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Abstract
Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines
based on the sharing of a receptor component, the common cytokine receptor
γ chain, γ , which is encoded by the gene mutated in humans with X-linked
severe combined immunodeficiency (XSCID). Together, these cytokines play
critical roles in lymphoid development, differentiation, growth, and survival as
well as mediating effector function. Here, we provide an overview of the main
actions of members of this cytokine family but then primarily focus on IL-2 and
IL-21, discussing their dynamic interplay and contributions to a fine-tuned
immune response. Moreover, we discuss the therapeutic utility of modulating
their actions, particularly for autoimmunity and cancer.
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Introduction: the γc system and its association with 
severe combined immunodeficiency
Interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 form 
a family of four α-helical bundle type I cytokines that share the 
common cytokine receptor γ chain, γ

c
, as a key receptor compo-

nent (Figure 1)1. γ
c
 is mutated in humans with X-linked severe 

combined immunodeficiency (XSCID), a disease in which T and 
natural killer (NK) cells are greatly diminished and B cells are 
non-functional2. Finding the basis for XSCID immediately allowed 
more precise prenatal and postnatal diagnosis and carrier female 
identification as well as paving the way to gene therapy for this 
disease3,4. In addition, the implications of this finding extended far 
beyond the management of a single disease and had major basic 
scientific implications as well. Although γ

c
 was initially discovered 

as the IL-2 receptor γ chain (IL-2Rγ) and identifying the genetic 
basis for XSCID resulted from studies of the IL-2R, the fact that the 
phenotype in XSCID is more severe than in IL-2 deficiency led to 
the prediction and then discovery that IL-2Rγ was in fact a shared 
receptor component5–8, and the term γ

c
 was proposed5. Interestingly, 

the major phenotypic abnormalities do not result from defective  
IL-2 signaling; instead, defective signaling by IL-7 and IL-15 
explain the profound decrease in T and NK cells, respectively, 
and defective IL-21 signaling substantially explains the non- 
functional B cells in this disease9. Thus, XSCID was established  
to be a disease of defective cytokine signaling10.

Each γ
c
 family cytokine activates the Janus family tyrosine kinases 

(JAK)1 and JAK3, which then trigger signaling cascades. JAK1 
associates with the more distinctive type I cytokine receptor for 
each cytokine and JAK3 associates with γ

c
11. Because JAK3 is 

“downstream” of γ
c
, it was hypothesized12 and then established 

that JAK3-deficient SCID indeed occurs, causing a T–B+NK– form 
of SCID that phenocopies XSCID13,14. Moreover, individuals with 
IL7R-deficient SCID were identified based on the prediction that 
such patients would have defective T cell development but that 
NK cells would develop normally given intact IL-15 signaling15. 
Although IL-7 signaling is believed to be responsible for the lack 

of T cell development, to date human IL7-deficient SCID has still 
not been identified. Presumably, the frequency of inactivating muta-
tions of IL7 is very low, the condition is unexpectedly lethal, or 
the phenotype is less severe than anticipated so that individuals 
do not come to medical attention. A less severe phenotype for IL7 
than IL7R deficiency is conceivable given that signaling by thymic 
stromal lymphopoietin (TSLP) would also be affected in the lat-
ter but not the former, and indeed there is even more defective T 
cell development in mice lacking the expression of both γ

c
 and the 

TSLP receptor (Il2rg/Crlf2 double knockout mice) than in Il2rg sin-
gle knockout mice16. However, XSCID and JAK3-deficient patients 
have intact TSLP signaling but nevertheless have essentially absent 
T cell development, minimizing this as an explanation.

STAT activation and major biological effects of γc 
family cytokines
γ

c
 family cytokines collectively have broad actions (Table 1) 

and activate three major signaling pathways, including the MAP  
kinase, PI 3-kinase, and JAK–STAT (signal transducer and acti-
vator of transcription) pathways. Of the seven STAT proteins,  
IL-2 mainly activates STAT5A and STAT5B, but it also signals 
through STAT1 and STAT3 to some degree17 (see Figure 1 for 
STATs activated by each γ

c
 family cytokine). It is a T cell growth 

factor that additionally augments the cytolytic activity of CD8+ 
T cells and NK cells and is essential for regulatory T (Treg) cell 
development18. It also promotes the differentiation of T helper 
type 1 (Th1)19, Th220,21, and Th9 cells22 while inhibiting Th17 cell  
differentiation19,23. Importantly, from a clinical perspective, IL-2 
exhibits anti-cancer activity and is approved by the FDA for the 
treatment of melanoma and renal cell carcinoma24.

