mounted on an induction motor. The original vibration signal is
then transformed into a three-channel vibration image as an input of SSJL using the data
processing method presented in this paper, and the model is optimized by combining the
supervised loss with the self-supervised loss until the algorithm converges. The detailed
procedure for fault diagnosis is as follows:

(1) The use of the sensors to obtain the fault vibration signals from the bearing;
(2) The collected 1D time-domain signal is transformed into a three-channel vibration

image using the data processing method presented in Section 2;
(3) The vibration image is divided into three parts according to a certain proportion: a

training set, validation set, and test set. These are used in the training, verification,
and testing of the model;

(4) A random sample is taken from the training set for marking; that is, the training set
consists of several labeled samples and a large number of unlabeled samples;

(5) The training set is used to iteratively train the model until the model converges or
reaches the maximum number of iterations;

(6) The test image set is input into the trained model to realize bearing fault diagnosis;
(7) The diagnosis result is output.
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4. Experimental Results and Discussion
4.1. CWRU Dataset
4.1.1. Description of CWRU Dataset

This section uses the motor bearing signals provided by Case Western Reserve Univer-
sity (CWRU) [34] to verify the effectiveness of the proposed method. The CWRU dataset
consists of multi-variable vibration signals generated by the bearing test bench. The sam-
pling frequency was 12 khz. The vibration data used in this study were obtained under
four different health conditions: (1) normal state (N); (2) outer ring failure (OF); (3) inner
ring failure (IF); and (4) ball failure (BF). Each fault type includes three types of single-point
faults, each with a diameter of 0.07, 0.14, and 0.21 in., and each were processed using
electric sparks. Therefore, the CWRU data set can be divided into 10 fault types without
considering the different motor loads.

Figure 5 shows the time-domain representation of the raw vibration data under each
health condition. As the lengths of the signals acquired at the beginning were different, the
signals were divided into small samples of the same length, as mentioned in Section 3.1.
After splitting the signal processing, the sample was further converted into 128 × 128 × 3
vibration three-channel images. Finally, we obtained 35,473 samples, randomly selected
from 21,994 training samples, 7449 validation samples, and 6030 test samples. The detailed
description of the dataset is shown in Table 1.
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Figure 5. Raw data for (a) the normal for condition, (b) BF-007, (c) BF-014, (d) BF-021, (e) IF-007,
(f) IF-014, (g) IF-021, (h) OF-007, (i) OF-014, and (j) OF-021.

Table 1. Description of the CWRU dataset.

Health Condition N BF-007 BF-014 BF-021 IF-007 IF-014 IF-021 OF-007 OF-014 OF-021 35,473

Fault dimension(mm) 0 0.18 0.36 0.53 0.18 0.36 0.53 0.18 0.36 0.53
No. of training samples 4630 1306 1346 1327 1352 1338 1329 3983 1319 4064 21,994

No. of validation samples 1597 466 457 445 446 460 446 1361 456 1315 7449
No. of testing samples 1296 374 347 377 353 349 373 1111 374 1076 6030

4.1.2. Model Parameters

In the process of model training, network parameters are initialized by Xavier. A
backpropagation (BP) algorithm is used to update all parameters, and the Adam [35]
optimization method is used. The input image size is set to 128 × 128 × 3 and the batch
default is 64. The default values for the relevant parameters are shown in Table 2.

Table 2. The parameters used in this paper.

Parameter Value

Epochs 150
Batch Size 64

Network Initialization Xavier
Learning Rate 2 × 10−4

Optimization Adam
Image Size 128 × 128 × 3

4.1.3. Comparison of Different Data Processing Method

Three data processing methods were established to evaluate the effectiveness of
the methods proposed in this study. In each of the comparison methods, only the data
processing component was replaced, while other components were unchanged. The specific
methods are detailed in Table 3. To simplify the expression, MC represents multi-channel,
and SC represents single-channel.
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Table 3. Description of different data processing methods.

Methods Description of the Data Processing Methods

SSJL_MC Represents the data processing methods presented in this paper.

