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Human Papillomavirus is responsible for a wide range of mucosal lesions and tumors. The immune 
system participate in tumorigenesis in different ways. For example, signaling pathways triggered 
by Toll-like receptors (TLR) play a role in chemotherapy resistance in several tumor types and are 
candidates for contributing to the development of HPV-induced tumors. Here, we studied the 
receptor TLR4 and the adaptor molecule SARM1 in HeLa cells, an HPV-positive cervical cancer cell 
line. Knocking out of these genes individually proved to be important for maintaining cell viability and 
proliferation. TLR4 knock out cells were more sensitive to cisplatin treatment, which was illustrated by 
an increased frequency of apoptotic cells. Furthermore, TLR4 and SARM1 modulated ROS production, 
which was induced by cell death in response to cisplatin. In conclusion, TLR4 and SARM1 are important 
for therapy resistance and cervical cancer cell viability and may be relevant clinical targets.

The relationship between Human Papillomavirus (HPV) and cervical cancer is well known and established1,2: 
the key factor for cervical cancer development is a persistent high-risk HPV infection3. HPV persistence leads to 
increased risk of tumor development despite adaptive or innate immunity against the virus4. More than 500,000 
woman are diagnosed every year with cervical cancer worldwide and half of them will die from the disease5.

High-risk HPV E6 and E7 proteins are essential to generate a series of changes in the cell, increasing mutations 
that will contribute to tumor development6. In addition, these viral proteins also deregulate the innate immune 
system by modifying Toll Like Receptors (TLR) expression, interfering with other antiviral responses, triggering 
persistence and leading to lesion progression7.

TLRs play a pivotal role in innate immunity responses against pathogens and in recognizing cellular stress8. 
Despite being present in normal cells, TLRs can also be expressed and activated in tumors, where they can either 
unleash antitumor effects or increase tumor progression and metastasis9–11. TLR signaling contributes to tumor 
cell proliferation, cytokines and chemokines release, angiogenesis, cell survival, chemoresistance and hence, 
tumor progression12,13. As such, TLRs are interesting targets for immunotherapy.

The interaction between HPV and TLR has been previously described. Clearance of HPV16 infection is related 
to increased expression of TLR2, TLR3, TLR7, TLR8 and TLR914. On the other hand, TLR4 has higher expression 
levels in cervical cancer cells compared to normal cells and its expression levels correlates with increased risk of 
lymph node metastasis15,16. Also, down-regulation of TLR9 was also observed in HPV16 infected cell lines17. Our 
group reported modulation of NF-kB by high-risk HPV E6 oncoprotein through TLR pathway-related proteins 
(MyD88, TRAF6, MYD88–adaptor-like (MAL), IRAK2 and IKKε), which potentiated TLR pathway activation18.

There are seven described TLR adaptors of which three are classified as regulatory adaptors: SARM (SARM1), 
BCAP (PIK3AP1) and SCIM P19. SARM1 works as a negative TLR regulator, inhibiting the interaction between 
TRIF adaptor and TLR4 and TLR320. Despite its role in neuronal degeneration, SARM1 has been recently associ-
ated with prostate cancer cell line growth and metastasis progression, and has also been found to be overexpressed 
in HPV-positive tumor cell lines15,21,22.
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We have previously reported that cervical cancer cell lines expressing E6 and E7 from high-risk HPV types 
have several alterations on the TLR pathway, such as increased expression of HMGB1, SARM1 and TLR415. Here, 
we sought to further dissect the function of the TLR pathway in a cervical cancer cell line focusing on the roles 
of TLR4 and SARM1 on cell survival and cisplatin resistance.

Results
Knock out of either TLR4 or SARM1 reduces viability and proliferation of HeLa cells.  To study 
the role of TLR4 and SARM1 in the malignant phenotype of cervical cancer cells, we knocked out these genes 
individually in HeLa cells using CRISPR/Cas9 and isolated individual clones of the edited cells. Lack of protein 
expression was confirmed by western blot (Fig. 1a). One clone of each of the TLR4 and SARM1 knockout cell 
lines was then randomly chosen and selected for further analysis. From here on, they will be referred to as 
TLR4KO (clone 5) and SARM1KO (clone 3).

