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Recently, a large clinical study revealed an inverse correlation of individual risk of cancer versus Alzheimer’s disease (AD). However,
no explanation exists for this anticorrelation at the molecular level; however, inflammation is crucial to the pathogenesis of both
diseases, necessitating a need to understand differing signaling usage during inflammatory responses distinct to both diseases.
Using a subpathway analysis approach, we identified numerous well-known and previously unknown pathways enriched in datasets
from both diseases. Here, we present the quantitative importance of the inflammatory response in the two disease pathologies and
summarize signal transduction pathways common to both diseases that are affected by inflammation.

1. Introduction

Epidemiological evidence has revealed an inverse incidence
between Alzheimer’s disease (AD) and cancer that increases
exponentially among aged cohorts [1, 2]. However, despite
the clear differences in the etiology of the two diseases,
including the premature death of neurons in AD and evasion
of apoptosis in cancer, it has been suggested that common
signaling pathways are involved in the two age-associated
diseases [3]. Molecular comparative surveys of the two
disease states have led to speculation of roles for p53 and the
Wnt signaling pathway in both cancer and AD [4]. However,
a global transcriptomic network comparison between the two
diseases has yet to be completed [2].

Of interest, immune response is intimately related to both
diseases [5–7]. In fact, based on an early colorectal cancer
(CRC) transcriptome dataset [8], our previous study [9]
found immunosuppression and immune cell infiltration even
within normal-appearing cells in CRC patients. Similarly, in
the brain, microglia and astrocytes involved in inflammation
play a critical role in neurodegeneration [6, 7].

Despite continuous efforts to understand the individual
molecular mechanisms of the two diseases, distinction of
the global effects of immune response toward specific signal
transduction usage in the two diseases has not been estab-
lished. Here, we systematically inspected the two diseases
representing phenotypically opposite cell fates, death and
survival, by utilizing functional enrichment analysis and
a systems biology approach [9]. This functional enrich-
ment indicated that inflammatory response was significantly
involved in both diseases. Subsequently, we found, by the
systems biology approach, that various pathways within each
disease network were comprised of common inflammation-
associated genes.

2. Materials and Methods

2.1. Functional Enrichment Comparison of CRC and AD.
Throughout the paper, we compared one colorectal cancer
(CRC) dataset (GEO accession GSE4107) [8] with two AD
datasets (GEO accessions GSE1297, GSE12685) [10, 11] from
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Figure 1: IPA functional enrichment of the CRC and the AD datasets. (a) Top 5 functional categories from “Diseases and Functions” ontology
for the datasets are represented. The 𝑦-axis represents the minus logarithms of the 𝑃 values. The higher the value on the 𝑦-axis is, the more
statistically significant it becomes. The 𝑥-axis represents the functional categories. (b) The common genes inversely expressed between the
two diseases are indicated by white ovals (see details in Section 2). In the Venn diagrams, “GSE12685 (AD) Dn” is the downregulated gene set
in AD patients versus controls. “GSE12685 (AD) Up” is the upregulated gene set in AD patients versus controls. The notation is similar to the
GSE1297 (AD) dataset and the GSE4107 (CRC) dataset.

GEO (see details in SupplementaryTable S1 in Supplementary
Material available online at http://dx.doi.org/10.1155/2015/
205247). We used Ingenuity Pathway Analysis (IPA, Qiagen,
Valencia, CA, USA) to inspect functionally enriched terms
within the IPA “Diseases and Functions” ontology, revealing
the top 5 significant terms for the three datasets (Figure 1(a)).
For functional enrichment analysis, we uploaded the expres-
sion fold-changes of all the genes for the three datasets into

IPA: in the CRC dataset, the expression fold-changes of
patients versus controls were obtained and in AD, the fold-
changes of AD patients versus controls were obtained.

Since cancer and AD are phenotypically opposite (cell
survival versus cell death), we obtained oppositely expressed
common genes between the two diseases. Based on all the
genes’ fold-changes from the three datasets, we obtained the
common genes as shown in Figure 1(b).
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Table 1: Inflammation-associated genes common to both AD and CRC show opposite expression patterns. The 16 oppositely expressed
common genes (in Figure 1(b)) between AD and CRC were assigned to inflammation-associated functional terms in IPA.

