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Abstract: The transcription factor NF-E2 p45-related factor 2 (NRF2; encoded by NFE2L2) plays a
critical role in the maintenance of cellular redox and metabolic homeostasis, as well as the regulation
of inflammation and cellular detoxication pathways. The contribution of the NRF2 pathway to
organismal homeostasis is seen in many studies using cell lines and animal models, raising intense
attention towards targeting its clinical promise. Over the last three decades, an expanding number
of clinical studies have examined NRF2 inducers targeting an ever-widening range of diseases.
Full understanding of the pharmacokinetic and pharmacodynamic properties of drug candidates
rely partly on the identification, validation, and use of biomarkers to optimize clinical applications.
This review focuses on results from clinical trials with four agents known to target NRF2 signaling
in preclinical studies (dimethyl fumarate, bardoxolone methyl, oltipraz, and sulforaphane), and
evaluates the successes and limitations of biomarkers focused on expression of NRF2 target genes
and others, inflammation and oxidative stress biomarkers, carcinogen metabolism and adduct
biomarkers in unavoidably exposed populations, and targeted and untargeted metabolomics. While
no biomarkers excel at defining pharmacodynamic actions in this setting, it is clear that these four
lead clinical compounds do touch the NRF2 pathway in humans.

Keywords: biomarkers; NRF2 (nuclear factor erythroid 2 related factor 2); sulforaphane;
oltipraz; bardoxolone methyl; dimethyl fumarate; oxidative stress; inflammation; gene
expression; carcinogenesis

1. The KEAP1-NRF2 System

It has been more than 20 years since the initial molecular description of the Keap1-Nrf2 signaling
pathway, wherein it was recognized as an adaptive response pathway to exogenous [1], and later as
an adaptive response pathway to endogenous stresses [2]. Nuclear factor erythroid 2 related factor
2 (NRF2) is a transcription factor that regulates the expression of over 300 target genes with roles in
antioxidant and anti-inflammatory actions, electrophile detoxication, cell metabolism, proliferation
and differentiation, and general cytoprotection. Kelch-like ECH-associated protein-1 (KEAP1) is an
adaptor protein for the Cullin-3 ubiquitin ligase and a key cytoplasmic repressor of NRF2. KEAP1
interaction with NRF2 leads to NRF2 polyubiquitination and its subsequent proteasomal degradation.
In the presence of oxidative stress or inducers, which are often electrophiles, key “sensor” cysteine
thiol groups on KEAP1 are modified, disrupting the degradation process and allowing for nascent
NRF2 to directly translocate into the nucleus and to target gene transcription. Target genes are defined
by the presence of functional antioxidant response elements (AREs) in their regulatory regions. NRF2
heterodimerizes with one of the small musculo-aponeurotic fibrosarcomas (sMAF) to bind to the ARE.

Antioxidants 2020, 9, 716; doi:10.3390/antiox9080716 www.mdpi.com/journal/antioxidants

http://www.mdpi.com/journal/antioxidants
http://www.mdpi.com
https://orcid.org/0000-0002-6676-261X
http://dx.doi.org/10.3390/antiox9080716
http://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/2076-3921/9/8/716?type=check_update&version=2


Antioxidants 2020, 9, 716 2 of 36

Sentinel downstream targets include NAD(P)H: quinone oxidoreductase 1 (NQO1), heme oxygenase
1 (HMOX1), glutamate-cysteine ligase catalytic subunit (GCLC), and the glutathione-S-transferases
(GSTs). The rapid inducibility of a response based on a de-repression mechanism is an important
feature of this cytoprotective KEAP1-NRF2 system. An additional feature is the extensive crosstalk
between NRF2 and other transcription factor signaling pathways, allowing for further fine-tuning of
physiological responses to stress. There are excellent reviews that document the historic milestones in
the characterization of the pathway, the molecular mechanisms governing the functions of KEAP1 and
NRF2, as well as their roles in physiology and pathology [3–6].