First, we compared cell viability of TLR4KO and SARM1KO cells to the unedited parental HeLa cells with or 
without exposure to Lipopolysaccharide (LPS) treatment. Depletion of TLR4 or SARM1 induced approximately 
25% reduction of cell viability when compared to the parental HeLa cells (Fig. 1b). Specifically in the case of 
TLR4KO, loss of viability was further increased by 15% by the LPS treatment (Fig. 1b). In addition, both TLR4KO 
and SARM1KO cells proliferated less than the parental HeLa cells, with SARM1KO cells showing a reduction of 
80% and TLR4KO cells of 45% in proliferation (Fig. 1c).

Lack of TLR4 and SARM1 reduces the clonogenic and migration potential of HeLa cells.  We 
also analyzed the effect of knocking out TLR4 and SARM1 on the clonogenic and migratory potential of HeLa 
cells. We observed that depletion of SARM1 and TLR4 reduced the ability of HeLa cells to form colonies when 
seeded at low density (Fig. 2a). Furthermore, SARM1KO colonies were significantly smaller, consistent with its 
pronounced reduction of proliferation (Fig. 1c).

To evaluate the migration potential of the cells, we performed a wound healing test. Cells were previously 
treated with mitomycin-C to rule out that any observed effect was due to proliferation differences between the 
parental cells and TLR4KO and SARM1KO cells (Supplementary Fig. S2). Interestingly, SARM1KO cells showed a 
significant reduction in migration after 48 h (Fig. 2b, c). On the other hand, TLR4KO cells displayed a significant 
increase in migration compared to parental cells, noticeable after 48 h of the generation of the wound (Fig. 2b, 
c). Our results confirm that lack of TLR4 and SARM1 interfere with important tumor-related characteristics 
such as clonogenic and migration potentials.

TLR4 and SARM1 knockouts sensitize HeLa cells to chemotherapy.  To determine if TLR4 
and SARM1 impact the response of cervical cancer cells to chemotherapy, we treated parental, TLR4KO and 
SARM1KO cells with different concentrations of cisplatin. Figure 3a shows that TLR4KO and SARM1KO cells 
had higher sensitivity to cisplatin than parental HeLa cells. This enhanced effect is also illustrated by the calcula-
tion of the IC50 (concentration at which we observe a 50% reduction in cellular viability): around 4.8 µM for 
TLR4KO, 3.9 µM for SARM1KO, and 17 µM for parental cells.

TLR4KO induces apoptosis after cisplatin treatment.  We then investigated whether knocking out 
either TLR4 or SARM1 induces cell death. In the case of TLR4KO cells, we observed that cisplatin treatment 
significantly increased apoptosis when compared to parental HeLa cells, and this effect was enhanced when 
cisplatin was combined with LPS (Figs. 3b and 4a). Interestingly, more SARM1KO cells went through apoptosis 
only when treated with both cisplatin and LPS, as compared to parental cells treated with cisplatin alone. We 
observed no differences in the induction of necrosis between cells (KO or parental), or between LPS or cisplatin 
treatments conditions. Nevertheless, parental and KO cells responded to cisplatin with and without LPS, show-
ing a significant increase in necrosis rate, despite individual differences in susceptibility (Fig. 4b).

To confirm that apoptosis was being triggered, we measured the amount of activated caspase 3 by flow 
cytometry. Although cisplatin induced caspase 3 activation in both parental and KO cells, the effect was more 
pronounced in TLR4KO cells compared to unedited HeLa cells (Fig. 4c and Supplementary Fig. S3). Even though 
SARM1KO cells also showed higher levels of activated caspase 3 after cisplatin treatment, this increase was not 
significantly higher than the levels observed in parental cells (Fig. 4c and Supplementary Fig. S3). In addition, 
when using cisplatin combined with LPS, both TLR4KO and SARM1KO cells showed an increase in active 
caspase 3 levels compared to parental cells (Fig. 4c and Supplementary Fig. S3). LPS alone increased apoptosis 
levels in TLR4KO cells compared to parental cells (Fig. 4c). Taken together, our data shows that TLR4 depletion 
sensitizes HeLa cells to chemotherapy-induced apoptosis independent of LPS exposure whereas deleting SARM1 
sensitizes cells to chemotherapy only in the presence of LPS.

