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ABSTRACT

Megapodius reinwardt, the orange-footed scrubfowl, belongs to a small family of
birds that inhabits the Indo-Australian region. Megapodes are unique in incubating
their eggs in mounds using heat from microbial decomposition of organic materials
and solar radiation. Little is known about the microorganisms involved in the
decomposition of organic matter in mounds. To determine the source of microbes in
the mounds, we used 16S and 18S rRNA gene sequencing to characterize the
microbial communities of mound soil, adjacent soil and scrubfowl faeces. We found
that the microbial communities of scrubfowl faeces were substantially different from
those of the mounds and surrounding soils, suggesting that scrubfowls probably do
not use their faeces to inoculate their mounds although a few microbial sequence
variants were present in both faeces and mound samples. Further, the mound
microbial community structure was significantly different to the adjacent soils.

For example, mounds had a high relative abundance of sequence variants belonging
to Thermomonosporaceae, a thermophilic soil bacteria family able to degrade
cellulose from plant residues. It is not clear whether members of
Thermomonosporaceae disproportionately contribute to the generation of heat in the
mound, or whether they simply thrive in the warm mound environment created by
the metabolic activity of the mound microbial community. The lack of clarity in the
literature between designations of heat-producing (thermogenic) and heat-thriving
(thermophilic) microbes poses a challenge to understanding the role of specific
bacteria and fungi in incubation.

Subjects Ecology, Microbiology, Molecular Biology
Keywords Orange-footed Scrubfowl, Megapode, Mound, Microbial communities, Soil microbes,
Thermomonosporaceae, Thermogenesis

INTRODUCTION

The orange-footed scrubfowl (Megapodius reinwardt) belongs to the small family of birds
Megapodiidae that inhabits tropical and subtropical monsoon rainforests, mangrove
forests, beach forests, and savannah woodlands of the Indo-Australian region (Jornes ¢
Goth, 2008; Jones, Dekker ¢ Roselaar, 1995; Monk, De Fretes & Reksodiharjo-Lilley, 1997;
Pattiselanno & Arobaya, 2014; Sinclair, 2002; White, 1998). Unlike other birds, members of
this family incubate their eggs by burying them in soil, often associated with mounds of
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decaying organic material (Frith, 1956; Jones ¢» Goth, 2008; Sinclair, 2002), beach sands or
volcanically heated soils (Crome ¢» Brown, 1979; Frith, 1956).

In Australia, the orange-footed scrubfowl has adapted to live successfully among
humans in urban areas where scrubby vegetation is abundant (Jornes, 2014). Their mounds
are volcano shaped structures of various sizes but reaching heights over 3 m and weights of
five tonnes (Banfield, 1912; Harris et al., 2014). Their composition depends upon location:
near beaches, mounds tend to have a high proportion of sand mixed with a small
proportion of leaf litter (Palmer, Christian ¢ Fisher, 2000; Wiles ¢» Conry, 2001); in areas
with heavier clay-type soils, mounds have a higher volume of leaf litter and a small
proportion of soil (Crome ¢ Brown, 1979).

After eggs are laid inside chambers up to half a metre within the mounds (Harris et al,
2014), the female checks the temperature and then covers the mound with abundant leaf
litter (Crome & Brown, 1979; Imansyah et al., 2009). Mound maintenance is shared
between the female and male, occasionally several pairs use a single mound simultaneously
(Crome & Brown, 1979; Jones, Dekker ¢ Roselaar, 1995). The parents return to maintain
the same mound over several years by adding new materials and increasing the size of the
mound (Crome & Brown, 1979; Frith, 1956; Palmer, Christian ¢ Fisher, 2000). Some
mounds have been recorded in continual use over 40 years (Banfield, 1912; Jones, Dekker ¢
Roselaar, 1995; Palmer, Christian & Fisher, 2000). Twelve to thirteen eggs are laid
individually at intervals of approximately 13 days during a breeding season (Crome ¢
Brown, 1979).