IL-4 mainly activates STAT6 and plays major roles in allergic 
responses, including asthma and in protection against helminth 
infections25–28. IL-4 signals via two types of receptor. Type I IL-4 
receptors (IL-4Rs) comprise IL-4R plus γ

c
6 and are expressed 

mainly on lymphoid cells. In contrast, type II IL-4Rs comprise 
IL-4R plus IL-13Rα1 (but not γ

c
) and are mainly expressed on 

Figure 1. γc family cytokines and their receptors. Shown is the receptor for each γc family cytokine as well as the interacting Janus kinase 
1 (JAK1) and JAK3 kinases and the signal transducer and activator of transcription (STAT) proteins activated by each cytokine. DC, dendritic 
cell; IL, interleukin.
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non-lymphoid cells; these IL-4Rs also represent the functional  
IL-13 receptor28,29.

IL-7 is a stromal factor which, like IL-2, predominantly activates 
STAT5A and STAT5B17,30. It drives T cell development as well as 
normal CD8+ T cell homeostasis, particularly of memory CD8+ T 
cells. IL-7 is a potent survival factor for T cells, strongly inducing 
the expression of BCL231–34. Unlike other γ

c
 family cytokines, IL-7 is 

produced within the stroma and is more constitutively expressed.

IL-9 also activates STAT5A and STAT5B17,30. This cytokine can  
promote the expansion of mast cells. Interestingly, a single  
nucleotide polymorphism (SNP) in the IL9R gene associates with 
a haplotype that is protective against wheezing in boys but not in 
girls35; this sex-related difference makes sense given that IL9R 
is located on the X chromosome. IL-9 also promotes anti-tumor 
immunity36,37.

Like IL-2, IL-15 primarily activates STAT5A and STAT5B17 and 
shares IL-2Rβ as well as γ

c
 as receptor components. Like IL-2,  

IL-15 also has a specific α chain, IL-15Rα, so that these two 
cytokines each have three receptor components. However, whereas 
IL-2 signals mainly in cis by interacting with high-affinity IL-2 
receptors that contain IL-2Rα, IL-2Rβ, and γ

c
 or intermediate- 

affinity receptors comprising IL-2Rβ and γ
c
, IL-15 primarily  

signals via trans-presentation of IL-15Rα-bound IL-15 to cells 
expressing IL-2Rβ and γ

c
38. IL-15 is critical for the development 

and expansion of NK cells as well as for memory CD8+ T cell 
homeostasis39,40.

IL-21 is the most recently identified γ
c
 family cytokine. IL-21  

has pleiotropic actions, driving the terminal differentiation of  
B cells to plasma cells41,42 and cooperating with IL-7 and IL-15 
to expand CD8+ T cells43. Moreover, IL-21 serves a key role in  
promoting T follicular helper (Tfh) cell differentiation44 and can 
augment Th17 differentiation in vitro45–47. Furthermore, IL-21 
has anti-cancer activity in animal models and is being evalu-
ated in human clinical trials. In addition, a broad range of animal  
models indicate that IL-21 plays a key role in the development 
of autoimmune disease, including for type 1 diabetes, systemic 
lupus erythematosus, and experimental autoimmune uveitis48.  
Collectively, γ

c
 family cytokines therefore play broad and impor-

tant biological roles, many of which are associated with diseases 
and may represent targets for therapeutic application. Below, we 
will focus on IL-2 and IL-21, which exhibit both overlapping  
and opposing actions.

IL-2 and IL-21
IL-2 and IL-21 are encoded by adjacent genes on human chro-
mosome 4q27 and mouse chromosome 3, and their structural 
homology suggests that these two genes may have arisen from a 
gene duplication event during evolution. Despite their proximity, 
the IL2 and IL21 genes are differentially regulated, and analysis  
of the chromatin region between these genes has revealed the 
presence of insulator regions that ensure their independent  
regulation49,50. IL-2 and IL-21 exert distinctive actions on immune 
cell populations, sometimes with opposite outcomes, which  
results, at least in part, from their differential activation of STAT 
proteins. Although both cytokines can activate STAT1, STAT3, 

Table 1. Actions of γc family cytokines.