2. Pharmacological Inducers of KEAP1-NRF2 Signaling

A plethora of preclinical studies, utilizing cell culture models as well as animals, continues to
lead to the discovery and characterization of molecules that could induce (or inhibit) the pathway and
mitigate toxicities or diseases driven by exposures to electrophiles, oxidants, and intrinsic inflammatory
processes. The profound protective actions of many classes of “Nrf2 inducers” in rodent models
of acute and chronic diseases, as well as corresponding actions in genetically manipulated models
(ranging from C. elegans, Drosphila, and zebrafish to mice and rats) in which elements of the pathway
were disrupted or amplified, led to the notion that NRF2 signaling in humans might be a propitious
target for disease prevention and treatment [5,7,8]. As reviewed elsewhere [9–12], many drugs and
natural products, exhibiting remarkable structural diversity, are under development and clinical
evaluation for these purposes. One of many features retarding drug development is the lack of sensitive
and specific biomarkers that can rapidly inform understandings of dose-responsiveness, mechanistic
specificity, as well as magnitude and duration of pharmacodynamic action in clinical trial settings.
Such needs pervade the process of clinical development of NRF2 inducers. Although hundreds—if not
thousands—of molecules have been described as inducers and dozens are in clinical development,
only four (dimethyl fumarate (DMF), bardoxolone methyl (BARD-Me), oltipraz, and sulforaphane
(SFN)) have appeared substantively in the peer-reviewed literature, especially wherein measures of
biomarkers have been a component of the clinical protocols. Interestingly, all four of these agents
intersect the NRF2 signaling pathway through interactions with cysteine151 in KEAP1 [5]. While this
review focuses on biomarkers likely related to NRF2 action, because of their reactivity with thiols all
these agents affect multiple targets and pathways in cells. Sole attribution of any response to actions
on NRF2 in the context of the biomarkers reported herein has not been firmly established. Nonetheless,
there are common themes in the field, and as mechanistic insights become sharpened along with
analytic improvements higher confidence in the specificity and sensitivity of some of these biomarkers
may evolve.

Summaries of the clinical development and utilization of DMF, BARD-Me, oltipraz, and SFN are
provided in the following sections, along with highlights of general evidence for the targeting of NRF2
by these agents based on preclinical studies. Interestingly, the clinical applications of each drug are
quite distinct. The distributions of healthy and disease-state study populations enrolled in clinical
trials with these four agents are highlighted in Figure 1.
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Figure 1. Study populations examined in peer-reviewed clinical studies of nuclear factor erythroid 2 
related factor 2 (NRF2) inducers. Studies for bardoxolone methyl (BARD-Me), oltipraz, dimethyl 
fumarate (DMF), and sulforaphane (SFN) totaled 5, 18, 26, and 75, respectively, from 1982 to June 
2020. Literature searches were conducted on PubMed, Google Scholar, and ClinicalTrials.gov. 
Publications based on the same clinical trial were aggregated as one study in this graph. The chemical 
structure for each NRF2 inducer is indicated below each name. CKD, chronic kidney disease; CVD, 
cardiovascular disease. 

2.1. Dimethyl Fumarate (DMF, BG-12, Tecfidera) 

Fumaric acid esters are used for the treatment of psoriasis and multiple sclerosis. A mixture of 
dimethyl fumarate with mono ethylfumarate salts was developed as a drug product (Fumaderm®) 
and registered in 1994 as an oral agent for the treatment of moderate to severe plaque psoriasis. 
Dimethyl fumarate alone (Skilarence®) also has EU approval for this indication [13]. Due to the 
immunomodulatory potential of Fumaderm®, DMF was evaluated in other immune-mediated 
diseases, which led to testing of DMF in large multicenter phase 2 and 3 trials of relapsing–remitting 
multiple sclerosis [14]. Oral DMF as a galenical formulation (BG-12, Tecfidera®) was subsequently 
demonstrated to be an effective agent [15,16] and was approved for use in this disease by the U.S. 
Food and Drug Administration in 2013 and the European Medicines Agency in 2014 [17]. New 
analogs featuring better bioavailability and efficacy are under development [10]. DMF has been 
linked to several treatment-limiting adverse events, including flushing and gastrointestinal 
complaints, and less frequently to persistent lymphopenia. Such action likely precludes the use of 
DMF in any disease prevention settings. A summary of clinical trials utilizing fumaric acid esters, all 
of which include DMF, is listed in Table S1 [15,16,18–56]. 