TLR4 and SARM1 modulate ROS production.  Cisplatin and the TLR pathway modulate production 
of reactive oxygen species (ROS), which induces cell damage and stimulates apoptosis. Therefore, we measured 
ROS production in parental, TLR4KO and SARM1KO HeLa cells exposed to the same treatments performed 
before (Fig. 5a). We noticed that, compared to parental HeLa cells, basal ROS levels were lower in SARM1KO 
and higher in TLR4KO. Cisplatin increased ROS levels in edited and unedited cells, whereas LPS lowered ROS 
levels only in unedited HeLa cells and had no significant effect on ROS levels in TLR4KO and SARM1KO cells. 
When cells were treated with cisplatin and LPS, both TLR4KO and SARM1KO cells showed an increase in ROS 
levels similar to that obtained when cells were treated with cisplatin alone. Both TLR4KO and SARM1KO cells 
modulated ROS levels although LPS decreased ROS production only in parental HeLa cells.
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Since cisplatin can induce apoptosis through ROS production, we exposed cells to a ROS inhibitor, N acetyl 
L cysteine (NAC) to determine if the chemotherapy sensitivity of knockouts were related to ROS levels (Supple-
mentary Fig. S4). We observed that NAC did not alter cisplatin-induced apoptosis of SARM1KO or parental cells. 
On the other hand, apoptosis levels were significantly lower in NAC-treated TLR4KO cells exposed to cisplatin 
(Fig. 5b). No effect in necrosis was observed (Fig. 5c). Therefore, our results suggest that the apoptosis observed 
in TLR4KO cells in response to cisplatin is related to an increase of cellular ROS levels.