The heat required for incubation in the mounds results from a combination of solar
radiation and microbial decomposition of organic materials (Frith, 1956; Harris et al.,
2014; Jones & Birks, 1992; Jones, 2014; Palmer, Christian ¢ Fisher, 2000; Pattiselanno &
Arobaya, 2014; Seymour & Ackerman, 1980; Sinclair, 2002). Adequate levels of moisture
are essential for microbial activity, however, excess water can result in a quick
decomposition of leaf litter and a subsequent mound collapse (Booth & Seymour, 1984;
Frith, 1956; Palmer, Christian & Fisher, 2000; Seymour, 1995; Seymour & Bradford, 1992).
Factors driven by microbial activity such as temperature and gas levels play a pivotal role
during the incubation period (Seymour ¢ Bradford, 1992).

Temperatures exceeding 70 °C can be produced by microbes in organic mulches, hay,
and manure in a process historically termed “microbial thermogenesis” (Bartholomew ¢
Norman, 1953; Brock, 2012; Wedberg ¢» Rettger, 1941). Microbes can be categorised as
being mesophilic (thriving in moderately warm temperatures) or thermophilic (thriving in
extremely warm environments, including up to ~70 °C) (Beffa et al., 1996), but the
latter term is sometimes used more broadly to include the mesophilic temperature range.
Little is known about the species of microorganisms involved in the generation of heat
associated with organic material decomposition in scrubfowl mounds, and it is unclear
how microbial communities related to incubation become established in the mound.
The generation of heat by microbes in the mound may simply be a by-product of general
microbial decomposition, or it may be dependent on the presence of specialist
thermogenic microorganisms.
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If specialist heat-producing microbes are required for the generation of heat, then this
raises questions about the source of these microbes and how a new mound becomes
inoculated with the appropriate microbes. Animals exchange microorganisms with their
immediate surroundings, including nests, hollows and burrows (Brand! et al., 2014;
Goodenough & Stallwood, 2012; Koller, Dworschak & Abed-Navandi, 2006). Bacterial
assemblages in nest materials of the reed warbler (Acrocephalus scirpaceus) have some
overlaps regarding bacteria species with nestling faeces, suggesting that a certain amount of
bacterial transmission from bird faeces to nesting materials is likey to occur (Brandl et al.,
2014). Alternatively, the source of microbes in the mound may simply be the soil that the
birds routinely scratch onto the mound from the surrounding shallow soil.

To investigate the source of microbes in the mounds we used 16S and 18S rRNA gene
sequencing to describe the bacteria and fungi communities associated with mounds, soil
around mounds and scrubfowl faeces. We tested two hypotheses related to the source of
microbes in the mound: (1) scrubfowls inoculate their mounds with thermogenic microbes
found in their faeces, and (2) the microbial composition of mounds is similar to that of the
surrounding shallow soil.

MATERIALS AND METHODS

Types of samples, locations and sampling scheme

The samples were collected from the vicinity of four different mounds (labeled as A, B, C
and D) located in the urban area of Darwin, Northern Territory, Australia on a single day
in February 2019. The sampling scheme and collection method were approved by the
Animal Ethics Committee of Charles Darwin University (project number: A19002) and by
the Parks and Wildlife Commission of the Northern Territory, Australia (field study
approval number: 64780). The four mounds were located within 1.0 km of each other.
Two mounds (A and B) were located on the Charles Darwin University campus (<200 m
apart), and the other two (<200 m apart) were located in an adjacent residental area.
The samples (approximately 50 g) were collected <24 h prior to DNA extraction.

We collected four types of samples: mound soil, deep soil, shallow soil and scrubfowl
faeces. Mound soil was collected at a depth of 30 cm to replicate the depth of holes
commonly dug in the mounds by birds, and to minimize litter or surface soil
contamination (three samples per mound, thus N = 12), shallow soil was collected 2 m
from the mounds at a depth of approximately 2-5 cm (3 samples per mound, thus N = 12),
deep soil was only collected 2 m from mound C from a depth of 30 cm (N = 3) and
scrubfowl faeces were collected from footpaths to reduce the mixing of faeces and soil
(N = 6). The replicate samples were extracted, sequenced and analysed individually.
Although the faecal samples were collected near mounds A, B and C, it was not possible to
determine if these samples originated from the birds associated with the respective mounds.