DMF is almost completely converted to monomethyl fumarate (MMF) by intestinal esterases. 
Thus, it is likely that DMF serves as a prodrug in the elaboration of its therapeutic actions, with MMF 
the likely active form. Talalay reported in 1990 [57] that DMF and other fumaric acid esters induced 
Nrf2 target gene (Nqo1 and Gst) activities in various organs of mice and rats after dietary 
administration. DMF and MMF contain double bonds, allowing them to act as Michael acceptors to 
form adducts with thiol groups, such as C151 in Keap1. Much more recently, Linker et al. [58] 
demonstrated in mice that oral DMF induces the expression of Nrf2 target genes in multiple cell types 
of the central nervous system. Studies in Nrf2-disrupted mice indicate a loss of protective effect of 

Figure 1. Study populations examined in peer-reviewed clinical studies of nuclear factor erythroid
2 related factor 2 (NRF2) inducers. Studies for bardoxolone methyl (BARD-Me), oltipraz, dimethyl
fumarate (DMF), and sulforaphane (SFN) totaled 5, 18, 26, and 75, respectively, from 1982 to
June 2020. Literature searches were conducted on PubMed, Google Scholar, and ClinicalTrials.gov.
Publications based on the same clinical trial were aggregated as one study in this graph. The chemical
structure for each NRF2 inducer is indicated below each name. CKD, chronic kidney disease; CVD,
cardiovascular disease.

2.1. Dimethyl Fumarate (DMF, BG-12, Tecfidera)

Fumaric acid esters are used for the treatment of psoriasis and multiple sclerosis. A mixture of
dimethyl fumarate with mono ethylfumarate salts was developed as a drug product (Fumaderm®)
and registered in 1994 as an oral agent for the treatment of moderate to severe plaque psoriasis.
Dimethyl fumarate alone (Skilarence®) also has EU approval for this indication [13]. Due to the
immunomodulatory potential of Fumaderm®, DMF was evaluated in other immune-mediated
diseases, which led to testing of DMF in large multicenter phase 2 and 3 trials of relapsing–remitting
multiple sclerosis [14]. Oral DMF as a galenical formulation (BG-12, Tecfidera®) was subsequently
demonstrated to be an effective agent [15,16] and was approved for use in this disease by the U.S. Food
and Drug Administration in 2013 and the European Medicines Agency in 2014 [17]. New analogs
featuring better bioavailability and efficacy are under development [10]. DMF has been linked to
several treatment-limiting adverse events, including flushing and gastrointestinal complaints, and
less frequently to persistent lymphopenia. Such action likely precludes the use of DMF in any disease
prevention settings. A summary of clinical trials utilizing fumaric acid esters, all of which include
DMF, is listed in Table S1 [15,16,18–56].

DMF is almost completely converted to monomethyl fumarate (MMF) by intestinal esterases.
Thus, it is likely that DMF serves as a prodrug in the elaboration of its therapeutic actions, with
MMF the likely active form. Talalay reported in 1990 [57] that DMF and other fumaric acid esters
induced Nrf2 target gene (Nqo1 and Gst) activities in various organs of mice and rats after dietary
administration. DMF and MMF contain double bonds, allowing them to act as Michael acceptors
to form adducts with thiol groups, such as C151 in Keap1. Much more recently, Linker et al. [58]
demonstrated in mice that oral DMF induces the expression of Nrf2 target genes in multiple cell types
of the central nervous system. Studies in Nrf2-disrupted mice indicate a loss of protective effect of
DMF in a multiple sclerosis model of experimental autoimmune encephalitis and MPTP-induced
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experimental Parkinson’s disease [58–60]. However, Nrf2-independent actions are also being described.
For example, DMF and MMF activate the nicotinic receptor hydroxycarboxylic acid receptor 2, which
is expressed in immune cells and gut epithelial cells, resulting in NRF2-independent anti-inflammatory
responses, in addition to anti-inflammatory actions associated with Nrf2 signaling. There is substantial
evidence that DMF and MMF influence multiple aspects of the immune system that contribute to both
the therapeutic effects and its major side effects [10,17].