Figure 1.   Knockout of TLR4 or SARM1 decreases proliferation and viability of HeLa cells. (a) TLR4 and 
SARM1 protein expression after gene editing. TLR4KO clone 5 and SARM1KO clone 3 were selected for further 
analysis. (b) Cell viability of clones of HeLa cells after TLR4 and SARM1 knockout. Cells were seeded in 96 
well-plates, treated with LPS for 48 h and analyzed using PrestoBlue reagent assay. (c) Proliferation of TLR4KO, 
SARM1KO and parental HeLa cells. Cells were seeded in 24-well plates and counted daily in triplicates for 
7 days. Data in B and C displayed as mean ± SD. (**p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001)
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Figure 2.   TLR4KO and SARM1KO cells show reduced clonogenic and migration potentials. (a) Number 
of colonies formed by TLR4KO, SARM1KO and parental HeLa cells after 10 days of low-density seeding. 
1000 cells of each cell line were seeded in 6-well plates and colony formation was assessed using crystal violet 
staining. (b) Percentage of wound healing by TLR4KO, SARM1KO and parental cells after 24 h and 48 h. 
(c) Representative micrographs of TLR4KO, SARM1KO and parental cells 24 and 48 h after the wound was 
performed. The wound healing assay was performed after mitomycin C treatment. Data in A and B displayed as 
mean ± SD. (**p ≤ 0.01; ****p ≤ 0.0001)
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Figure 3.   TLR4KO and SARM1KO cells are more sensitive to chemotherapy than parental HeLa cells. (a) 
Determination of half maximal inhibitory concentration (IC50) of cisplatin for TLR4KO, SARM1KO and 
parental HeLa cells. Cell viability was measured after 72 h of cisplatin treatment using PrestoBlue reagent assay. 
(b) Representative flow cytometry plots of apoptosis induced in parental unedited (top), TLR4KO (middle) and 
SARM1KO (bottom) cells after treatment with 4.7 µM cisplatin and/or 10 µg/mL LPS for 72 h, using 7-AAD 
and Annexin markers. Data in A displayed as mean ± SD.
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Figure 4.   Apoptosis induced by cisplatin is differentially affected by TLR4 or SARM1 knockout. (a) Percentage 
of apoptotic cells determined by Annexin staining and flow cytometry analysis in TLR4KO, SARM1KO and 
parental HeLa cells after 4.7 µM cisplatin and/or 10 µg/mL LPS treatment for 72 h. (b) Percentage of necrotic 
cells determined by 7-AAD staining and flow cytometry analysis in TLR4KO, SARM1KO and parental cells 
after 4.7 µM cisplatin and/or 10 µg/mL LPS treatment for 72 h. (c) Percentage of cells with activated caspase 3 by 
flow cytometry analysis in TLR4KO, SARM1KO and parental cells after 4.7 µM cisplatin and/or 10 µg/mL LPS 
treatment for 72 h. Data displayed as mean ± SD (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001).
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Figure 5.   N acetyl L cysteine (NAC) reduces apoptosis in TLR4KO cells after cisplatin treatment. (a) ROS 
levels after cisplatin and LPS treatment in TLR4KO, SARM1KO and parental cells measured by flow cytometry. 
(b) Percentage of apoptotic cells determined by Annexin staining and flow cytometry analysis after 4.7 µM of 
cisplatin and 100 µM of NAC treatment for 72 h in parental, TLR4KO and SARM1KO cells. (c) Percentage of 
necrotic cells determined by 7-AAD and flow cytometry analysis after 4.7 µM of cisplatin and 100 µM NAC 
treatment for 72 h in TLR4KO, SARM1KO and parental cells. Data displayed as mean ± SD. (*p ≤ 0.05; **p ≤ 0.01; 
***p ≤ 0.001; ****p ≤ 0.0001).
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Expression of TLR4 and SARM1 alter expression of genes involved in tumorigenic and inflam‑
matory processes.  To better understand the effect of knocking out TLR4 and SARM1, we evaluated the 
expression profile of genes potentially modulated by TLR and related to several steps in the tumorigenic and 
inflammatory processes. We checked the expression levels of IL6 and IL18 (which are related to TLR trigger-
ing and inflammation), Superoxide Dismutase 2 (SOD2, responsible for ROS and oxidative stress modulation), 
Cyclins D1 and E1 (CCND1 and CCNE1, respectively, which are involved in cell cycle progression), and Ki-67 
(a marker of cell proliferation) in HeLa cells depleted of TLR4 or SARM1, in comparison to the parental HeLa 
cells (Fig. 6).

In both TLR4KO and SARM1KO cells, we observed lower levels of IL18 compared to parental cells. On the 
other hand, while TLR4KO cells showed decreased levels of IL6, we observed increased levels of IL6 in SARM1KO 
cells, as compared to the unedited HeLa cells. SOD2 expression was higher in SARM1KO cells, but not TLR4KO 
cells, compared to parental cells. CCND1 expression levels increased in both SARM1KO and TLR4KO cells, while 
CCNE1 levels decreased significantly only in TLR4KO cells. In addition, KI-67 expression levels were lower in 
TLR4KO and SARM1KO cells compared to parental HeLa cells (Fig. 6).

In conclusion, lack of TLR4 and SARM1 in HeLa cells changed the expression of genes related to inflamma-
tory response, cell cycle and proliferation.

Discussion
TLR4 has been implicated in both triggering innate immune response against bacteria and colon cancer 
development26. In addition, in ovarian tumors, its activation leads to increased cell proliferation and cytokines 
and chemokines production27. Nevertheless, TLR4 has different roles depending on tumor type. In hepatocel-
lular carcinoma, for example, its absence leads to more DNA damage, inhibition of senescence and tumor 
progression28. In pancreatic tumors, LPS stimulates tumor development and increases invasiveness in vivo 
through activation of NF-κB via TLR4 signaling29. LPS treatment has also been implicated in the establishment 
of cervical tumors in a mouse model, while TLR4 silencing led to the formation of smaller tumors30.