CWT_SC Using traditional wavelet packet time-frequency transform, the input
signal is converted into a 2D single-channel time-frequency map.

CWT_MC
Using the traditional wavelet packet time-frequency transform, the input
signal is converted into a 2D multi-channel time-frequency graph (each

channel is a copy of the single-channel time-frequency graph).

Table 4 shows the diagnostic accuracy of the proposed method using different data
processing methods. As shown in Table 4, CWT_SC has the worst diagnosis result, of only
89.82%. Compared with CWT_SC, the diagnostic accuracy of CWT_MC is improved by
2.32%; nonetheless, however, it is 7% lower than that of SSJL_MC. It is evident that SSJL_MC
can be significantly improved compared with the previous method, which provides a
foundation for the following model to achieve a higher accuracy of fault diagnosis.

Table 4. Diagnostic results obtained by different data processing methods.

Methods Average Accuracy Standard Deviation

SSJL_MC 0.9999 4.1010
CWT_SC 0.8982 5.1104
CWT_MC 0.9214 5.0176

Figure 6 shows the vibration images of each fault type diagnosis using different data
processing methods. As shown in Figure 6, the image processing method SSJL_MC, is more
effective than the other two methods at highlighting the difference between the fault types,
as SSJL_MC uses different time-frequency analysis techniques to extract the time-frequency
characteristics of the original signal. In addition, SSJL_MC combines the characteristics of
the original time-domain signals, and the fault signals show different forms in different
domains. Therefore, the SSJL_MC data processing method can obtain more comprehensive
features of fault signals, prevent the omission of characteristic information, and achieve
greater diagnostic accuracy. As shown in Figure 6III, the vibration images obtained using
the CWT_MC method are not as distinguishable as those obtained by the SSJL method,
mainly as each channel feature is only a copy of a single channel, and CWT_MC does
not take into account the time-domain feature of the original signal. This may lead to the
loss of useful fault characteristics. As a result, the CWT_MC-based fault diagnosis is not
as effective as that of the SSJL_MC method. However, as shown in Figure 6II, CWT_SC
showed the poorest result. It only uses a single-channel time-frequency transform to
represent the fault features, which results in the lack of features of each fault type.

To further verify the validity of the SSJL data processing method presented in this
paper, Figure 7 shows the obfuscation matrix results of each data processing method on
the test data set. As can be seen from Figure 7a–c, the identification rate of the SSJL_MC
method was more than 99% for most fault types. In contrast, the recognition rates of the
CWT_SC and CWT_MC methods were only greater than 99% for some fault types. This
further indicates that the data processing method proposed in this paper ensures that the
model learns more features of fault signals and, therefore, a higher performance of fault
diagnosis is achieved.
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4.1.4. Influence of the Number of Labeled Samples in CWRU Datasets on Fault Diagnosis

To verify the validity of the proposed method, we evaluated the accuracy of fault
diagnosis on a different number of labeled samples. For each working condition, the
training samples were divided into labeled samples and unlabeled samples, in which the
same number of samples were randomly selected as labeled samples, and the remaining
training samples were unlabeled. In addition, we compared two classical algorithms in
the field of fault diagnosis: one was the supervised learning method convolutional neural
network, which omits the decoder used in the model presented in this paper; the other
is a two-stage semi-supervised learning method DAE, which maintains the same model
structure as that of the proposed method. As shown in Table 5, the fault diagnosis accuracy
of the proposed method was evaluated in seven experiments with a different number of
labeled samples. Table 5 shows the detailed results for diagnostic accuracy on the test
dataset. It should be noted that, to reduce the impact of randomness in the training process,
an average of 30 experimental results were used as the final result.

Table 5. Fault diagnosis accuracy of different methods on the CWRU dataset.