IL-2      •   Promotes Th1, Th2, and Th9 differentiation and antagonizes Th17 and Tfh differentiation 
     •   Induces T cell and NK cell proliferation 
     •   Enhances Treg cell differentiation and function 
     •   Anti-cancer role for immunotherapy

IL-4      •   Promotes B cell differentiation and Ig isotype switching 
     •   Promotes Th2 and Th9 differentiation 
     •   Proliferative effects on tissue-resident macrophages 
     •   Protection from helminth infection

IL-7      •   Required for T cell development and homeostasis 
     •   Promotes memory CD8+ T cell development 
     •   Essential for B cell development in mice but dispensable for B cell development in humans

IL-9      •   Promotes mast cell proliferation 
     •   Augments mucus production by goblet cells 
     •   Anti-tumor activity

IL-15      •   Essential for NK development, expansion, and survival 
     •   Promotes memory CD8+ T cell development 
     •   Anti-cancer role for immunotherapy via actions on CD8+ T cells and NK cells

IL-21      •   Promotes B cell differentiation to plasma cells and augmenting Ig production 
     •   Has anti-cancer activity mediated in part via actions on CD8+ T cells and NK cells 
     •   Promotes Tfh differentiation and germinal center formation 
     •   Promotes Th17 differentiation 
     •   Inhibits Th9 differentiation 
     •   Promotes autoimmune disease (type I diabetes, SLE, EAE, and colitis)

EAE, experimental autoimmune encephalomyelitis; Ig, immunoglobulin; IL, interleukin; NK, natural killer; SLE, systemic lupus 
erythematosus; Tfh, T follicular helper; Th, T helper; Treg, T regulatory.
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STAT5A, and STAT5B, IL-2 predominantly activates STAT5A 
and STAT5B, whereas IL-21 mostly signals via STAT3. Consistent  
with these signaling differences, analysis of the effects of IL-2 and 
IL-21 on the anti-tumor activity of CD8+ T cells revealed that these 
cytokines induced distinctive transcriptional profiles, with asso-
ciated differences in disease outcome51. Whereas IL-2 enhanced 
CD8+ T cell proliferation and effector function, IL-21-treated cells 
exhibited a central memory phenotype, with greater persistence of 
the cells and higher anti-tumor activity in vivo. IL-2 and IL-21 also 
have markedly different effects on the in vivo function of Tfh cells 
and the in vitro differentiation of Th9 cells, as we discuss below. 
As continued investigation yields more insights into the mechanis-
tic underpinnings of these two cytokines, investigators may learn 
how to specifically enhance the “good” features and inhibit the  
“bad” features of each. Here, we review recent advances in our 
understanding of IL-2 and IL-21, how they regulate multiple  
lymphoid populations, and potential strategies for utilizing the 
strengths of each cytokine in the treatment of disease.

IL-2 signaling
As noted above, each γ

c
 family cytokine can activate the JAK–

STAT pathway, but these cytokines collectively also activate 
phosphoinositide (PI) 3-kinase and extracellular signal-regulated 
kinase (ERK)-dependent pathways as well18. The relative kinet-
ics and potency of activation of JAK–STAT, PI 3-kinase, and ERK  
pathways and the kinetics of their activation are critical for  
determining the specificity of signaling. Each of these three 
major signaling pathways involves kinases, and IL-2, like other 
cytokines and growth factors, influences the exchange of phosphate  
groups. Understanding the mechanisms that these intracellular 
systems use to initiate specific differentiation programs, often 
by increasing the expression of key transcriptional regulators,  
represents a major step towards creating future interventions to  
alter cell fate18.

Using mass spectrometry, a phosphoproteomic signature was 
recently identified in pre-activated CD8+ T cells that were  
cultured with IL-12 to maintain viability and then stimulated 
with IL-252. IL-2 was shown to induce the phosphorylation and  
dephosphorylation of a large number of proteins that carry out 
vital functions, including transcription, RNA stabilization, nuclear  
translocation, protein translation, cell trafficking, metabolism, and 
cell cycle, thus potentially identifying new targets for manipulat-
ing IL-2 signaling. Surprisingly, inhibition of JAK3 and JAK1  
signaling with tofacitinib affected only 4% of the phosphopro-
teome, suggesting that many of these phosphorylation events were 
independent of JAK signaling52. Interestingly, Treg cells have been 
shown to express high levels of phosphatase and tensin homolog 
(PTEN)53, which inhibits IL-2-induced PI 3-kinase signaling but 
does not affect STAT5 activation. PTEN thus may be differentially 
important in the control of IL-2-mediated Treg cell versus effec-
tor T cell function. Consistent with this possibility, the absence of  
PTEN can reduce IL-2Rα and FoxP3 expression by Treg cells, 
leading to autoimmune disease53.