Several studies also showed a role for TLR4 in tumorigenesis and therapy resistance. There is no consensus 
of a single set of genes involved in these processes, but some studies suggest an association between TLR4 and 
epithelial-to-mesenchymal transition through STAT3 activation31 as well as a role in proliferation through the 
activation of pathways such as MAPK32. Studies of chemotherapy resistance related to TLR4 activation also 
revealed changes in the expression of genes related to apoptosis and cell cycle33.

Few studies have shown an association between increased TLR4 expression in HPV-positive cervical tumor 
samples and resistance to apoptosis15,34,35. We have previously reported that TLR4 had higher expression levels 
in HPV-positive tumor cells and in normal cells expressing HPV16 E6 and E7 oncoproteins15. After further 
investigation, our results confirmed the role of TLR4 in cell survival, proliferation and response to cisplatin in 
HeLa cells. Lack of TLR4 in this cell line led to increased ROS production and consequently increased apoptosis 
after treatment.

Another poorly understood protein related to TLR4 is SARM1, a negative regulator of TLR signaling36. Other 
functions have been described for SARM1 in neuronal cell models, such as modulating mitophagy37, increas-
ing resistance to TNF treatment-induced apoptosis38, and triggering sarmoptosis, a recently uncovered form of 
programmed cell death, after ROS production39.

However, no relationship between SARM1 and cancer or HPV infection has been reported until now. This is 
the first study to suggest its possible role in HPV tumorigenesis. Initially, we described the increased expression of 
its gene in cervical tumor cell lines15; here we are reporting its role in cell survival and response to chemotherapy.

Also, we describe changes in the expression of a set of genes after knockout of SARM1 or TLR4. One of 
the genes is SOD2, a known regulator of oxidative stress and ROS levels. SOD2 has been previously associated 
with cervical cancer and high grade lesions of the cervix40. In addition, higher SOD2 expression is associated 
with presence of lymph node metastasis in penile cancer41. SOD2 is involved in resistance to TNF treatment 
in keratinocytes42 and a relationship between LPS treatment and SOD2 expression and activity has also been 
demonstrated43. Additionally, we are the first group to report SOD2 and ROS regulation by SARM1 expression.

TLR pathway is also involved in interleukin expression. We analyzed the expression of IL18 and IL6, inter-
leukins linked to inflammation and tumorigenesis44. High risk HPV promote upregulation of IL6 and TLR4, 
resulting in an inflammatory environment that can contribute to tumor development45,46. IL6 can also lead to 
STAT3 activation, and this pathway contributes to cell proliferation and survival of cervical cancer cells47. Here 
we show that the expression of IL6 and IL18 is modulated by TLR4 and SARM1 in cervical cancer cells.

We also observed a decrease in proliferation after knocking out SARM1 or TLR4, which prompted us to 
check CCND1, CCNE1 and Ki67. The proliferation marker Ki-67 is associated with high risk HPV and lesion 
progression48, and is widely used as a biomarker, together with p16, to identify HPV infected tissues49. Cyclins 
D1 and E1 (encoded by CCND1 and CCNE1, respectively) are responsible for cell cycle progression. The onco-
protein E6 of HPV can activate the transcription factor eIF4E, and its inhibition in cervical cancer cell lines leads 
to CCND1 downregulation50. Interestingly, cyclin D1 leads to the release of E2F by inducing phosphorylation of 
pRB, a protein that is already targeted by HPV oncoprotein E751,52. Despite the role of CCNE1 in the proliferation 
of normal cell lines, it has been reported as a biomarker for chemotherapy resistance in ovarian cancer and for 
prognosis in breast cancer53,54. Both CCND1 and CCNE1 are upregulated in squamous cervical carcinomas55. 
Our data showed modulation of all three genes, Ki67, CCND1 and CCNE1, by TLR4 and SARM1.