Method
No. of Labeled Training Samples

10 20 50 200 1000 4000 10,000

SSJL 0.4481 0.5848 0.8642 0.9849 0.9989 0.9997 1.000
CNN 0.2839 0.4219 0.7073 0.8769 0.9799 0.9968 0.9935
DAE 0.2065 0.2851 0.5862 0.9811 0.9987 0.9997 0.9999

As shown in Figure 8, the proposed SSJL achieves optimal fault diagnosis performance
in all cases, and particularly in the case of few labeled data sets. As shown in Table 5, the
diagnostic accuracy of SSJL for 10 health conditions of motor bearings was 58.48% when
only two labeled training samples were used for each category. Under the same condition,
the accuracy was 16.29% higher than that of CNN and 29.97% higher than that of DAE.
The accuracy of the proposed method was 98.49% for 200 marker samples, whereas that
of CNN was only 87.69%. This is mainly as CNN can only learn the fault features by
optimizing the classification cross-entropy in the training process. This method can easily
lead to over-fitting in small-scale training samples, and thus cannot obtain a good diagnosis
effect. Table 5 shows that the fault diagnosis performance of DAE for 200 labeled samples is
comparable to that of the proposed method, whereas the effect of DAE for a small number
of labeled samples is inferior to that of the CNN. This is as the first stage of the two-stage
DAE can only be learned from unlabeled samples, and the fine-tuning of labeled samples
is only performed in the second stage when the number of labeled samples is low. Thus,
this algorithm is more susceptible to the pre-training of unlabeled samples. As a result, the
model cannot learn the detailed features of the fault samples, and is inferior to the CNN
in the case of a small number of labeled samples. When the number of labeled samples
reaches a certain number, the diagnostic effect of DAE based on the two-stage approach is
significantly better than that of the CNN. As illustrated in Figure 8, the diagnostic accuracy
of the three methods improves with the increase in the number of labeled samples. When
the number of labeled samples was increased to 1000, the verification accuracy of all the
methods was over 97%.

From the comparison results, it can be concluded that unlabeled samples help to
improve the recognition performance. In addition, compared with other methods, the
results show that the end-to-end joint learning method based on labeled and unlabeled
samples is more effective in fault diagnosis tasks. In addition, the method proposed in this
paper can not only achieve high diagnostic accuracy by using the self-supervised learning
method, but also train the samples via the self-supervised task of image reconstruction.
This enabled the model to search for common patterns and features in the training samples,
thus reducing the risk of over-fitting the model.
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4.1.5. Influence of Unlabeled Sample Number in the CWRU Dataset on Fault Diagnosis

We further verified the effect of unlabeled sample size on the performance of the
proposed method using different experiments. The number of labeled samples was 100,
and the number of unlabeled samples ranged from 100 to 10,000. Table 6 shows the
diagnostic accuracy of the proposed method on the test set. Figure 9 depicts the trend of
test accuracy with the number of unlabeled samples. The final result was the average of
30 trials.

Table 6. Diagnosis accuracies of different numbers of unlabeled training samples on the
CWRU dataset.

Method
No. of Unlabeled Training Samples

100 200 500 2000 5000 10,000

SSJL 0.8447 0.8824 0.9327 0.9644 0.9745 0.9989
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Figure 9 shows that, in the initial training stage, with the increase in unlabeled sam-
ples, the diagnostic accuracy of SSJL also increases. When the number of unlabeled
samples reaches a certain number, the diagnostic accuracy rate no longer benefits from
self-supervised learning, but stabilizes at the 99% level. Thus, the potential universal fea-
tures of the fault samples can be learned from the unlabeled samples using self-supervised
learning, which indirectly improves the accuracy of fault diagnosis, and the robustness and
generalization ability of the model.