DNA extraction
DNA was extracted from samples using the Qiagen DNeasy PowerSoil Kit (Qiagen,
Valencia, CA, USA), following the manufacturers protocol without modifications.
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16S and 18S rRNA sequencing and data processing

We sent ten nanograms of DNA per sample to the Australian Centre for Ecogenomics
(ACE) for sequencing the 16S and 18S rRNA genes on an Illumina MiSeq following the
manufacturer’s guidelines. Primers 515-F (GTGYCAGCMGCCGCGGTAA) and 806-R
(GGACTACNVGGGTWTCTAAT) (Apprill et al., 2015; Parada, Needham ¢ Fuhrman,
2016) amplified the 16S rRNA gene, while ITS3-F (GCATCGATGAAGAACGCAGC) and
ITS4-R (TCCTCCGCTTATTRATATGC) (White, Nagarajan ¢ Pop, 2009) amplified the
18S rRNA gene. ACE processed the sequences to sequence variants (SVs) using the
following pipeline. Poor quality sequences (<15 bases) were removed from the reads with
Trimmomatic software (Bolger, Lohse ¢ Usadel, 2014), then hard trimmed to 250 bases.
Reads were converted to SV's using the QIIME-2 workflow with default parameters and the
DADA-2 algorithm (Callahan et al., 2016; Caporaso et al., 2010). SVs were assigned
taxonomy through BLAST+ using the reference databases SILVA (Quast et al., 2013) for
16S, and UNITE (Koljalg et al., 2013) for the 18S data. SVs were removed if they occurred
in <1% of samples or contained fewer sequences than 0.01% of the total sequence
abundance. Additionally, sequences were excluded if they were not classified as bacteria or
Archaea (16S dataset) or fungi (18S dataset). All sequences were rarified to the lowest
common sequence number per sample using a threshold of 10,000 for the 16S and 5,000
for the 18S datasets. Similar to (Epstein et al., 2021), we compared the nMDS outputs for
the rarefied and unrarefied datasets and found that rarefying did not change the

output (e.g. 16S stress of unrarefied data = 0.11 compared to 0.1 for rarefied data).
Rarification resulted in the removal of two faecal samples and one sample from mound soil
from the 16S dataset, and three faecal samples from the 18S. Raw data files in FASTQ
format were deposited in the NBCI Sequence Read Archive under BioProject ID
PRJNA806506 and project information is accessible through this NCBI project link.

Data analysis

The two datasets (16S for bacterial and 18S for fungal taxa) were analysed in R (version
3.2.2) (R Core Team, 2017) and Primer -7 (Clarke ¢ Gorley, 2015) by permutational
MANOVA (PERMANOVA; 999 permutations) with the sampled mound locations (A, B,
C and D) as the fixed factors within the four sample categories (faeces, soil from mounds,
shallow and deep soil). Alpha diversity was examined between the four sample categories
and a Bray Curtis distance matrix was calculated and visualized by a nonmetric
multidimensional scaling (nMDS) graph using the phyloseq package (McMurdie ¢
Holmes, 2013). Bacterial and fungal phyla with a relative abundance higher than 1% across
all samples were viewed in taxa plots. For both fungal and bacterial communities, we
calculated the contribution of each species (%) to the dissimilarity between mound and
shallow soil (SIMPER analysis) and also compared samples pairwise. The relative
abundances of bacterial and fungal taxa for each sample category and location were
visualised in shade plots.
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Figure 1 Taxa plot. Percentage of contribution of each bacterial (A) and fungal (B) phylum for each sample category (mound, shallow soil, deep

soil, faeces). Taxa shown are those that contributed to greater than one percent of all samples.

Full-size &l DOL: 10.7717/peer;.13600/fig-1

RESULTS

Microbial composition and diversity

Microbial composition of the mounds is broadly illustrated at the level of phyla in Fig. 1.
A total of 17,736 bacterial and 1,887 fungal SVs were identified in this study. The bacterial
and fungal alpha diversity for mound soil, shallow soil, deep soil and faeces in every
mound location is represented by the Shannon index (Table 1). The highest bacteria
diversity was in shallow soil near mound C (7.58 + 0.18) and the lowest in faeces from the
same location (3.30 + 0.75). The highest fungal alpha diversity was in shallow soil near
mound A (4.83 £ 0.36), whereas the lowest was in deep soil near mound C (2.36 + 1.76).
Alpha diversity and P values across sample categories are shown in Tables SI and S2, Fig. S1.

