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INTRODUCTION 
 
Acute lung injury (ALI) manifests clinically as serious and 
acute respiratory dysfunction. Despite improvements in 
treatment, ALI has high morbidity and mortality rates, 
particularly in the elderly [1]. The pathogenesis of ALI 
involves disruption of the alveolar capillary-epithelial 
barrier due to exaggerated pulmonary inflammation, 
increased permeability, and exudation of protein-rich 
serous fluid [2]. As a consequence, lung edema develops, 
and pulmonary gas exchange is suppressed [3]. Oxidative 
damage and the resulting activation of multiple signaling 
pathways is associated with the pathogenesis of ALI [4]. 
Intratracheal administration of lipopolysaccharide (LPS), a 
pathogenic endotoxin found in the outer membrane of 
Gram-negative bacteria [5], induces pulmonary inflam-  

 

mation by enhancing the production of reactive oxygen 
species (ROS) and activating inflammatory responses. LPS 
is therefore frequently used to induce ALI in animal 
models [6]. 
 
Chalcones, a group of naturally occurring flavonoid 
compounds, exert antibacterial, antioxidant, anti-
inflammatory, and anticancer effects [7, 8]. Previously, 
we synthesized several novel (E)-3,4-diphydroxy-
chalcone derivatives and screened them for antioxidant 
activity. One of them, compound 33, exerted a 
particularly strong cytoprotective effect on hydrogen 
peroxide (H2O2)-induced oxidative damage in vitro and 
a neuroprotective effect against ischemia/reperfusion 
brain injury in vivo [9], its chemical structure is shown 
in Figure 1. However, whether compound 33 
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ABSTRACT 
 
We explored the effects of compound 33, a synthetic chalcone derivative with antioxidant activity, on 
lipopolysaccharide (LPS)-induced acute lung injury (ALI). Compound 33, dexamethasone or vehicle was 
administered intragastrically to mice 6 h before intratracheal instillation of LPS. After 24 h, the effects of 
compound 33 on alveolar structural damage were evaluated by assessing lung morphology and the wet/dry 
weight ratio. Protein and proinflammatory cytokine levels and superoxide dismutase activity were also 
examined in the cell free supernatant of bronchoalveolar lavage fluid. Additionally, we investigated the anti-
inflammatory and antioxidant activity of compound 33 in vitro and its effects on the MAPK/NF-κB and Nrf2/HO-
1 pathways. Pretreatment with compound 33 prevented LPS-induced structural damage, tissue edema, protein 
exudation, and overproduction of proinflammatory mediators. The effects of compound 33 were similar to or 
greater in magnitude than those of the positive control, dexamethasone. Moreover, compound 33 exerted anti-
inflammatory and antioxidant effects in vitro by inhibiting the MAPK/NF-κB pathway and activating the 
Nrf2/HO-1 pathway. Compound 33 may therefore be a promising candidate treatment for ALI. 
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ameliorates LPS-induced inflammation and ALI is 
unknown. 
 
LPS induces various intracellular signaling events, 
including activation of the mitogen-activated protein 
kinase (MAPK) pathway and nuclear factor κB (NF-κB) 
[10]. NF-κB, a rapid-acting pleiotropic transcription factor, 
induces overproduction of inflammatory mediators, such 
as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 
interleukin-1β (IL-1β), cyclooxygenase (COX2), and 
inducible nitric oxide synthase (iNOS) [11]. Activation of 
NF-κB is also implicated in the progression of LPS-
induced ALI [12]. In addition, synthesis of the antioxidant 
enzyme heme oxygenase-1 (HO-1), which exerts a 
beneficial effect in rats with LPS-induced ALI, is regulated 
by nuclear factor erythroid-2-related factor 2 (Nrf2) [13]. 
 
In this study, we investigated the anti-inflammatory and 
antioxidant activity of compound 33 in LPS-challenged 
RAW 264.7 macrophages and in an animal model of 
LPS-induced ALI. 
 