Functional category Downregulated in AD and upregulated in CRC Upregulated in AD and downregulated in CRC
Chemokine PTPN6+∗#, IRAK3+∗#, FLT3+∗# BAD+∗#, CD36+∗#

Inflammation
relating to CRC DDIT3+∗#, FAS+∗#, IRF3+∗#

Inflammation
relating to brain

CCR6+∗#, CD28+∗#, DDIT3+∗#, FAS+∗#, FCER1G+∗#,
NGFR+∗# PPARD+∗#

Cytokines relating to
cancer CD28+∗#, FN1+∗# ABL1+∗#, EGFR+∗#

Cytokines relating to
brain CD36+∗#

+Genes detected in the CRC network from GSE4107 dataset.
∗Genes detected in the AD network from GSE1297 dataset.
#Genes detected in the AD network from GSE12685 dataset.

2.2. Network Construction of CRC and AD. For generating
networks from the three datasets, we applied our previous
subpathway-based systems biology approach [9]. In brief,
KEGG pathways were decomposed to all their possible paths
(i.e., subpathways). In a given dataset, we applied a statistical
test to each subpathway to determine whether the gene
expression levels agreed with edge types (e.g., activation,
inhibition) of the subpathway. Subsequently, in the dataset,
we gathered the statistically significant subpathways (𝑃 values
<0.05) that comprised the network.

3. Results and Discussion

3.1. Overview. While cancer and AD are two of the most
common diseases worldwide (15.6 million versus 7.7 million
new cases per year) relating to aging, their phenotypes are
opposite: cell death (neurons) in AD versus survival (mostly
epithelial cells) in cancer. Also, AD patients are less suscep-
tible to cancer and vice versa [1]. Consequently, we aimed
at understanding changes at the molecular level between
the two diseases. First, we inspected functional enrichment
comparison of a cancer dataset (from our previous study)
and the two AD datasets. Second, due to the involvement
of inflammation in both pathologies [12, 13], we aimed to
identify global network differences between the two diseases
to possibly identify differential inflammation environments
and differential chemokine/cytokine receptor usages. For this
purpose, we selected colorectal cancer (CRC) as the cancer
dataset to extend our previous result [9]. We also obtained
the two independent AD datasets fromGEO (Supplementary
Table S1).

3.2. Functional Enrichment Comparison of CRC and AD:
Inflammation-Related Genes. We used Ingenuity Pathway
Analysis (IPA) to perform functional pathway enrichment
of early CRC and AD. IPA reported the top 5 functional
categories from its “Diseases and Functions” ontology. In
Figure 1(a), inflammatory response-related genes, as well as
cancer-associated genes, were significantly enriched in the
CRC and the AD datasets.

Figure 1(b) shows common genes that were inversely
expressed between the two phenotypically opposite diseases.
Considering that the biopsy tissues for the datasets contain
immune cells, inflammatory response is reasonable for func-
tional enrichment.

Out of the common genes in Figure 1(b), ARF6 was
upregulated in the AD datasets but downregulated in the
CRC dataset. ARF6, a small GTPase [14–16], regulates early
endosome internalization of the protease BACE1, Beta-Site
APP-Cleaving Enzyme 1. This internalization enables BACE1
to encounter and cleave intracellular amyloid precursor
proteins (APPs), leading to amyloidogenic processing for
the accumulation A𝛽 dimers in neurons, a hallmark of AD
pathology [17].

CCR6 (in Figure 1(b)) was upregulated in CRC but down-
regulated in both AD datasets. CCR6 is an important surface
marker of immunosuppressive immune cells in the CRC
tumor microenvironment [18]. Regulatory T cells (TReg cells)
expressing CCR6 are recruited to a tumor mass by tumor-
associated macrophages (TAMs), and tumor development
is enhanced by CCR6 binding to its ligand CCL20 (CRC
1.721-fold of overcontrol in the GSE4107 dataset) secreted
by tumor cells [18]. This scenario agrees with our previous
result, indicating TReg cell infiltration into normal-appearing
mucosa inCRCpatients [9]. Considering that T andB cells do
not exist in brain, the low expression of the TReg cell surface
markers in AD patients is not surprising.

We further dissected the common genes (28 and 35
genes in white circles in the Venn diagram in Figure 1(b))
in terms of inflammation, considering that inflammatory
response was the highest enrichment in all three datasets.
For this purpose, we selected several terms involved in
inflammation from the IPA “Diseases and Functions” ontol-
ogy (see the terms and entries in Supplementary Table S2).
Out of the genes common to the three datasets, 16 were
oppositely expressed between the two diseases in terms of IPA
inflammation-related terms (Table 1).