4.1.6. Verification of the Effectiveness of the Proposed Method in the CWRU Dataset

To further analyze the effects of a different number of labeled samples on the proposed
method, Figure 10 shows the confusion matrix results of the methods when the number
of labeled samples was 50 and 10,000. The confusion matrix represents the relationship
between the true fault category and the predicted fault category, where the true fault
category is represented by rows and the predicted fault category by columns. As can be
seen from Figure 10a–c, when there were only five labeled samples in each category, the
accuracy of the proposed method reached about 80% for most fault types, whereas the
CNN only reached about 70%, and the accuracy of DAE was only about 60%. This fully
demonstrates the advantages of SSJL in a small number of labeled samples, particularly in
industrial scenarios in which labeled data are missing. As can be seen from Figure 10d–f,
when the labeled samples reach a certain scale, all of the methods achieve an improved
diagnosis result.
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We used the t-SNE [36] method to visualize high-dimensional features in 2D space,
and further verified the ability of automatic feature learning. Figure 11 shows the visual
classification results for different fault types using the SSJL method when the number of
labeled samples was 10,000, and Figure 11a,b represent the t-SNE representation of the
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original signal and model output characteristics, respectively. As shown in the figures,
the 2D representation of the original signal has no distinct class-distinguishing boundary,
and the fault classes are confused with one another. In contrast, after feature extraction
by SSJL, the samples with the same health conditions are clustered together, the samples
with different health conditions are separated, and the distribution of features is more
organized. Experimental results show that this method can cluster the output features of
test samples into 10 classes. This method can effectively improve the fault diagnosis ability
by combining unlabeled and labeled samples.
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Figure 11. t-SNE representations of the CWRU testing samples: (a) original signal and
(b) model prediction.

4.2. MFPT Dataset
4.2.1. Description of MFPT the Dataset

We used the MFPT rolling bearing dataset [37] provided by the Technical Institute of
Mechanical Fault Prevention to verify the proposed method. The MFPT dataset consists
of three sets of bearing vibration data: (1) a baseline set, in which each file is sampled at
a rate of 97,656 SPS and lasts for 6 s; (2) an outer ring fault dataset, in which each file is
sampled at a rate of 48,828 SPS and lasts for 3 s; and (3) an inner ring fault dataset, in which
each file is sampled at a rate of 48,828 SPS and lasts for 3 s. All data were collected by a
single-channel radial accelerometer.

Figure 12 shows the time-domain diagram of the original vibration signals of MFPT
under different health conditions. A total of 35,473 samples were obtained from the original
MFPT dataset, of which 16,833 samples were randomly allocated for training, 3535 samples
for verification, and 2681 samples for testing. A detailed description of the dataset is shown
in Table 7.

Table 7. Description of the MFPT dataset.

Class Label 0 1 2 Total

Health condition N Outer Inner
No. of training samples 4856 2777 2804 10,437

No. of validation samples 1624 991 920 3535
No. of testing samples 1310 753 798 2861
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4.2.2. Influence of the Number of Labeled Samples in the MFPT Dataset on Fault Diagnosis

We also conducted a comparative experiment with a different number of labeled
samples on the MFPT dataset, using the same model as that used in Section 3. Here, the
minimum number of token samples was set to six and the maximum token data volume
was set to 6000. As seen in Table 8, the fault diagnosis accuracy of SSJL was evaluated under
different numbers of labeled samples. Table 8 shows the detailed results for diagnostic
accuracy on the test dataset.

Table 8. Fault diagnosis accuracy of different methods on the MFPT dataset.

Method
No. of Labeled Training Samples

3 6 30 60 150 600 3000 6000

SSJL 0.6491 0.7536 0.9039 0.9661 0.9949 0.9997 0.9999 1.0
CNN 0.3806 0.6896 0.8036 0.8029 0.8661 0.9815 0.9993 0.9999
DAE 0.2789 0.2852 0.8819 0.9389 0.9941 0.9997 0.9999 1.0

As shown in Figure 13, SSJL performed better than other comparable models in
all cases. When there was only one labeled sample in each category, the accuracy of
the proposed method was 64.91%, which was 26.85 percentage points higher than that
of CNN and 37.02 percentage points higher than that of DAE. With the increase in the
number of labeled samples, SSJL achieved an accuracy rate of 99.49% under 150 labeled
samples, which was equivalent to the accuracy rate of the CNN algorithm with 3000 labeled
samples. It can be concluded that the proposed algorithm can achieve or exceed the effect of
supervised learning with fewer labeled samples, which solves the problem of marking fault
data in an industrial environment. In addition, as in the case of the CWRU dataset, the DAE
algorithm is not as accurate as the CNN in the case of a small number of labeled samples,
and only exceeds the CNN when the number of labeled samples reaches a certain scale. In
summary, the algorithm presented in this paper was the most advanced in all scenarios.
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4.2.3. The Effect of the Number of Unlabeled Data Points in the MFPT Dataset on
Fault Diagnosis