Investigators have also studied IL-2 diffusion through cell “niches” 
as measured by STAT5 phosphorylation in target cells54. By 
using IL-2/anti-IL-2 complexes to expand Treg cells in vivo and  

assessing STAT5 signaling in conventional T cells, it was shown 
that the dimensions of cytokine gradients changed rapidly, depend-
ing on the number of cells (e.g., Treg cells) that were consuming 
cytokine. The IL-2 gradients identified suggest that there may 
be functional heterogeneity in response to antigen and cytokine  
signals, depending on the position of responding cells in three-
dimensional space within a given organ54, with possible therapeutic 
implications for manipulating IL-2 concentrations in vivo.

Manipulating IL-2 signals in immunotherapy
The anti-cancer activity of IL-2 has long been known, and  
high-dose IL-2 can be toxic and is associated with capillary leak 
syndrome; thus, efforts to lower the toxicity have focused in part 
on lowering IL-224. IL-2 can also promote activation-induced  
cell death (AICD), an unwanted effect that can be diminished by 
lowering doses of IL-2. Previous studies showed that in addition 
to it inducing the proliferation of CD8+ T cells, IL-2 preferen-
tially stimulates short-lived effector T cells that are detrimental to 
cancer immunotherapy51. IL-15 is another important cytokine for 
immunotherapy that, unlike IL-2, does not bind to IL-2Rα and  
thus does not preferentially stimulate Treg cells. Unlike IL-2,  
IL-15 is not associated with capillary leak syndrome nor does it 
mediate AICD55,56. Despite these potential advantages for IL-
15, IL-2–anti-IL-2 complexes were superior to IL-15–soluble  
IL-15Rα complexes at supporting the anti-tumor activity of trans-
ferred CD8+ T cells57. One basis for this could be that IL-15 is  
quickly internalized and mediates only brief STAT5 signal-
ing in a lymphoreplete host, whereas IL-2 remains in a surface  
“reservoir”, trapped by excess IL-2Rα and recycled after inter-
nalization, which results in sustained STAT5 signaling57. Indeed, 
a membrane-tethered form of IL-15 on tumor-specific T cells  
demonstrated improved T cell survival and enhanced anti-tumor 
effects in vivo due to the preferential growth of T memory stem 
cells58. Thus, both IL-2 and IL-15 show considerable potential  
that is worthy of additional investigation.

Another strategy for improving immunotherapeutic outcomes in 
malignancy involves disabling or eliminating tumor-associated 
Treg cells. Effector T cells within tumors have much lower 
expression of IL-2Rα (CD25) than do Treg cells, suggesting that  
targeting CD25 might be a therapeutically useful approach for 
preferentially depleting Treg cells59. Although earlier attempts to  
deplete intratumoral Treg cells with antibodies to CD25 were 
not successful60,61, a new CD25-directed antibody with enhanced  
binding to an activating Fc region allowed Treg cell-specific anti-
body-dependent cell-mediated cytotoxicity (ADCC) (Figure 2A), 
and when combined with a programmed death-1 (PD-1) blockade 
in mice, this treatment skewed the tumor-infiltrating lymphocyte 
(TIL) landscape towards activated, conventional T cells and 
improved rejection of established tumors59.

Because IL-2 drives CD8+ T cells toward an “effector” phenotype, 
which confers poor anti-tumor performance in some models, reduc-
ing IL-2 signaling favors the production of memory CD8+ T cells62,63. 
A new strategy for reducing IL-2 signaling is to conjugate Il2ra 
siRNAs to a 4-1BB-binding oligonucleotide aptamer. Since 4-1BB 
is expressed on activated CD8+ T cells, this approach was designed 
to decrease IL-2 signaling specifically on these cells (Figure 2B).
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Indeed, this aptamer increased “central memory” phenotype cells 
in vitro and enhanced tumor rejection in mice, demonstrating its 
potential efficacy64.