3.3. Network Construction of CRC and AD. Next, we con-
structedmolecular networks for the two diseases. By applying
our previous systems biology method to the three disease
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Table 2: KEGG pathways associated with the 16 oppositely expressed common genes (in Table 1) in the AD and the CRC networks. From
the AD and the CRC networks, pathway information of the 16 genes was obtained. The 16 genes were inversely expressed in the pathways
between the AD and the CRC networks.

Gene symbols Pathways CRC
(GSE4107)

AD
(GSE12685)

AD
(GSE1297)

PTPN6 hsa04662 B cell receptor signaling pathway;
hsa04630 Jak-STAT signaling pathway; hsa05140 Leishmaniasis

Up Down Down

IRAK3 hsa04722 Neurotrophin signaling pathway
FLT3 hsa05221 Acute myeloid leukemia
DDIT3 hsa04010 MAPK signaling pathway

FAS hsa04115 p53 signaling pathway;
hsa04650 Natural killer cell mediated cytotoxicity

IRF3 hsa04622 RIG-I-like receptor signaling pathway;
hsa04623 Cytosolic DNA-sensing pathway

CCR6 hsa04060 Cytokine-cytokine receptor interaction;
hsa04062 Chemokine signaling pathway

CD28 hsa04660 T cell receptor signaling pathway;
hsa05416 Viral myocarditis

FCER1G hsa04650 Natural killer cell mediated cytotoxicity
NGFR hsa04722 Neurotrophin signaling pathway
FN1 hsa04512 ECM-receptor interaction

BAD hsa04510 Focal adhesion; hsa05223 Non-small cell lung cancer;
hsa05210 Colorectal cancer

Down Up UpCD36 hsa03320 PPAR signaling pathway;
hsa04512 ECM-receptor interaction

PPARD hsa05221 Acute myeloid leukemia; hsa04310 Wnt signaling pathway

ABL1 hsa04012 ErbB signaling pathway;
hsa04722 Neurotrophin signaling pathway

EGFR hsa05214 Glioma; hsa04012 ErbB signaling pathway

datasets, we obtained CRC and AD pathogenesis networks
(Supplementary Figures S1–S3). We summarized the most
significant 100 subpathways for each network (Supplemen-
tary Tables S3–S5) in order to see the signaling in detail.
These subpathwayswere assigned to various pathways inCRC
and AD (Supplementary Tables S3–S5), suggesting that, in
addition to inflammatory response inferred by our functional
enrichment comparison, those pathways (not assigned to
inflammation) remain largely unexplored in CRC or AD.
Of interest, we found pathways previously unassociated
with the two diseases, including Hedgehog signaling, axon
guidance, ECM-receptor interaction, and WNT signaling
(Table 3). In CRC, WNT3 facilitates crosstalk between the
Hedgehog and Wnt signaling pathways (Table 3). Similarly,
ECM-receptor interaction was oppositely regulated between
the two diseases.

3.4. Opposite Signaling Pathway Expression between CRC
and AD by Inflammation-Related Genes. The AD datasets
were prepared from frontal cortex synaptoneurosomes and
hippocampi. Both brain regions include neurons, as well as
astrocytes and microglia [19, 20]. In our previous analysis
[9] of the CRC dataset, immune cells were infiltrating.
Considering immune cell involvement in the two diseases

and their two opposite phenotypes, different inflammation-
related molecule usage in signaling is self-evident.

So, we inspected the 16 genes’ (in Table 1) differential
usage of the CRC and AD networks (from Supplementary
Figures S1–S3). Table 2 indicates that 16 genes were involved
in extensive signaling transduction in both the CRC and AD
networks, and all were inversely expressed between the two
diseases.

Out of the 16 gene products, CD36 (a class B scavenger
receptor) was found in microglia and vascular endothelial
cells of AD patient brains [21]. Activation of CD36 and PPAR
delta (gene symbol: PPARD, upregulated in both AD datasets
in Table 2) resulted in FoxO1 activation in a functional study
of muscle cells [22]. Considering that microglia are activated
by FoxO1 [23], the two genes (CD36 and PPARD) could be
involved in inflammation of AD patient brains.