RESULTS 
 
Compound 33 prevented LPS-induced ALI in vivo 
 
No mice died in compound 33 group and vehicle group 
in the toxicity experiment. Mean body weights were also 
similar between the two groups (Figure 2A), indicating 
that compound 33 is realtively safe for use in mouse 
models. Only one mouse died after 24h of LPS challenge, 
and survival rates did not differ significantly between the 
groups (Figure 2B). Compared to the control group, the 
lungs of mice challenged intratracheally with LPS 
exhibited thickening of the alveolar walls and interstitial 
spaces, disruption of endothelial and epithelial integrity, 
and neutrophil infiltration around the pulmonary blood 
vessels and airways (Figure 2C). However, pretreatment 
with compound 33 or dex prevented these LPS- 
induced pathological changes in the lungs. Moreover, 
pretreatment with compound 33 (20 mg/kg) or dex 
significantly reversed LPS-induced increases in lung wet 
weight (WW)/dry weight (DW) ratios and total protein 
concentration in the bronchoalveolar lavage fluid (BALF). 
More specifically, compound 33 reduced WW/DW ratio 
 

 
 

Figure 1. Chemical structure of compound 33. 

by 34% and protein levels by 42%. These effects were 
slightly stronger than those observed for dex, which 
reduced WW/DW ratio by 27% and protein amounts by 
40% (Figure 2D, 2E). These results indicate that 
compound 33 ameliorated LPS-induced pathological 
changes in the lungs of ALI model mice. 
 
Compound 33 ameliorated LPS-induced 
inflammation and oxidative damage 
 
LPS stimulation markedly increased TNF-α, IL-6, and 
IL-1β levels in cell-free bronchoalveolar lavage fluid 
(BALF) supernatant compared to the control group. 
Pretreatment with compound 33 (10 or 20 mg/kg) or 
dex reversed the LPS-induced increases in the levels of 
these three proinflammatory cytokines (Figure 3A). 
More specifically, 20 mg/kg compound 33 reduced 
TNF-α levels by 56%, IL-6 levels by 32%, and IL-1β 
levels by 63%. Pretreatment with compound 33 prior to 
LPS administration also increased SOD activity in the 
BALF, which was significantly lower in the LPS group 
than in the control group (Figure 3D). Moreover, LPS 
markedly increased iNOS and COX-2 levels (Figure 3E, 
3F), and compound 33 significantly reversed these 
increases. Thus, compound 33 exerts anti-inflammatory 
and antioxidant effects in vivo. 
 
Compound 33 inhibited the MAPK/NF-κB pathway 
and activated the Nrf2/HO-1 pathway in vivo 
 
Pretreatment with 20 mg/kg, but not 10 mg/kg, 
compound 33 reduced LPS-induced phosphorylation of 
P38, extracellular signal-regulated kinase (ERK), and c-
Jun N-terminal kinase (JNK) (Figure 4A–4C). 
Furthermore, phosphorylated-IκBα (p-IκBα), P65, and 
p-P65 levels in lung tissues decreased in the presence of 
compound 33, especially for the 20 mg/kg dose (Figure 
4D–4F). Immunofluorescence staining showed that 
nuclear NF-κB p65 levels in lung tissue increased upon 
exposure to LPS, and pretreatment with compound 33 
blocked this nuclear translocation of NF-κB p65 (Figure 
4G). Immunohistochemical analysis showed that Nrf2 
levels were slightly higher in the LPS group than in the 
control group. Compound 33 also increased Nrf2 levels, 
and 20 mg/kg compound 33 increased Nrf2 levels more 
than LPS did (Figure 4H). HO-1 levels also increased 
after administration of compound 33 (Figure 4I). The 
MAPK/NF-κB and Nrf2/HO-1 pathways are therefore 
implicated in the effects of compound 33 on LPS-
induced ALI in vivo. 
 
Compound 33 inhibited overproduction of 
proinflammatory markers and ROS 
 
TNF-α, IL-6, and IL-1β mRNA levels increased 
markedly in RAW 264.7 cells challenged with LPS for 
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12h compared to vehicle-treated cells. Compound 33 
reversed these LPS-induced cytokine level increases in a 
concentration-dependent manner, with 10 μM compound 
33 exerting the most robust protective effect (Figure 5A–
5C). Furthermore, the LPS-induced increase in iNOS and 
COX2 levels was also significantly reversed by 
compound 33 in a dose-dependent manner (Figure 5E, 
5F). Finally, flow cytometry showed that pretreatment 
with compound 33 reversed the LPS-induced increase in 
intracellular ROS levels in a concentration-dependent 
manner (Figure 5D). 
 