2.2. Bardoxolone-methyl (BARD-Me; CDDO-Me)

Many dozens of synthetic oleanane triterpenoids have been synthesized, guided by efforts to
enhance the weak anti-inflammatory activity of the naturally occurring triterpenoid oleanolic acid [61],
which in vitro have been shown to: (1) suppress inflammation-like responses and oxidative stress,
and therefore to be cytoprotective, especially at low nanomolar doses; (2) induce differentiation;
and (3) block cell proliferation and induce apoptosis at higher micromolar doses [62]. Extensive
animal data have been described demonstrating efficacy of triterpenoids in the prevention or
amelioration of neurodegenerative diseases and in diseases of the eye, lung, cardiovascular system, liver,
gastrointestinal tract, and kidney, as well as in cancer and in metabolic and inflammatory or autoimmune
disorders [62,63]. Two triterpenoids have been studied extensively in preclinical studies (CDDO-Im;
1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole); (CDDO-Me; bardoxolone methyl; methyl
2-cyano-3,12-dioxooleana-1,9(11)dien-28-oate) and are likely to have strongly overlapping, but not
entirely concordant, mechanisms of action. As summarized in Table S1, CDDO-Me (BARD-Me)
was the featured synthetic oleanane triterpenoid selected by Reata Pharmaceuticals for clinical
development [64–75].

Over 30 clinical trials with BARD-Me have been registered in ClinicalTrials.gov. The first phase I
clinical trial of BARD-Me was conducted in patients with advanced solid tumor and lymphoma to
determine the dose-limiting toxicity and the maximum tolerated dose [66]. In this first trial, an increase
in estimated glomerular filtration rate (eGFR) was also noted. This observation led to the evaluation
of BARD-Me for treatment of patients with chronic kidney disease (CKD) and prompted several
follow-up studies, including a phase 2 Bardoxolone Methyl Treatment: Renal Function in CKD/Type
2 Diabetes (BEAM); and phase 3 Bardoxolone Methyl Evaluation in Patients with Chronic Kidney
Disease and Type 2 Diabetes Mellitus: the Occurrence of Renal Events (BEACON) trials. While BEAM
showed a promising increase in estimated glomerular filtration rate (eGFR), BEACON was terminated
early due to heart failure events within the first 4 weeks of treatment [64,67]. Bardoxolone-methyl
is currently in clinical trials for Alport’s syndrome (A Phase 2/3 Trial of the Efficacy and Safety of
Bardoxolone Methyl in Patients With Alport Syndrome-CARDINAL, NCT03019185), IgA nephropathy,
type 1 diabetic nephropathy, focal segmental glomerulosclerosis, and autosomal dominant polycystic
kidney disease (A Phase 2 Trial of the Safety and Efficacy of Bardoxolone Methyl in Patients With Rare
Chronic Kidney Diseases - PHOENIX, NCT03366337). An additional phase 3 study in patients with
diabetic kidney disease is also being performed with a primary outcome of time to onset of a 30%
decline in eGFR or end-stage renal disease (A phase 3 study of bardoxolone methyl in patients with
diabetic kidney disease, AYAME, NCT03550443) [76].

The role of NRF2 is inferred to be a central component of the mechanism of action of the
bardoxolone methyl. CDDO-Im [77] and CDDO-Me [78] protect against acute kidney injury in mice,
while Nrf2 null mice are sensitized to injury [79]. Similarly, CDDO-Im completely abrogates aflatoxin
hepatocarcinogenesis in rats [80], whilst Nrf2 knockout rats show markedly enhanced sensitivity to
the hepatotoxic effects of aflatoxin [81]. Interestingly, although CDDO-Im, CDDO-Me, and DMF all
activate the Nrf2 pathway, they target distinct genes and signaling pathways, and in the case of DMF
result in opposite effects for the prevention of experimental lung cancer in mice [82]. Highlighting the
importance of additional mechanisms of action, Ball et al. [83] recently reported that CDDO-Me relieves
immunosuppression in the breast tumor microenvironment and unleashes host adaptive antitumor
immunity. This may be mediated in part by conversion of breast-tumor-activated macrophages from
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a tumor-promoting to a tumor-inhibiting activation state [84]. Some anti-inflammatory actions of
CDDO-Me are likely mediated through additional actions on nuclear factor-κB (NF-κB) [85].