Comparisons of microbial communities

The sample sizes for mound soil and shallow soil were sufficiently large to allow a statistical
comparison of the replicates of these soil categories. “PermDISP” is a permutational
distance-based test for homogeneity among the replicates within the locations, and this
statistic was not significantly different among replicate samples of mound soil for either
bacteria (p = 0.07) or fungi (p = 0.99) (Table S3). However, there was a significant
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Table 1 Shannon’s alpha diversity.

Sample

Bacteria
mean = SD
(N)

Fungi
mean + SD
N)

Mound_A
Mound_B
Mound_C
Mound_D
Shallow_Soil_A
Shallow_Soil_B
Shallow_Soil_C
Shallow_Soil_D

6.40 + 0.37 (3)
6.35 + 0.27 (3)
597 + 1.52 (3)
7.36 +0.23 (3)
6.02 + 0.04 (3)
6.22 +0.12 (3)
7.58 + 0.18 (3)
6.67 + 0.25 (3)

423 +1.05 (3)
430 + 1.03 (3)
3.49 + 1.46 (3)
4.06 + 0.44 (3)
4.83 +0.36 (3)
400 + 131 (3)
3.97 +0.55 (3)
441 +037 (3)

Deep_Soil_C 6.64 = 0.12 (3) 2.36 + 1.76 (3)

Faeces_A 4.63 £0.38 (2) 3.21 £ 043 (2)

Faeces_B 3.50 + — (1) 2.79 + — (1)

Faeces_C 330 £ 0.75 (3) 2.79 £ 0.57 (3)
Note:

Average (+one standard deviation) Shannon’s alpha diversity for the bacterial and fungal taxa sampled at each mound
location (labelled A-D) from each sample category (mound, shallow soil, deep soil, faeces). SD = standard deviation.

difference in microbial communities among replicate samples of shallow soil for both
bacteria (p < 0.01) and fungi (p < 0.001) (Table 54).

An nMDS (Fig. 2) illustrates how bacterial and fungal communities differed between
mounds A-D for faeces, soil from the mounds and shallow and deep soils. Bacterial
and fungal communities of faeces did not cluster with any other type of sample in any
mound location. The PERMANOV A showed that there were significant differences among
all sample categories and locations for both fungal and bacterial communities (p = 0.001
for both bacterial and fungal samples; Tables 2 and 3). Given that the faecal samples
did not cluster with any other sample category, this type of sample was excluded from
further statistical analysis including the pairwise tests.

The shade plots (Figs. 3 and 4) show the microbial composition at the lowest possible
taxonomic resolution in each sample category and mound location. Bacteria communities
of soil from mounds, deep and shallow soils had substantial overlaps in bacteria
composition, but these soil categories had much less overlap with the faecal samples
(Fig. 3). The SVs with the highest relative abundance among the soil categories belonged to
the bacteria families Solirubrobacteraceae, Acidothermaceae, Bacillaceae and
Nitrososphaeraceae. Soils from the four mounds had a relatively high abundance of SVs
belonging to the bacteria family Thermomonosporaceae, SVs from this family were in
lower quantities in shallow and deep soils. SVs belonging to the family Pyrinomonadaceae
had a relatively high abundance in shallow soil and were absent in the rest of sample
categories. Deep soil contained a high abundance of SVs belonging to uncultured
Choloflexi and Gaiellales families. Faeces contained a relatively high abundance of SVs of
the bacteria families Enterobacteriaceae, Peptostreptococcaceae and Diplorickettsiaceae,
SVs from these families were absent in the other sample categories.
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Figure 2 Non-metric Multidimensional scaling (nMDS) graph. Unrarefied bacterial (A) and fungal
(B) communities sampled at each mound location (labelled A-D) from each sample category (mound,
shallow soil, deep soil, faeces). Bacterial community stress = 0.1, and fungal community stress = 0.18.

Number of dimensions for each nMDS graph = 2, N = 30.