Compound 33 inhibited the MAPK/NF-κB pathway 
and activated the Nrf2/HO-1 pathway in vitro 
 
Western blotting showed that LPS significantly 
increased phosphorylation of P38, ERK, JNK, IκBα, and 
P65. Compound 33 reversed this effect, with 10 μM 
compound 33 exhibiting the highest potency (Figure 

6A–6E). Immunofluorescence analysis revealed that 
LPS stimulation promoted nuclear translocation of NF-
κB p65, and compound 33 markedly reversed this effect 
as well (Figure 6F). In addition, compound 33, but not 
LPS, increased Nrf2 and HO-1 protein levels (Figure 
4G, 4H). These results suggest that the the MAPK/NF-
κB and Nrf2/HO-1 pathways may mediate the protective 
effects of compound 33. 
 
Nrf2-siRNA transfection and Tin protoporphyrin IX 
(SnPP) reversed the anti-inflammatory effect of 
compound 33 
 
Western blot analysis showed that Nrf2 siRNA reduced 
Nrf2 levels compared to the negative control (Figure 7A). 
Nrf2 siRNA, but not control siRNA, also significantly 
reversed the compound-33-induced decrease in TNF-α, 
IL-6, and IL-1β levels (Figure 7B–7D). In addition, 
pretreatment with SnPP, an inhibitor of HO-1, blocked

 

 
 

Figure 2. Effects of compound 33 on mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). (A) Mean body weights 
for the two groups over 15 days. (B) Survival rates of mice with LPS-induced ALI. (C) Lung tissues were stained with hematoxylin and eosin to 
show morphological changes. (D) Degree of tissue edema was evaluated using lung wet-to-dry weight ratios. (E) Total protein amounts in 
cell-free supernatant of bronchoalveolar lavage fluid (BALF). Data are presented as means ± standard error of the mean (SEM; n = 3–6). # P 
<0.05, ## P <0.01, compared to the control group. * P <0.05, ** P <0.01, compared to the LPS group. 
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Figure 3. Effects of compound 33 on LPS-induced inflammation and oxidative damage in mice. (A–C) Levels of proinflammatory 
cytokines in cell-free supernatant of the BALF as determined using enzyme-linked immunosorbent assays. (D) Superoxide dismutase (SOD) 
activity in the BALF. Protein levels of the proinflammatory mediators (E) iNOS and (F) COX2 in the lungs. Data are presented as means ± SEM 
(n = 3–6). # P <0.05, ## P <0.01, compared to the control group. * P <0.05, ** P <0.01, compared to the LPS group. 
 

 
 
Figure 4. Effects of compound 33 on the MAPK/NF-κB and Nrf2/HO-1 signaling pathways in vivo. (A) p-P38, (B) p-ERK, (C) p-JNK, 
(D) p-IκBα, (E) P65, and (F) p-P65 protein levels relative to total P38, total ERK, total JNK, and GAPDH (loading control) were assayed using 
their respective antibodies. (G) Translocation of NF-κB P65 visualized by immunofluorescence staining. Immunohistochemical analysis of (H) 
Nrf2 and (I) HO-1 expression in lung tissue. Data are presented as means ± SEM (n = 3–6). # P <0.05, ## P <0.01, compared to the control 
group. * P <0.05, ** P <0.01, compared to the LPS group. 
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Figure 5. Effects of compound 33 on LPS-induced increases in proinflammatory marker and reactive oxygen species (ROS) 
levels in RAW 264.7 cells. RAW264.7 cells were stimulated with LPS or phosphate-buffered saline (PBS) for 12 h after pretreatment with 
2.5, 5, or 10 μM compound 33. Total RNA was extracted and (A–C) proinflammatory cytokine mRNA levels were assayed. (D) Intracellular 
ROS level was assessed using loro-dihydro-fluorescein diacetate. (E) iNOS and (F) COX2 protein levels in RAW264.7 cells as determined using 
Western blotting. Data are presented as means ± SEM (n = 3–6). # P <0.05, ## P <0.01, compared to the control group. * P <0.05, ** P <0.01, 
compared to the LPS group. 
 