2.3. Oltipraz

Oltipraz, [4-methyl-5-(2-pyrazinyl)-3H-1,2-dithiole-3-thione], was originally developed by
Rhône-Poulenc (subsequently acquired by Sanofi) as a possible treatment for schistosomiasis and was
extensively evaluated in clinical trials in the early 1980s. Field trials in Mali, Gabon, Sudan, and other
sites, using short courses with durations of 1–5 days with total doses of 1.25–7.5 g, achieved cure rates
of greater than 90% [86–91]. However, side effects occurred in about 10% of participants, principally
related to the digestive system and to fingertip pain, with the latter being amplified by exposure
to sunlight. Although all effects were reported as mild, subsided within a few days, and did not
require discontinuation of the drug, the concerns regarding photosensitivity led to the abandonment
of oltipraz for the treatment of schistosomiasis. This decision was surely influenced by concurrent
clinical progress of less expensive, equi-effective, and less problematic drugs for the chemotherapy
of schistosomiasis.

While studying mechanisms of antischistosomiasis by oltipraz, Ernest Bueding and colleagues at
Johns Hopkins initially noted that giving the drug to mice infected with Schistosoma mansoni caused a
dramatic reduction in the glutathione stores of the parasite, while paradoxically markedly elevating
glutathione levels in many tissues of the host [92]. Subsequent studies demonstrated that oltipraz and
some structurally related 1,2-dithiole-3- thiones were potent inducers of enzymes concerned with the
maintenance of reduced glutathione pools, as well as enzymes important to electrophile detoxication
in multiple tissues of rats and mice [93]. These results prompted Bueding to predict that oltipraz might
have cancer chemopreventive properties [94], and that perhaps at lower doses the side effects would
be mitigated.

Largely under the aegis of the drug development program of the Chemoprevention Branch of
the National Cancer Institute, oltipraz underwent extensive evaluation for anticarcinogenic efficacy
in animal models. As reviewed elsewhere [95,96], oltipraz has shown chemopreventive activity
against different classes of carcinogens targeting the trachea, lung, stomach, small intestine, colon,
pancreas, liver, urinary bladder, mammary gland, hematopoietic cells, and skin. The most dramatic
actions of oltipraz occurred in the colon and liver, where dietary administration resulted in significant
reductions in both tumor incidence and multiplicity. Accordingly, subsequent clinical trials of oltipraz
(Figure 1; Table S1 [86–91,97–111] focused on cancer-preventive interventions targeted to the colon and
liver, and most recently mitigation of hepatic fibrosis and nonalcoholic fatty liver disease (NAFLD).
Only one current trial with oltipraz (NCT04142749: A Multi-center, Randomized, Double-blind,
Placebo-controlled, Parallel, Phase II Clinical Trial to Evaluate the Efficacy and Safety of Oltipraz) is
listed on ClinicalTrials.gov, indicating that while this agent has provided historical perspectives on
biomarker utilization directed towards the NRF2 pathway, it appears to be at a defining point for a
possible clinical path forward.

A role for the involvement of Nrf2 in the chemopreventive actions of oltipraz in animals was
built on the foundation of induction of Nrf2 target genes and enzymes in multiple rodent tissues [93],
amplified by an appreciation for the role of AREs in mediating these responses [112] and capped
by studies demonstrating that protective effects of oltipraz against DNA adduct formation and
tumorigenesis were abrogated in Nrf2-disrupted mice [113,114]. These observations, in turn, guided
the choice of biomarkers selected as intermediate endpoints for clinical studies with oltipraz.

2.4. Sulforaphane (SFN)

Sulforaphane was described in the middle of the last century as an antibiotic, and was isolated
from red cabbage and from the western USA rangeland weed hoary cress. Various groups have
since synthesized it, however Talalay and Zhang were the first to isolate it from broccoli [115] and to
demonstrate its cancer protective properties (against mammary carcinogenesis in rats) [116]. Its biogenic
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precursor, glucoraphanin, was then found in abundance in broccoli sprouts. Sprout-based preparations
were confirmed to be active for prevention in animal carcinogenesis models [117].