Above, we discussed ways of modulating IL-2 signaling by 
efforts to diminish the expression of CD25 in conventional T 
cells, deplete CD25high Treg cells, or to increase the availability of  
IL-2, either locally or systemically. The effects of complexes of  
IL-2 and IL-2-specific antibodies have also been studied. One 
monoclonal antibody binds with high affinity to human IL-2 at 
the CD25-binding epitope, thus preventing interaction with high- 
affinity receptors. Instead, the stabilized IL-2–anti-IL-2 com-
plex preferentially acts on cells with a high level of IL-2Rβ-γ

c
  

intermediate-affinity receptors, such as NK and CD8+ T cells,  
inducing their proliferation and STAT phosphorylation, decreas-
ing TIL markers of “exhaustion”, and improving anti-tumor  
responses65. Other IL-2–anti-IL-2 complexes can selectively  
stimulate either Treg or effector T cells, and protein interac-
tion modeling coupled with biological experiments allows the  
engineering of therapeutic antibodies directed at specific immune 
subpopulations66.

Besides the anti-cancer actions of IL-2, augmenting in vivo  
T cell exposure to IL-2 might be beneficial in vaccine strategies 
or in efforts to treat autoimmune disease. In one approach, IL-2  
plasmid was co-administered with human papillomavirus (HPV) 
vaccination of mice, which increased the proliferation and  
effector differentiation of HPV E7-specific CD8+ T cells and their 

production of interferon (IFN)γ. Importantly, this augmented the 
ratio of effector cells to Treg cells, with an enhanced anti-tumor 
response67.

Another approach to enhance the activity of IL-2 was to develop 
an IL-2 superkine with augmented affinity for IL-2Rβ68. Normally, 
IL-2 first binds IL-2Rα, resulting in a conformational change in 
IL-2 that allows it to then efficiently bind IL-2Rβ; the IL-2–IL 
-2Rβ complex then efficiently recruits γ

c
. The IL-2 superkine  

“locks in” the altered conformation that normally results after 
binding IL-2Rα so that it efficiently binds to IL-2Rβ, even in the 
absence of IL-2Rα68. This superkine had increased activity, even 
at a low concentration, with decreased capillary leak syndrome68. 
Derivatives of the IL-2 superkine have also been generated in  
order to fine-tune IL-2 signaling (discussed below)69.

Using IL-2 to preferentially expand Treg cells constitutes an area  
of intense focus related to autoimmune disease. For example,  
providing low doses of IL-2 to patients with systemic lupus  
erythematosus (SLE) can increase the percentage of circulating 
Treg cells and may prove clinically beneficial70. An initial study 
in which patients with SLE were given low-dose IL-2 reported an 
increase in the number of Treg cells, which was associated with 
an apparent decrease in a clinical SLE disease index71, suggesting  
that such an approach may warrant evaluation in future clinical  
trials. A similar IL-2 regimen in mice resulted in augmented PD-1 
expression in an “activated-memory” Treg cell subset, and PD-1 
blockade resulted in apoptosis of these cells. Low-dose IL-2 treat-
ment of humans with graft-versus-host disease was originally  
found to lead to expansion of Treg cells and reduced symptoms 
in a group of patients72. Moreover, humans with graft-versus-host 
disease receiving low-dose IL-2 treatment could be retrospec-
tively divided into likely responders and non-responders based on  
PD-1 expression on their peripheral Treg cells73.

Effects of IL-21 on germinal center T cells
IL-21 is a key regulator of T follicular helper (Tfh) cell develop-
ment in germinal centers and represents a major cytokine secreted 
by Tfh cells that critically regulates the differentiation of memory 
B cells and plasma cells44. Tfh cells appear to be heterogene-
ous with regard to their cytokine profiles and their anatomical  
location74,75. For example, when IL-4–IL-21 double reporter mice 
were infected with Nippostrongylus brasiliensis, few Tfh cells 
produced both IL-4 and IL-21, and those producing either IL-4 or 
IL-21 were localized to different regions of the germinal center. 
Tfh cells expressing IL-4, IL-21, or both cytokines also had  
distinct transcriptional profiles76. Interestingly, in the germinal 
center, IL-21-producing Tfh cells, which are localized at a region 
involved in immunoglobulin (Ig) hypermutation, can differenti-
ate into IL-4-producing Tfh cells, which are localized in an area 
more involved in the differentiation of plasma cells. When these  
individual Tfh populations were transferred into mice and immu-
nized, Tfh cells producing IL-21 or IL-21 plus IL-4 induced higher 
expression of B-cell lymphoma 6 protein (BCL6) in the germi-
nal center, with the cells producing both cytokines inducing a  
greater increase in germinal center size and more plasma cells76, 
consistent with the synergistic effects of IL-4 and IL-21, as was  
first shown for immunoglobulin (Ig) production9.