 
 

Figure 6. Effects of compound 33 on the NF-κB and HO-1/Nrf2 signaling pathways in vitro. RAW264.7 cells were treated with LPS 
for 1 h after pretreatment with 2.5, 5, or 10 μM compound 33. Protein levels were determined using Western blotting, and (A) p-P38/P38,  
(B) P-ERK/ERK, (C) p-JNK/JNK, (D) p-IκBα/IκBα, and (E) p-P65/P65 expression was quantified. (F) Nuclear translocation of NF-κB P65 visualized 
using immunofluorescence staining. Cells were pretreated with 2.5, 5, or 10 μM compound 33 or dimethyl sulfoxide for 1 h, and then exposed 
to LPS for 12 h. (G) Nrf2 and (H) HO-1 protein levels in cell lysates were analyzed; GAPDH was used as the control. Data are presented as means 
± SEM (n = 3–6). # P <0.05, ## P <0.01, compared to the control group. * P <0.05, ** P <0.01, for comparisons with the LPS group. 
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about 60–79% of the compound-33-induced reduction in 
IL-6, IL-1β, and TNF-α levels (Figure 7E–7G). 
Similarly, flow cytometry showed that SnPP increased 
ROS generation (Figure 7H). The Nrf2/HO-1 pathway 
therefore mediates the anti-inflammatory and antioxidant 
activities of compound 33. 
 
DISCUSSION 
 
Inflammation facilitates ROS generation, which in turn 
promotes inflammatory reactions [14]. Inflammation 
and oxidative stress are linked biological processes 
that contribute to the pathogenesis of ALI [15, 16]. 
Intratracheal administration of LPS reportedly triggers 
a severe inflammatory response and oxidative damage 
by increasing the production of proinflammatory 
cytokines and ROS. We therefore used LPS to induce 
ALI in mice with histopathological characteristics 
similar to those of human ALI [6, 17]. ALI was 
induced in mice by intratracheal instillation of LPS (10 
mg/kg) and was characterized by tissue edema, 
inflammatory cell infiltration, and disruption of the 
alveolar structure. 
 
The low toxicity and diverse biological properties of 
natural and synthetic chalcones make them suitable 
candidates for drug discovery [18, 19]. We previously 
synthesized multiple chalcone derivatives and screened 
them for antioxidant potential. One of them, compound 
33, exerted a significant protective effect in an animal 
model of middle cerebral artery occlusion and against 
H2O2-induced cellular injury in vitro. Compound 33 is 
therefore a candidate agent for the treatment of ischemic 
disorders [9]. However, relatively little was known about 
its anti-inflammatory activity and efficacy against LPS-
induced ALI. Here, we report that intragastric 
administration of compound 33 ameliorated LPS-induced 
ALI, as indicated by histopathological features and 
decreased lung WW/DW ratios and total protein 
concentrations in BALF. 
 
Inflammatory cells are activated in the early phase of 
ALI and lead to excessive production of proinflammatory 
cytokines (e.g., TNF-α, IL-6, and IL-1β). This results in 
the disruption of the alveolar epithelium, abnormal gas 
exchange, and a reduction in lung compliance [20]. IL-1β 
enhances the production of iNOS and COX2, which 
regulate the synthesis of nitric oxide and prostaglandin 
E2 [21]. Thus, inhibition of proinflammatory cytokine 
production is vital for the prevention of inflammatory 
reactions [22]. In this study, compound 33 significantly 
reduced TNF-α, IL-6, and IL-1β mRNA levels and 
inhibited the LPS-induced overproduction of these three 
proinflammatory cytokines in mice with ALI. Compound 
33 also decreased iNOS and COX2 levels in vivo and in 
vitro. Notably, the effects exerted by compound 33 were 

equivalent to or greater than those of dex. Excessive 
activation and accumulation of inflammatory cells during 
ALI promotes the synthesis of proinflammatory factors 
and ROS. In this study, compound 33 suppressed the 
LPS-induced generation of ROS in RAW 264.7 cells. 
Compound 33 also upregulated SOD activity in vivo. 
Thus, compound 33 prevents LPS-induced oxidative 
damage by scavenging ROS. Taken together, these 
results indicate that compound 33 exhibits potent anti-
inflammatory and antioxidant activity and attenuates 
LPS-induced tissue and cell damage. 
 