Full-size K&l DOT: 10.7717/peerj.13600/fig-2

Fungal communities of mounds and adjacent shallow soils overlaped at all mound
locations (Fig. 4). SVs belonging to the fungal families Aspergillaceae, Nectriaceae,
Didymosphaeriaceae, Chaetomiaceae, Savoryellaceae and the order Pleosporales had a
relatively high abundance in these two sample categories. Fungal communities in deep soil
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Table 2 PERMANOVA analysis testing differences in bacterial taxa between sample categories.

a) Mains test

Factor PERMANOVA Pseudo-F (df) ECV P value PermDISP P value
Location 34 (3) 27.8 0.001 >0.05
Sample category (location) 2.7 (7) 38.1 0.001 <0.05

b) Pairwise tests

Groups t (df) P value Permutations
Location
A, B 1.9 (8) <0.01 986
A, C 2.2 (7) <0.01 988
A, D 2.0 (8) <0.01 985
B, C 1.6 (7) <0.01 988
B,D 1.9 (8) <0.01 985
C,D 1.9 (7) <0.01 977
Sample category
Mound, shallow soil 1.6 (21) <0.01 998
Mound, deep soil 1.7 (12) <0.05 348
Shallow soil, deep soil 1.6 (13) 0.001 401
Note:

The sample categories (mound, shallow soil, deep soil, faeces) were fixed in the sampled mound locations (labelled A-D).
(a) mains test. (b) pairwise tests. “df” degrees of freedom, “ECV” square root of estimates of components of variation
indicating the size of the effect due to that factor as average % SV dissimilarity (residual ECV 47.0). P value is based on
>995 unique permutations; “PermDISP” permutational distance-based test for homogeneity of multivariate dispersions
for main factors.

contained a relatively high abundance of SVs belonging to the family Venturiaceae, but this
was absent in the other sample categories. Faeces contained relatively high abundance of
SVs of the fungal families Pleosporaceae, Nectriaceae, Aurebasidiaceae and the orders
Hypocreales and Pezizales, SVs from these families and orders had a relatively low
abundance in the other sample categories.

DISCUSSION

We found that the replicate samples of mound soil were homogeneous (Table S3), but the
replicate samples of shallow soil were heterogeneous (Table 54). Heterogeneity among soil
samples is common, reflecting the complex and extremely variable physical and
compositional differences in soil, even among samples taken from close proximity
(Brockman & Murray, 1997; Nunan, 2017). The homogeneity among the samples taken
from the mound likely reflects the frequent and thorough mixing of the soil by the birds.
We also found that the microbial communities of scrubfowl faeces differed signifincantly
in composition from those of the mounds and surrounding shallow and deep soils.
However, faeces and soil from the mounds had slight overlapps in bacterial composition.
SVs belonging to the families Solirubrobacteriaceae, Bacillaceae and
Thermomonosporaceae that were in high relative abundance in mounds, were in very low
relative abundance in faeces. The SVs with the highest relative abundance detected in
scrubfowl faeces corresponded to common intestinal microflora of wild birds. Members of
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Table 3 PERMANOVA analysis testing differences in fungal taxa between sample categories.

a) Mains test

Factor PERMANOVA Pseudo-F (df) ECV P value PermDISP P value
Location 2.1 (3) 224 0.001 0.01
Soil category (Location) 2.2 (6) 34.0 0.001 0.01

b) Pairwise tests

Groups t (df) P value Permutations
Location
A B 1.9 (10) <0.01 412
A C 1.9 (10) <0.01 401
A, D 1.8 (10) <0.01 395
B, C 1.6 (10) <0.01 416
B,D 1.6 (10) <0.01 404
C, D 1.5 (10) <0.01 401
Sample category
Mound, Shallow soil 1.4 (22) 0.001 994
Mound, Deep soil 1.3 (13) <0.01 405
Shallow soil, Deep soil 1.2 (13) <0.05 402
Note:

The sample categories (mound, shallow soil, deep soil, faeces) were fixed in the sampled mound locations (labelled A-D).
(a) mains test. (b) pairwise tests. “df” degrees of freedom, “ECV” square root of estimates of components of variation
indicating the size of the effect due to that factor as average % SV dissimilarity (residual ECV 53.8). P value is based on
>995 unique permutations; “PermDISP” permutational distance-based test for homogeneity of multivariate dispersions
for main factors.