Figure 2. Schematic for mechanisms of manipulating interleukin 
(IL)-2 signals. (A) CD25-specific antibody with an activating Fc 
region binds to CD25 on regulatory T (Treg) cells and activates 
natural killer (NK)-mediated antibody-dependent cell-mediated 
cytotoxicity (ADCC) via stimulation of the FcR. (B) Silencing RNAs 
to Il2ra are conjugated to an aptamer that allows specific binding to  
4-1BB on CD8+ T cells, allowing delivery specifically to activated 
cells. siRNA, small interfering RNA.
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of a humoral response to pathogens. Within the germinal center, 
Tfh and B cells interact with each other via IL-21 and ICOS:
ICOS ligand interactions, leading to high expression of BCL6 by  
Tfh cells and the specification of the Tfh cell transcriptional  
profile (Figure 3). Although IL-2 can expand effector T cell  
populations18, interestingly, it can suppress the generation of Tfh 
cells within the germinal center in an influenza infection model85. 
This inhibitory effect of IL-2 on Tfh cell generation was not due 
to the accumulation of Treg cells but rather was attributed to the 
ability of IL-2 to induce BLIMP1, which suppresses BCL6. Thus, 
whereas IL-21 induces BCL6 and promotes the accumulation of 
Tfh cells, IL-2 suppresses BCL6 and inhibits the germinal center 
response.

Tfh cells do not appear to be restricted to classical secondary  
lymphoid organs, as a population of these cells has also been 
identified in Peyer’s patches of the intestine77. These Tfh cells  
produce high levels of IL-21, which is essential for the production 
of IgG1 by germinal center B cells in the intestine. Treatment of 
mice with antibiotics led to a dramatic decrease in the number of 
Tfh cells within the Peyer’s patches, indicating that an intact gut 
microbiome is required for the maintenance of these cells. Not 
only are Tfh cells capable of differentiating or migrating outside  
of the spleen and lymph nodes but they can also can exhibit  
functional plasticity. For example, when animals were exposed 
to house dust mite allergen and IL-21-expressing Tfh cells from  
these mice were then transferred into other primed mice, they 
migrated to the lung where they lost expression of IL-21 and  
differentiated into effector Th2 cells that expressed both IL-4 and 
IL-1378.

Interestingly, high production of IL-21 has been detected in  
populations of Tfh and Tfh-like cells that are external to germinal 
centers, and these cells can also regulate B cell activation and Ig 
production. For example, high levels of peripheral Tfh cells that  
secrete high levels of IL-21 have been found in a subset of HIV-
infected patients, and the presence of this population correlated 
with an effective response to influenza vaccine79. In addition, a 
population known as T peripheral helper (Tph) cells, compris-
ing 30% of synovial fluid CD4+ T cells in rheumatoid arthritis  
patients, expresses chemokine receptors (CCR2, CX3CR1, 
CCR5) that allow the cells to migrate to sites of inflammation80. In  
contrast to Tfh cells localized in germinal centers, Tph cells are 
PD-1hi but are not exhausted, and they express high levels of  
B lymphocyte-induced maturation protein 1 (BLIMP1) but low  
levels of BCL6. Moreover, Tph and Tfh cells have not been inter-
converted in vitro, suggesting that Tph cells develop in vivo to 
induce B cell responses in pathological situations, such as within 
inflamed synovium80.

IL-21 can also influence another small population of cells in 
the germinal center, known as T follicular regulatory (Tfr) 
cells, which negatively regulate Tfh-directed germinal center 
responses81–83. These Tfr cells share some phenotypic markers 
(CXCR5+BCL6+ICOS+PD1+) with Tfh cells, but they also express 
the transcription factor FoxP3. Tfr cells can interact directly with 
Tfh cells to suppress their production and secretion of IL-21 and 
IL-4, thereby decreasing B cell Ig production84. Tfr cells can 
also interact directly with B cells in the germinal center, inhibit-
ing several metabolic pathways and diminishing their effector  
function84. IL-21 can overcome the effects of Tfr, both by inhibit-
ing their proliferation and by upregulating glycolysis in B cells,  
making them resistant to suppression by Tfr. Although IL-4 plays 
an important role in germinal center B cell responses, unlike IL-21, 
it cannot overcome Tfr-mediated suppression84.