Among the intracellular signaling pathways involved in 
inflammatory and immune responses, MAPK/NF-κB 
pathway might be particuarly important in mediating the 
effects of compound 33. Other chalcone analogues 
reportedly inhibit activation of the MAPK/NF-κB 
pathway in vivo and in vitro [7, 23]. The MAPK 
pathway plays a vital role in inflammation, and its 
activation is implicated in LPS-induced tissue injury, 
such as ALI [10]. Three subfamilies of MAPKs—P38, 
ERK, and JNK—are activated and phosphorylated in 
response to inflammatory stimuli such as LPS, as well as 
during LPS-induced ALI [4, 24]. Indeed, LPS 
stimulation markedly increased phosphorylation of P38, 
ERK, and JNK, and this effect was reversed by 
pretreatment with compound 33 in vivo and in vitro. NF-
κB is a master transcription factor that plays a vital role 
in regulating the synthesis of proinflammatory markers 
during ALI [25]. Stimulants such as LPS activate the 
NF-κB pathway by promoting the phosphorylation and 
degradation of IκBα. This results in nuclear translocation 
of activated NF-κB, which then induces the transcription 
of genes encoding the proinflammatory cytokines iNOS 
and COX2 [26]. Our results suggest that compound 33 
suppressed LPS-induced phosphorylation of NF-κB p65 
and IκBα in RAW 264.7 cells. Moreover, compound 33 
reversed the LPS-induced increase in nuclear 
translocation of NF-κB p65. These findings confirm that 
inhibition of the MAPK/NF-κB pathway is involved in 
the anti-inflammatory effects of compound 33. 
 
The Nrf2 transcription factor regulates the expression of 
genes that encode antioxidant factors, including SOD 
and HO-1, by binding to antioxidant-response elements 
[27]. Activation of Nrf2/HO-1 results in antioxidant and 
antiapoptotic effects in many models of cell and tissue 
injury [28, 29]. In addition, the Nrf2/HO-1 signaling 
pathway was associated with the antioxidant effects of 
compound 33 after ischemia/reperfusion-related brain 
injury [9]. In this study, LPS significantly upregulated 
Nrf2 and HO-1 levels in vivo and in vitro, indicating that 
the Nrf2/HO-1 pathway was activated in response to 
LPS-induced injury. In addition, Nrf2 siRNA largely 
reveresed compound-33-induced decreases in TNF-α, 
IL-6, and IL-1β levels. Moreover, SnPP, an inhibitor of
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Figure 7. Effects of Nrf2-siRNA transfection and tin protoporphyrin IX (SnPP) on compound 33-induced suppression of 
proinflammatory cytokine and ROS synthesis. (A) Nrf2 protein levels were assayed using Western blotting after transfection with Nrf2-
siRNA or Nrf2-negative control siRNA. Effects of Nrf2 silencing on compound 33-induced suppression of (B) TNF-α, (C) IL-6, and (D) IL-1β. To 
explore the function of the Nrf2/HO-1 signaling pathway in inflammatory responses and oxidative stress, SnPP, an inhibitor of HO-1, was 
administered to RAW264.7 cells; compound 33 was administered 1 h later. (E) TNF-α, (F) IL-6, and (G) IL-1β mRNA and (H) ROS levels were 
analyzed. * P <0.05, ** P <0.01, compared to the 33+ LPS group. 
 

 
 

Figure 8. Illustration of protection provided by compound 33 against LPS-induced lung injury. 
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HO-1, significantly reversed the compound-33-induced 
suppression of proinflammatory cytokine and ROS 
synthesis, suggesting that the Nrf2/HO-1 pathway is 
functionally linked to the anti-inflammatory and anti-
oxidative effects of compound 33. 
 
In conclusion, compound 33 protected against LPS-
induced injury, inflammation, and oxidative damage in 
vivo and in vitro. The protective effects of compound 33 
may be mediated by the inhibition of the MAPK/NF-κB 
pathway and activation of the Nrf2/HO-1 pathway 
(Figure 8). 
 