Enterobacteriaceae, Peptostreptococcaceae, Pleosporaceae and Aureobasidiaceae have been
previously isolated from the faeces and bills of turkey vultures (Cathartes aura) (Gonzdlez-
Braojos et al., 2012; Winsor, Bloebaum & Mathewson, 1981), penguins (Dewar et al., 2013),
hummingbirds (Lee et al., 2019) rooks (Vlahovic et al., 2010) and beaks and cloacas of
Mallard ducks (Dynowska, Meissner ¢» Pacynska, 2013). Although we cannot exclude the
possibility that there is some bacteria transmission from the bird faeces to the mound, we do
not have direct evidence that they inoculate their mounds with faeces, and any such
transmission would only involve a small component of the mound microbiota (Figs. 3 and 4).
With respect to our hypothesis that the microbial composition of mounds is similar to
that of the surrounding shallow soil, the PERMANOVA analysis indicated that the
structure of the microbial community of the mounds was significantly different to that of
the surrounding shallow soil. Nevertheless, the taxa plot (Fig. 1) and shade plots (Figs. 3
and 4) showed that mounds and shallow soils had overlapping microbial composition,
indicating that the microbial communities of these sample categories differed in relative
abundance rather than in microbial composition. Interestingly, previous studies on
microbial communities in nests of mound-building ants demonstrated that bacteria and
fungal communities of the nest differed significantly from those of the surrounding
soils with respect to both community structure and taxonomic composition
(Lindstrom, Timonen ¢ Sundstrom, 2021; Lindstrom et al., 2019). It is possible that the
differences in relative abundance between microbial communities of scrubfowl mounds
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Figure 3 Relative abundance heat map of the top 50 most abundant bacterial taxa. Sampled at each
mound location (labelled A-D) from each sample category (mound, shallow soil, deep soil, faeces).
Bacterial SV's are assigned to the family where possible, but if family is not resolved, then SVs are assigned
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and surrounding soils are related to the increased temperatures resulting from microbial
metabolic activity in the mound. Thus, the source of the microbes in the mound is
probably the surrounding soil, but the environmental conditions of the mound favour
some microbes over others, resulting in a microbial community that is structurally
different from the adjacent soil.

Our description of the microbial communities in the different soil categories is
consistent with previous studies of microbes in the enviroment. Members of the families
Solirubrobacteraceae, Acidothermaceae, Bacillaceae, Nitrososphaeraceae, Aspergillaceae
and Nectriaceae have been isolated from different types of soil samples, including woody
substrata, decaying herbaceous material and soil aggregates (Furlong et al., 2002; Horn,
2003; Kerou et al., 2016; Kim et al., 2007; Klich, 2017; Mohagheghi et al., 1986; Rempfert et al.,
2017; Rossman et al., 1999; Samuels, 1988; Stenfors Arnesen, Fagerlund & Granum, 2008;
Stieglmeier et al., 2014), where some species of these families are involved in fundamental
roles, including the cycling of organic matter (Stenfors Arnesen, Fagerlund & Granum, 2008)

Cardenas Gomez et al. (2022), PeerdJ, DOI 10.7717/peerj.13600 10/18


http://dx.doi.org/10.7717/peerj.13600/fig-3
http://dx.doi.org/10.7717/peerj.13600
https://peerj.com/

Peer/

Relative

Substrata type and location
abundance key

20

Mound

Shallow
Soil

Deep
Soil

Faeces

Agaricales SV1
1 0 Venturiaceae

Ascomycota SV1
Hypocreales SV1
Hypocreales SV2

Eqi g NONCNoNajaNal of gi gl NONCRONaNaNaRORORORGRONS)
Pezizales SV1
Aureobasidiaceae

Nectriaceae SV1

Sporormiaceae ;
Dothideales SV1
Xylariaceae
Sordariomycetes SV1 m
0 Pleosporaceae
Pleosporales SV1
Didymellaceae
Pleosporaceae
Sclerodermataceae .
Sordariales SV1
Psathyrellaceae SV1
Psathyrellaceae SV2 =
Aspergillaceae SV1
Aspergillaceae SV2 -
Nectriaceae SV2
Didymosphaeriaceae I ||
Aspergillaceae SV3
Nectriaceae SV3
Chaetomiaceae H B
Aspergillaceae SV4 -
Chaetomiaceae SV1 ||
Savoryellaceae SV1
Hypocreales SV3
Sordariales SV1