The result of the transformation on the verification accuracy due to the number of
unlabeled training samples is shown in Figure 14. The number of labeled samples was set
to 150, and the number of unlabeled samples ranged from 60 to 9000.
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Similar to the results of the CWRU dataset, it can be seen that the diagnostic accuracy
of the proposed method increases with the increase in unlabeled samples at the beginning
of training. When unlabeled samples reach a certain number, the accuracy rate converges
to a certain level.

4.2.4. Verification of the Effectiveness of the Proposed Method in the MFPT Dataset

The effectiveness of the proposed method was also verified on the MFPT dataset. As
shown in Figure 15a–c, when the number of labeled samples was 60, this method was
superior to other methods. In addition, Figure 15d–f shows that, as in the case of the CWRU
dataset, all methods work well with an increasing number of labeled samples. This further
verifies that the proposed method is competitive when used with different data sets.
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We also used the t-SNE [36] method to visualize high-dimensional features in two-
dimensional space to verify model performance. Figure 16 shows the results of visual
classification of different fault types on the test data set using the SSJL method when the
number of marked samples was 6000. The scatter plots are colored differently depending
on their true category. Figure 16a shows that all of the class characteristics of the original
test data were mixed and there was no obvious boundary between the different classes. As
shown in Figure 16b, the proposed depth model can be trained to aggregate the features
of different classes and to distinguish the boundaries of different classes. This shows that
our depth model retains a good feature extraction ability when trained using fewer labeled
data sets.
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5. Conclusions and Future Work

This paper presents a fault diagnosis method based on the combination of self-
supervised and supervised learning analysis. In addition, the proposed three-channel
vibration image preprocessing method can better highlight the local features of fault sig-
nals. The proposed method uses self-supervised learning to extract potentially universal
features from unlabeled vibration samples and performs a self-supervised MSE loss op-
eration on the label distribution of the original unlabeled samples. Furthermore, the
supervised cross-entropy loss operation is used to improve the recognition performance.
Two typical data sets of motor bearings were used to verify the analysis. The experimental
results showed that our method is superior to common fault diagnosis methods, and that
the advantage of the algorithm is more obvious when the number of labeled samples is
small. When only five marker samples were used for each fault type in the CWRU dataset,
the accuracy of this method reached 86.42%, and when 200 marker samples were used, the
accuracy of this method reached 98.49%. Using 60 labeled samples on the MFPT dataset,
the diagnostic accuracy was 96.61%. The results of this research show that our method is
superior to common fault diagnosis methods for different numbers of labeled samples; in
particular, when the number of labeled samples is small, the advantage of this method is
more obvious. We also found that the number of labeled samples affects the accuracy of
fault diagnosis; thus, an appropriate number of labeled samples can be chosen according to
the actual situation. The experimental results showed that the proposed method can effec-
tively address the over-fitting problem, and is more conducive to scenarios in which field
data are missing. Furthermore, the comparison of different fault diagnosis data processing
methods proved that the chosen method can enable the model to learn more features of
fault signals and obtain superior fault diagnosis performance. The visualization results
further verified the ability of the presented method to automatically learn features. The
method can effectively address the problem of data annotation in practical industrial appli-
cations, and the end-to-end fault diagnosis method significantly reduces the complexity of
model implementation. Thus, we believe that this approach is a promising fault diagnosis
method that can be further extended to other mechanical fault diagnosis scenarios. In the
future, we will further study the influence of different self-supervised learning mechanisms
on fault diagnosis; that is, a fault diagnosis approach based on self-supervised learning will
be the subject of our future work. In addition, the focus of the current paper is vibration
image data after transformation. For this processing method, the correlation between the
original vibration signals has not been fully considered. Thus, the direct application of
self-monitoring to the original one-dimensional vibration signal will also be considered in
future research. This will further promote the application of intelligent fault diagnosis in
industrial scenarios.
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