MATERIALS AND METHODS 
 
Reagents 
 
Compound 33 with a purity of > 99% was synthesized; its 
chemical structure is shown in Figure 1. LPS (Escherichia 
coli O111:B4) was obtained from Sigma-Aldrich (St. 
Louis, MO, USA). ELISA detection kits were provided by 
Multisciences Biotech (Shanghai, China). The primers for 
TNF-α, IL-6, and IL-1β were purchased from Sangon 
Biotech Co., Ltd (Shanghai, China). The superoxide 
dismutase (SOD) and Bradford protein assay kits were 
purchased from Nanjing Jiancheng Bioengineering 
Institute (Nanjing, China). The ROS assay kit was 
obtained from Beyotime Biotechnology (Shanghai, 
China). Antibodies against iNOS, COX2, Nrf2, and HO-1 
were purchased from Abcam (Shanghai, China), and 
antibodies against P38, p-P38, ERK, p-ERK, JNK, p-JNK, 
p-IκBα, IκBα, p-P65, P65, and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) were purchased from 
Cell Signaling (Danvers, MA, USA). SnPP was obtained 
from Cayman Chemical (Ann Arbor, MI, USA). The 
control siRNA and Nrf2 siRNA were obtained from 
Shanghai GenePharma Co., Ltd. (Shanghai, China). 
 
Preparation of the mice 
 
Animal experiments were conducted in accordance with 
the Guide for the Care and Use of Laboratory Animals 
of Wenzhou Medical University, Wenzhou, China, and 
the study protocol was approved by the University’s 
Institutional Animal Care and Use Committee 
(WYDW2017-0111). Male C57BL/6N mice (6–8 weeks 
of age and 20–24 g body weight) were housed in the 
Experimental Animal Center of Wenzhou Medical 
University and were fed standard laboratory chow  
and sterile water. ALI was induced after a 7-day 
acclimitization period [30]. 
 
Toxicity evaluation of compound 33 in vivo 
 
An acute toxicity experiment was performed to estimate 
the toxicity of compoud 33 [30]. Based on the methods 

of previous studies, 12 male C57BL/6N mice were 
randomly divided between the compound 33 and 
control groups and received a single 500 mg/kg dose of 
compound 33 or a similar dose of vehicle, respectively. 
Mortality rate and mouse body weights were then 
recorded for 15 days. 
 
LPS exposure and treatment 
 
Based on previous reports [9, 31] and the results of 
preliminary experiments, mice were randomized into the 
following five groups: (i) vehicle-pretreated/phosphate-
buffered saline (PBS)-exposed group (control group);  
(ii) vehicle-pretreated/LPS-exposed group (LPS group); 
(iii) compound 33-pretreated (10 mg/kg)/LPS-exposed 
group (10 mg/kg 33+LPS group); (iv) compound 33-
pretreated (20 mg/kg)/LPS-exposed group (20 mg/kg 
33+LPS group); and (v) dexamethasone (dex)-pretreated/ 
LPS-exposed group (dex+LPS group). Both compound 
33 doses and 2 mg/kg dex were administered to the 
appropriate groups by gavage. Dex administration served 
as a positive control due to its efficacy against LPS-
induced pulmonary inflammation. After 6 h, ALI was 
induced under anesthesia by intratracheal instillation of 
10 mg/kg LPS; control group mice received an identical 
volume of PBS. After 24 h of LPS challenge, survival 
rates were recorded and surviving mice were euthanized 
using an approved protocol. Bronchoalveolar lavage fluid 
(BALF) was collected from the mice for analysis. 
 
Cell culture 
 
Mouse RAW 264.7 macrophages (Cell Bank of the 
Chinese Academy of Science, Shanghai, China) were 
maintained in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% fetal bovine serum 
(FBS) and 100 U/mL penicillin-streptomycin and 
incubated at 37°C in an atmosphere with 5% carbon 
dioxide. RAW 264.7 cells were pretreated with 2.5, 5, or 
10 μg/mL compound 33 and then exposed to 1 μg/mL 
LPS for 1 h. Next, the cells were harvested for analysis 
of MAPK/NF-κB pathway protein phosphorylation 
levels. After 12 h, RAW 264.7 cells were harvested for 
analysis of proinflammatory cytokine, ROS, nuclear  
NF-κB P65, and Nrf2/HO-1 pathway protein levels.  
To explore the role of the Nrf2/HO-1 pathway in the 
anti-inflammatory and antioxidant activity of compound 
33, SnPP (20 μg/mL), an inhibitor of HO-1, was applied 
to RAW 264.7 cells 30 min before compound 33  
was added. 
 