In conclusion, we demonstrate here that, in HeLa cells, knock out of SARM1 drastically reduced cell viability 
and proliferation while lack of TLR4 significantly increased apoptosis and ROS production after cisplatin treat-
ment. Further studies are warranted to explore the potential use of these findings in the clinic.
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Figure 6.   TLR4KO and SARM1KO modulate the expression of genes related to inflammation and proliferation. 
Data obtained by quantitative RT-PCR analysis of three biological replicates for IL18, IL6, CCND1, CCNE1, 
SOD2 and Ki-67 in TLR4KO, SARM1KO and parental HeLa cells. Data displayed as mean ± SD. (*p ≤ 0.05; 
**p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001).
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Methods
Plasmids for gene editing and cell line.  The following plasmids were used for CRISPR/Cas9 editing: 
pX330A23, pX330S23 and PX459 (pSpCas9(BB)-2A-Puro)24 (# 58766, # 58778, and # 62988, Addgene, Water-
town, MA).

The pX330A and pX330S vectors were used in combination to build a multiplex system for TLR4 editing, 
while the pX459 vector was used alone for SARM1 editing as previously described24.

Guide sequences for gene editing were designed using a specific software (crispor.tefor.net): SARM1 G # 
F–CAC​CGC​GCC​TGC​TTC​AGC​GCG​GAC​A; SARM1 G # R–AAA​CTG​TCC​GCG​CTG​AAG​CAG​GCG​C; TLR4 G 
# 1F–CAC​CGA​TGC​CCC​ATC​TTC​AAT​TGT​C; TLR4 G # 1R–AAA​CGA​CAA​TTG​AAG​ATG​GGG​CAT​C; TLR4 
G # 2F–CAC​CGG​GGT​ACA​GGA​TGC​AAT​TGG​C; TLR4 G # 2R–AAA​CGC​CAA​TTG​CAT​CCT​GTA​CCC​C.

HeLa cells were purchased from American Type Culture Collection (ATCC® CCL-2™, Lot Number: 59681574) 
in December 2012. ATCC certified cells through several tests, including: mycoplasma contamination, COI assay, 
STR analysis, Sterility and Human pathogenic virus presence. Upon receipt HeLa cells were divided, frozen and 
kept in low passage for all subsequent experiments. Cells were grown in MEM culture medium supplemented 
with 10% fetal bovine serum (M10 medium) at 37ºC with 5% CO2 and transfected using the FuGENE HD reagent 
(Promega, Madison, WI) according to the manufacturer’s protocol at a 3:1 ratio between reagent and plasmids, 
followed by selection with 2 µg/ml of puromycin. Individual clones were isolated by serial dilution of selected 
cells in 96-well plates. Alterations were confirmed by Sanger sequencing (Supplementary Fig. S1). Knockout 
cells were obtained before passage 10.

Western Blot.  To evaluate whether the genes of interest were knocked out, protein extracts were analyzed 
by western blotting using polyclonal antibodies specific for SARM1 (ab115561, Abcam, Cambridge, UK) and 
TLR4 (ab13556, Abcam, Cambridge, UK). Cells were lysed with a buffer containing 150 mM NaCl, 5 mM EDTA, 
50 mM Tris-HCI pH 8.0, 1% NP-40, 0.5% Sodium deoxycholate and 0.1% SDS supplemented with protease 
inhibitors (Sigma-Aldrich, St. Louis, MO). Protein concentration was determined using Bio-Rad protein assay 
(Bio-Rad, Hercules, CA).

Cell viability assay.  Cell viability analysis was performed using the PrestoBlue ™ Cell Viability Reagent kit 
(ThermoFisher Scientific, Waltham, MA). Cells were seeded in 96-well plates, and 100 μl of complete medium 
plus 10 μl of PrestoBlue reagent was added to each well. The plates were incubated for 1 h at 37 °C protected 
from light. Absorbance was measured at 570 and 600 nm. For viability analysis, cells were previously treated with 
Lipopolysaccharide (LPS) (InvivoGen, San Diego, CA) at 10 µg/mL with and without cisplatin at 4.7 µM (Accord 
Farmacêutica, São Paulo, Brazil) and analyzed after 72 h of treatment.