N B

Fungal Identity

Savoryellaceae
Pleosporales SV2 -
Pleosporales SV3 .
Savoryellaceae SV2 m
Pleosporales SV4 -
Hypocreales Sv4
Chaetomiaceae SV2 =
Pleosporales SV5
Agaricales SV2 -
Sarcoscyphaceae ||
Xylariaceae ‘
Pleosporales SV6
Sordariales SV3 ||
Saccharomycetaceae ||
Sordariomycetes SV2 -
Sordariomycetes SV3
Chaetomiaceae SV3 |
Pleosporales SV7

Figure 4 Relative abundance heat map of the top 50 most abundant fungal taxa. Sampled at each
mound location (labelled A-D) from each sample category (mound, shallow soil, deep soil, faeces).
Fungal SVs are assigned to the family where possible, but if family is not resolved, then SVs are assigned
to orders. Full-size k&l DOL: 10.7717/peer;.13600/fig-4

and nitrogen (Stieglmeier et al., 2014). The detection of SVs belonging to the
Sclerodermataceae and uncultured Choloflexi and Gaiellales families in deep soil is consistent
with previous studies that reported species of these families in hot springs, sediment, lake
sediment, geothermal soils (Yamada ¢ Sekiguchi, 2009) and subterranean environments
including a volcanic cave (Riquelme et al., 2015); and as ectomycorrhizals around warm
temperate regions (Jeffries, 1999). It is therefore unsurprising that these families were highly
abundant in deep soil.

Interestingly, only soil from the mounds had a relatively high abundance of SVs
belonging to Thermomonosporaceae, a thermophilic soil bacterial family with the ability to
degrade cellulose from plant residues (Spiridonov ¢ Wilson, 1998). Thermomonosporas
are frequently isolated from self-heated organic materials, including mouldy hays or urban
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wastes (Kroppensted ¢ M, 2006; Lawrence et al., 1986). It is possible that members of
Thermomonosporaceae play a role in heat production in mounds, contributing to the
incubation of eggs. One important unanswered question is whether the heat generated
through decomposition of organic material in the mound is simply a metabolic product of
typical soil microbial metabolism, or if specialist thermogenic microbes are involved.
The high abundance of the family Thermomonosporaceae in mounds but not in the nearby
shallow soil seemingly support a model involving specialist microbes. Nevertheless, the
cause and effect relationships are not known because it is not clear whether
Thermomonosporas and/or other microbes are disproportionately contributing to the
generation of metabolic heat, or if they are simply thermophilic and therefore thrive in the
warm environment created by other microbes. The fact that most environmental microbes are
difficult to culture (Bodor et al., 2020) poses a serious challenge to answering this question.
In some organic mulches, successional stages characterised by different microbial
communities result in increasingly higher temperatures. Although scrubfowl eggs benefit
from a moderately warm mound environment, they would certainly perish if microbial
metabolism resulted in temperatures as high as those that routinely occur in some
organic mulch mixtures (Beffa et al., 1996). The extent to which the behaviour of the adult
birds or the dominance of mesophilic microbes act to maintain moderately warm
temperatures in the mound without the production of extreme temperatures is unknown.
For there to be thermal conditions appropriate for successful incubation, there must be a
delicate balance between external environmental conditions, microbial activity within
the mound, and the periodic manipulation and excavation of the mound by adults.
The relative roles of each of these factors remain unknown.

CONCLUSIONS

We found that the microbial communities of scrubfowl feaces were significantly different
from those of the surrounding deep and shallow soils, suggesting that scrubfowls probably
do not use their faeces to inoculate their mounds, although a small component of the
mound microbiota was also found in faecal samples. The microbial communities of the
mound differed significantly from those of the surrounding soils in terms of relative
abundance. We speculate that the relative high abundance of the family
Thermomonosporceae in mounds compared to its very low relative abundance in
surrounding shallow soils might indicate a model of specialist microbes in the mound.
Nevertheless, the extent of specialist microbes involved in the production of heat and the
complexities of the heat-producing metabolic pathway in scrubfowl mounds remain
unknown. Future studies of fungi and bacteria in mounds and surrounding soils using
metagenomics and RNA sequencing might help to identify specific metabolic pathways
related to the production of heat and the identification of any specialist microbes
involved in the process. Further, it is important to study the role of adult bird activity to
facilitate the conditions for incubation and the appropriate levels of heat production
inside the mounds.
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