Assessment of lung histology 
 
Lung tissues were dissected from the chest cavity, fixed 
in 10% neutral-buffered formalin for >24 h, dehydrated 
in an ethanol concentration gradient series, embedded in 
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paraffin blocks, and cut into 4-μm-thick sections. The 
sections were stained with hematoxylin and eosin and 
examined under a light microscope (Olympus, Tokyo, 
Japan) in a blinded manner. 
 
Lung wet/dry weight ratio 
 
After mice were euthanized, the lungs were harvested, 
washed with ice-cold PBS, blotted with filter paper, and 
wet weights (WW) were recorded. Lung tissues were 
then dehydrated in an oven at 60°C for 24 h and dry 
weights (DW) were recorded. The water content of the 
lung tissue was calculated as WW ÷ DW. 
 
Bronchoalveolar lavage fluid (BALF) analysis 
 
Lungs were lavaged three times with 0.8 mL of ice-cold 
PBS. The resulting BALF was pooled and centrifuged at 
12,000 rpm for 10 min. Levels of the proinflammatory 
cytokines TNF-α, IL-6, and IL-1β in the BALF were 
determined using commercially available enzyme-linked 
immunosorbent assay kits. 
 
Measurement of SOD activity 
 
Lung tissues were excised from mice challenged with 
LPS for 24 h, homogenized, and lysed in extraction 
buffer. SOD activity in lung tissues was assayed using a 
commercially available kit. 
 
Extraction of total RNA and quantitative reverse 
transcriptase-polymerase chain reaction (qRT-PCR) 
 
RAW 264.7 cells (2 × 106) were cultured in 12-well 
plates and treated with the indicated concentrations of 
compound 33 prior to 12 h of LPS challenge. Next, total 
RNA was extracted using TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA). The RNA was reverse-transcribed 
into cDNA using a HiScript II Q RT SuperMix for qPCR 
Kit (Vazyme, Nanjing, China). We also performed qRT-
PCR using TB Green Premix ExTaq™ II (Takara Bio 
Inc., Shiga, Japan). The sequences of the forward and 
reverse primers were as follows: TNF: forward, 5′-GC 
GACGTGGAACTGGCAGAAG-3′, reverse, 5′-GCCAC 
AAGCAGGAATGAGAAGAGG-3′; IL-6: forward, 5′-
TCCATCCAGTTGCCTTCTTG-3′, reverse, 5′-AAGTG 
CATCATCGTTGTTCATACA-3′; IL-1β: forward, 5′-A 
CTCCTTAGTCCTCGGCCA-3′, reverse, 5′-CCATCAG 
AGGCAAGGAGGAA-3′; and GAPDH: forward, 5′-
AGGTCGGTGTGAACGGATTTG-3′, reverse, 5′-TGT 
AGACCATGTAGTTGAGGTCA-3′. 
 
Western blot analysis 
 
Lung tissue lysates were generated by homogenizing 
lung tissues in tissue total protein lysis buffer  