Clonogenic, proliferation and migration assays.  For clonogenic assays, cells were seeded at low den-
sity (1000 cells per well) in 6-well plates. After 2 weeks, cells were fixed with formalin and stained with crys-
tal violet (0.05% w/v). The number of colonies formed was counted automatically using the ImageJ software 
(National Institutes of Health, Bethesda, MD). For proliferation assays, 5000 cells were seeded per well in 24-well 
plates and counted every day in triplicates. For migration assays, 3 × 106 cells were seeded in 6-well plates; 24 h 
later, cells were treated with 10 µg/ml of mitomycin C (Sigma-Aldrich, St. Louis, MO) for 2 h at 37ºC. A wound 
healing assay was performed to observe cell migration, after the mitomycin C treatment. Photos were taken at 
0 h, 24 h and 48 h, and the area not occupied by cells was measured using the ImageJ software.

Cell death assays and ROS production measurement.  Apoptosis was determined using the CellEv-
ent™ Caspase-3/7 Green Detection Reagent kit (ThermoFisher Scientific, Waltham, MA) following the manu-
facturer’s protocol. Apoptosis and necrosis were also determined using double staining with the eBioscience™ 
7-AAD Viability Staining Solution and eBioscience™ Annexin V-FITC Apoptosis Detection Kit (ThermoFisher 
Scientific, Waltham, MA) and analyzed by flow cytometry.

For reactive oxygen species (ROS) determination, cells were cultured in 6-well plates with 10 µg/mL of LPS, 
4.7 µM of cisplatin and 100 µM N-acetyl-l-cysteine (NAC) for 72 h, followed by 30 min of incubation with the 
DCFDA/H2DCFDA reagent (Cellular ROS Assay Kit, ThermoFisher Scientific, Waltham, MA) and analysis by 
flow cytometry.

For cell cycle analysis, 105 cells were seeded per well in 6-well plates and, after 24 h, cells were treated with 
10 µg/ml mitomycin for 2 h. Cells were fixed with 70% ethanol, washed with PBS and treated with 5 µl of RNAse 
(10 mg/ml, ThermoFisher Scientific, Waltham, MA), 0.5 µl of 7-AAD and 0.5 µl of Triton X-100 (Sigma-Aldrich, 
St. Louis, MO) diluted in 500 µl of PBS for 30 min at 37 °C. Cells were then analyzed by flow cytometry.

All experiments were performed on a BD Accuri™ C6 cytometer (BD Biosciences, CA) and the results ana-
lyzed with FlowJo software (BD, Franklin Lakes, NJ, version V10).

Quantitative polymerase chain reaction (qPCR).  RNA was extracted with TRIzol as described by the 
manufacturer (Thermo-Fisher, Waltham, MA). After DNase treatment (Promega, Madison, WI), 1 µg of RNA 
was used for cDNA synthesis and qPCR with GoTaq® 2-Step RT-qPCR System (Promega, Madison, WI) fol-
lowing the manufacturer’s protocol. Primers used were: IL18F TGG​CTG​TAA​CTA​TCT​CTG​TGAA; IL18R TGT​
CCT​GGG​ACA​CTT​CTC​TG; SOD2 F TGA​ACA​ACC​TGA​ACG​TCA​CC; SOD2RGT​AGT​AAG​CGT​GCT​CCC​
ACA; IL6 F CCA​CAC​AGA​CAG​CCA​CTC​AC; IL6 R AGG​TTG​TTT​TCT​GCC​AGT​GC; CCND1 F TGA​AGG​
AGA​CCA​TCC​CCC​TG; CCND1 R TGT​TCA​ATG​AAA​TCG​TGC​GG; CCNE1 F AAA​TGG​CCA​AAA​TCG​ACA​
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GG; CCNE1 R CGA​GGC​TTG​CAC​GTT​GAG​TT; MKI67 F TGT​GCC​TGC​TCG​ACC​CTA​CA; MKI67 R TGA​
AAT​AGC​GAT​GTG​ACA​TGT​GCT​. Expression analysis was performed using the ΔΔCt method25.

Statistical analysis.  All experiments were performed at least in triplicates. Results were analyzed using 
two-way ANOVA with Prism software (Graphpad, version 6, San Diego, CA).
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