IL-21 versus IL-2 effects on regulating CD4+ T cell 
responses within the germinal center
As noted above, IL-2 and IL-21 are differentially regulated and 
have distinct effects on immune responses. Indeed, these cytokines 
may even have opposing effects on the formation of the cell popu-
lations within the germinal center that contribute to the generation 

Figure 3. Roles of interleukin (IL)-2 and IL-21 in the regulation of 
germinal center development and function. IL-21 drives T follicular 
helper (Tfh) differentiation and function through the upregulation 
of B-cell lymphoma 6 protein (BCL6); moreover, it also induces 
the differentiation of B cells to immunoglobulin (Ig)-producing 
plasma cells through the upregulation of the B lymphocyte- 
induced maturation protein 1 (BLIMP1). IL-2 negatively regulates 
this process by inhibiting Tfh cell generation through the repression 
of BCL6 and also by inducing the function of T follicular regulatory  
(Tfr) cells that can directly interact with and inhibit B cell 
differentiation. AID, activation-induced deaminase; CTLA4, cytotoxic 
T lymphocyte-associated molecule-4; CXCR5, C-X-C chemokine  
receptor type 5; ICOS, inducible costimulator ligand; IFN, interferon; 
IL, interleukin; PD1, programmed death protein 1; PDL1, programmed 
death ligand 1.
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Interestingly, mounting evidence suggests that CD4+ T cells  
destined to become Tfh cells are guided to a niche where IL-2 
cannot alter their course of differentiation. These cells exhibit a  
G-protein-coupled receptor, EBI2, that promotes migration to the 
“outer T zone”, and they co-localize with CD4+ dendritic cells that 
consume free IL-2 with soluble and transmembrane CD2586. This  
is consistent with the evolving model of antagonistic actions for  
IL-2 and IL-21 at the germinal center and that opposing effects of 
IL-2 and IL-21 are physiologically relevant.

Other studies have used an acute lymphocytic choriomeningitis 
virus (LCMV) infection model to dissect the dynamics of signal-
ing and metabolism in Tfh and Th1 cells. As noted above, IL-2  
inhibits Tfh differentiation but promotes Th1 differentiation.  
Activation of AKT, PI 3-kinase, and the mechanistic target of 
rapamycin (mTOR) by IL-2 was necessary for the generation of 
optimal levels of phospho-S6 and BLIMP-1, which by repress-
ing the transcription of BCL6 can decrease Tfh cell differentia-
tion. Additionally, the expression of T-Bet, a master regulator of 
Th1 differentiation, depends on AKT and Raptor (mTORc1)87.  
Interestingly, Tfh cells in the LCMV infection model relied more 
on mitochondrial oxidation pathways and were less proliferative 
and less glycolytic than Th1 cells, although the significance of these 
observations remains unclear.

Although IL-2 signaling inhibits the germinal center response, 
as noted above, IL-2 induces the survival and function of 
Treg cells, which suppress both humoral and cellular immune  
responses88. It was therefore surprising that when FoxP3+ Treg 
cells were depleted from mice prior to influenza infection, the Tfh 
cell response to virus infection was greatly reduced89. Without  
Treg cells to bind and consume IL-2, more IL-2 was available 
to suppress Tfh cell generation and functional germinal center 
responses. Thus, under steady-state conditions, Treg cells with  
their high CD25 expression can compete for excess IL-2 in the  
follicle and promote the Tfh response. However, when IL-2 levels 
are sufficiently high, Tfh cell generation is suppressed.

Above, we showed an interplay between IL-21 and IL-2 related 
to Treg cells and Tfh cells, and indeed previous studies in mice 
had demonstrated that IL-21 inhibited Treg expansion after viral 
infection90. While IL-2 enhances the survival of FoxP3+ Treg cells, 
IL-21 diminishes IL-2 production by conventional T cells and 
thereby lowers Treg cell numbers91. As a result, one would predict 
that humans depleted of IL-21 would have increased Treg cells. In 
fact, IL21R-deficient patients have high numbers of both Treg cells 
and Tfr-like cells in their peripheral blood, suggesting that these 
populations are normally negatively regulated by IL-2192. Mecha-
nistically, IL-21 induces BCL6 and lowers IL2RA gene expression, 
leading to a decrease in the ability of inhibitory Treg and Tfr cells to 
proliferate in response to IL-2, with a correspondingly more robust 
germinal center antibody response92.