Another intriguing observation was the opposite expres-
sion of a cell growth (antiapoptosis) gene, MAPK, which
was upregulated in CRC and downregulated in AD, while
two apoptosis pathways genes, FAS (part of the extrinsic
apoptosis pathway) and BAD, showed the opposite pattern
(up in AD and down in CRC) (Table 2).This apoptosis versus
cell survival relationship has been previously postulated to
explain the inverse risk correlation between malignant and
neurodegenerative diseases.
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Table 3: Subpathways previously not associated with the two diseases. These subpathways were selected from the most significant 100
subpathways in each network. Subpathway (linear signaling flow) with fold-change (the numeral in parenthesis) of the disease group over
the control group is represented in each dataset. Themost significant 100 subpathways for each dataset are provided in Supplementary Tables
S3–S5. The notation in the flow is “B <- A: A activates B” and “B |- A: A represses B.”

KEGG pathway GSE4107 (CRC) subpathway; 𝑃 value GSE1297 (AD) subpathway;
𝑃 value

GSE12685 (AD)
subpathway; 𝑃 value

Hedgehog signaling
(hsa04340)

PTCH1 (1.863) <- GLI2 (2.878) |- CSNK1G1
(0.587); 0.000035

PTCH2 (0.938) <- GLI3
(0.682) |- GSK3B (1.513);
0.0015WNT3 (3.147) <- GLI2 (2.878) |- CSNK1G1

(0.587); 0.000223

Axon guidance
(hsa04360)

PAK3 (0.732) <- RAC1
(0.943) |- PLXNB3 (1.627)
<- SEMA4C (1.283); 0.0008

CFL1 (1.157) |- LIMK1
(0.896) <- PAK4 (0.871) <-
RAC3 (0.892) <- PLXNA3
(0.954) <- FES (0.841);

0.0011

WNT signaling
(hsa04310)

JUN (4.179) <- TCF7L1 (2.735) <- CTNNB1
(2.562) |- GSK3B (0.735) |- DVL3 (1.608) <-
FZD10 (6.256) <- WNT3 (3.147) <- PORCN
(1.279); 0.000114
JUN (4.179) <- TCF7L1 (2.735) <- CTNNB1
(2.562) |- GSK3B (0.735) |- DVL3 (1.608) <- APC2
(2.201) <- AXIN2 (2.307) <- CSNK1A1 (1.963);
0.00016

Pathways in cancer
(hsa05200)

MMP2 (3.031) <- JUN (4.179) <- MAPK1 (2.425)
<- MAP2K1 (1.162) <- ARAF (4.631) <- HRAS
(1.027) <- SOS1 (1.624) <- GRB2 (1.613) <- IGF1R
(2.299) <- IGF1 (2.529); 0.000022

ECM-receptor
interaction (hsa04512)

SDC2 (3.091) <- TNC (9.557); 0.000026 SDC3 (0.849) <- COL5A2
(0.162); 0.003

SDC1 (0.865) <- COL3A1
(0.865); 0.0017SDC2 (3.091) <- FN1 (5.594); 0.000125

Neurotrophin
signaling (hsa04722)

BAD (1.279) |- AKT2
(0.856) <- PDK1 (0.943) <-
PIK3CD (0.576) <- GAB1
(0.997) <- SHC2 (0.844) <-
NTRK1 (0.945) <- NTF3

(0.784); 0.0008

4. Conclusions

In general, single gene expression analysis looks into highly
differentially expressed genes under a certain cutoff (e.g., 𝑃
value, fold-change). However, in real biological problems,
signaling proteins involved in phenotype differences may not
show a drastic expression-level change [9, 24]. Also, consider-
ing that phenotype change or disease results from dysregula-
tion of complex relationships between biological components
[25, 26], a strict cutoff usage in single gene analysis can miss
signal flow. For example, some biological entities belonging
to the flow would be filtered out under a certain cutoff.
Along that line, we applied our previous systems biology
method [9] for describing the interdependency underlined
in the diseases. In summary, we found that inflammatory
response was a very important mechanism in two diseases
of opposite phenotypes, that is, cancer (cell survival) and
Alzheimer’s disease (cell death). The inflammation-related
common genes between the diseases regulated opposite
gene expression in various cell signaling in the two-disease
networks. In other words, the inflammation-related genes in
Table 2 utilized different pathways according to the disease

states, leading to different signaling transductions. Further
investigation of such networks could provide knowledge into
the immunological bases for the progression of both of these
devastating diseases.
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