(1 mM Tris-hydrochloride [HCl], 0.5 mM 
ethylenediaminetetraacetic acid [EDTA], 2 mM sodium 
chloride [NaCl], and 10% sodium dodecyl sulfate 
[SDS]). After stimulation with LPS for 1h or 12 h, RAW 
264.7 cells were resuspended in extraction buffer (0.5 
mM radioimmunoprecipitation assay buffer, 0.5 mM 
phenylmethylsulfonyl fluoride, and phosphatase 
inhibitors). Next, total tissue and cellular protein was 
extracted as described previously. Protein concentration 
was quantified using a bicinchoninic acid protein assay 
kit. Proteins were resolved using 10% or 12% SDS-
polyacrylamide gel electrophoresis and transferred to a 
polyvinylidene difluoride membrane. After blocking in 
5% dry milk in Tris-buffered saline with Tween (TBST) 
for 1.5 h, the membrane was incubated overnight in the 
presence of primary antibodies against GAPDH (1:1,000 
dilution), iNOS (1:500), COX2 (1:1,000), Nrf2 (1:1,000), 
HO-1 (1:20,000), P38 (1:1,000), p-P38 (1:1,000), ERK 
(1:1,000), p-ERK (1:1,000), JNK (1:1,000), p-JNK 
(1:1,000), p-P65 (1:500), P65 (1:500), p-IκB (1:1,000), 
and IκB (1:1,000). The membrane was then washed in 
TBST and incubated with the appropriate horseradish 
peroxidase-conjugated secondary antibody for 1 h at 
room temperature. Immunoreactive bands were 
visualized using chemiluminescence (ECL) and quan-
tified by densitometry using ImageLab software 
(ver.6.0). Bio-Rad Laboratories, Hercules, CA, USA). 
Protein levels were normalized to that of GAPDH. 
 
Immunohistochemical analysis 
 
Lung-tissue sections were dewaxed and hydrated. 
Nonspecific antigen sites were blocked using normal 
goat serum, and the sections were incubated with  
anti-Nrf2 and -HO-1 primary antibodies overnight  
at 4°C. Next, the sections were washed with PBS  
and immunostained with 50 μL of biotin-conjugated 
secondary antibody for 1 h at room temperature.  
Signals were visualized using 3,3′-diaminobenzidine 
tetrahydrochloride hydrate (DAB), and the sections were 
stained with hematoxylin, mounted, and observed under 
a light microscope. Nrf2- and HO-1–positive cells were 
counted in five random fields at 400× magnification. 
Images were analyzed using Image-Pro Plus software  
(v. 6.0; Media Cybernetics, Rockville, MD, USA). 
 
Immunofluorescence staining of P65 
 
Following deparaffinization using xylene and 
dehydration in a graded alcohol series, lung sections were 
incubated with 3% H2O2 for 10 min and blocked in 
bovine serum albumin (BSA) for 1 h. After pretreatment 
with compound 33 and 12 h of exposure to LPS, RAW 
264.7 cells were fixed in paraformaldehyde for 45 min 
and then placed in 5% BSA in PBS for 30 min. The 
sections or cells were incubated in the presence of the 
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anti-p65 primary antibody (1:200 dilution) overnight at 
4°C, and then incubated with the phycoerythrin-labeled 
secondary antibody (1:400) for 1 h at room temperature. 
Nuclei were visualized using 4′,6-diamidino-2-
phenylindole (DAPI). Finally, the sections/cells were 
visualized under a fluorescence microscope at 400× 
magnification (Nikon, Tokyo, Japan). 
 
Cell transfection 
 
RAW 264.7 cells (2 × 106) were grown in six-well plates 
and were transiently transfected with Nrf2-negative 
control siRNA or Nrf2-siRNA using Lipofectamine 2000 
(Thermo Scientific, Shanghai, China) for 72 h upon 
reaching 50-60% confluence. Transfection was 
confirmed using Western blot analysis. 
 
Measurement of ROS levels in vitro 
 
RAW 264.7 cells (2 × 106/well) were grown in six-well 
plates pretreated with the indicated doses of compound 
33, and then exposed to LPS (100 ng/mL) for 12 h. The 
cells were harvested and incubated with 1 mL of FBS-
free DMEM containing 1 μL of loro-dihydro-fluorescein 
diacetate for 20 min at 37°C. After washing three times 
with PBS, ROS levels were assayed using flow 
cytometry (FACSCalibur; BD, Franklin Lakes, NJ, 
USA), and the results were analyzed using FlowJo 
software (v. 10.5.3; Ashland, OR, USA). 
 
Statistical analyses 
 
Data were analyzed using SPSS software (v. 19.0; IBM 
Corporation, Armonk, NY, USA) and are expressed as 
means ± standard error of the mean (SEM). The 
significance of differences among samples was assessed 
using the Mann–Whitney test. Images were digitally 
processed using Prism (v. 5; GraphPad, La Jolla, CA, 
USA) and Photoshop software (ver. 5.0; Adobe Inc., 
Mountain View, CA, USA). A value of P <0.05 indicated 
a statistically significant difference. 
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