Opposing actions of IL-2 and IL-21 in Th9 
differentiation
IL-2 and IL-21 can drive alternative and sometimes opposing 
differentiation programs in a range of cell types, including the  
stimulatory and inhibitory germinal center populations noted 

above. Another example of opposing actions for these cytokines 
is in the differentiation of IL-9-producing Th9 cells. These cells, 
which were initially characterized as a population generated by 
stimulation with transforming growth factor (TGF)β and IL-4, 
have been shown to play a role in multiple inflammatory disease  
processes as well as in anti-tumor responses93. IL-2 is known to 
promote the development of IL-9-producing cells94, and details of 
the mechanisms involved have been elucidated22,95. IL-2-mediated 
activation of STAT5 is required for IL-9 production, with STAT5  
binding at the Il9 promoter. In contrast, IL-21 negatively regu-
lates the initial production of IL-9, at least in part owing to the  
induction of transcription factor BCL6, which binds to the Il9  
promoter in close proximity to STAT5, suggesting that STAT5 and 
BCL6 compete for access to these promoter sites22. Consistent  
with direct effects of IL-2-induced STAT5 signals on IL-9  
transcription, mice deficient for Itk, a Tec family kinase activated 
via the T cell receptor, had defective production of interferon  
regulatory factor 4 (IRF4) and IL-9 production, and the expression 
of these factors could be rescued by IL-2 or constitutively activated 
STAT596.

Unlike STAT5, STAT3 activation has been shown to nega-
tively regulate both the initiation and the maintenance of IL-9  
expression. Th9 cells subjected to multiple rounds of in vitro  
differentiation produced increasing amounts of IL-21 and IL-10, 
which then led to the extinction of IL-9 production97. It remains 
to be determined whether this effect is relevant in vivo, but in 
this regard, IL-1β could induce the production of high levels of  
IL-21 by Th9 cells, but these cells nevertheless continued to 
produce IL-9 and acquired potent IL-21-mediated anti-tumor  
activity98.

IL-2 was also reported to contribute to the pathogenic role of 
IL-9 in lung disease and inflammation in cystic fibrosis through  
a self-amplifying circuit involving IL-299. In this circuit, lung  
epithelial damage resulted in the release of IL-33, which induced 
the expansion of innate lymphoid cells (ILCs) and their produc-
tion of IL-9, which triggered mast cells to secrete IL-2. The mast  
cell-produced IL-2 then further expanded both CD25+ ILC2s as 
well as Th9 cells in the lung, promoting the ongoing inflammatory 
process.

Fine-tuning of cytokine signals
Above we have discussed a range of physiological effects and 
potential therapeutic approaches using IL-2 and IL-21 and pro-
vided examples where they can oppose each other’s actions. These 
are illustrative, and many of the lessons learned in these studies 
can be extended to other systems. It is important to underscore 
that differential actions for single cytokines have been noted and 
fine actions of the cytokines can be attributed to the utilization of  
different STAT proteins—for example, where one cytokine exhib-
its the induction of different genes depending on which STAT is 
activated. For instance, IL-21 mainly acts via the activation of  
STAT343, yet it induces some genes, such as Tbx21 encoding  
T-Bet and Ifng, via STAT1, with STAT3 opposing their induction100. 
Differential STAT utilization thus represents a mechanism for  
fine-tuning the signaling induced by a single cytokine. In  
addition, IL-2 and IL-21 differentially regulate Th9, Tfh, and 
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partial agonists may be able to provide a range of interesting new 
IL-2 variants and should be broadly applicable to other cytokines 
as well.

Concluding remarks
The γ

c
 family of cytokines collectively serve critical roles in the 

immune system, controlling lymphocyte development, growth, 
differentiation, and survival. In this review, we have focused pri-
marily on IL-2 and IL-21, clarifying ways in which they regulate 
the immune response physiologically as well as how they can 
be utilized and manipulated to modulate the immune system in  
disease settings. Novel approaches, including the generation of 
new variants of IL-2 such as an IL-2 superkine or IL-2 partial  
agonists or the “stabilization” of IL-2 with anti-IL-2 antibodies 
with effects on binding specificity, show promise for modulating 
the actions of IL-2 and potentially IL-15 to therapeutic benefit.
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