The highly reactive isothiocyanate SFN is produced in plants as an inert precursor, the glucosinolate
glucoraphanin. Upon disruption of plant tissue integrity, glucoraphanin interacts with myrosinase,
which catalyzes the hydrolysis of glucoraphanin to yield SFN. Theβ-thioglucosidases within the human
microbiome also catalyze this bioactivation. Glucoraphanin occurs in all tissues of broccoli plants,
though it is most abundant in the aerial portions, and the developing florets and ultimately the seeds
are richest in this compound [117]. Studies to examine the pharmacokinetics of SFN in humans began
in 1998 [118]. In the subsequent 75 or so studies examining pharmacokinetics, pharmacodynamics,
or efficacy, a multitude of formulations have been used. Broccoli-based preparations have consisted
typically of either glucoraphanin; SFN; glucoraphanin with added active myrosinase; the raw, cooked,
or dried vegetables themselves (either broccoli or broccoli sprouts); or extracts of broccoli seeds or
sprouts, which are glucoraphanin-rich, SFN-rich, or both. This diversity of formulations—and thus lack
of consistency—has provided uncertainty regarding actual administered doses and confusion in the
interpretation of study results. The broccoli (sulforaphane) literature with regards to formulation, dose,
and response in preclinical and clinical studies has been reviewed recently [11]. Relatively few studies
have evaluated the efficacy of SFN in its various formulations against clinical endpoints of disease.
As depicted in Figure 1, more than half of the published studies have involved healthy volunteers.
However, in part based on a broad spectrum of beneficial responses observed in animal models, clinical
trials focused on neurodevelopmental diseases such as autism and schizophrenia, cardiovascular
disease, sickle cell anemia, chronic obstructive pulmonary disease, asthma, Helicobacter pylori infection,
and environmental factors contributing to carcinogenesis, as well as diabetes, metabolic syndrome, and
related disorders have been undertaken (reviewed in [11,119] and are listed in Table S1 [118,120–196]).

Bioassay guided fractionation of acetonitrile extracts of SAGA broccoli led to the isolation of SFN
as the major inducer [115]. The bioassay tracked the induction of Nqo1 activity in murine hepatoma
cells. Thus, a Nrf2 target gene was at the center of its isolation from broccoli. There are now over
300 publications in which the actions of SFN in mice invoked a role for Nrf2. Studies in which
these actions are diminished or abrogated in parallel experiments in Nrf2-disrupted mice provide the
strongest lines of evidence for a key role of this transcription factor in its actions. With that said, it is
equally evident that other modes of action contribute to the molecular responses to SFN in animals and
humans [119,197,198]. Such polypharmacy may well contribute to the efficacy of the agent in disease
prevention and mitigation but obfuscates the value of specific pharmacodynamic biomarkers in the
clinical development and evaluation of SFN—perhaps even more so, because unlike the situation with
triterpenoids (e.g., CDDO-Im and CDDO-Me), where there appears to be a hierarchical activation
of targets/pathways with increasing dose [62], it is more likely that the multiple targets of SFN are
activated at similar concentrations [198].

2.5. Other Natural Product Inducers

While SFN is generally considered to be the most potent natural product inducer of Nrf2
signaling, there are many plant-derived molecules that activate the pathway. They have been identified
principally in cell culture screens. Several comprehensive reviews of this topic have been published
recently [193,199]. These molecules can be natural products, natural product-derived, or natural
product-inspired. Moreover, they can activate the pathway through different mechanisms—almost all
intersecting with Keap1 directly or indirectly. However, relatively few have seen rigorous evaluation
in clinical studies or trials. Some natural products of clinical use include curcumin, resveratrol,
and flaxseed.

The polyphenol curcumin, which is isolated from Curcuma longa and provides yellow color to
the spice turmeric, is a weak inducer of Nrf2 signaling in cell culture [200]. Long used in Ayurveda
for the treatment of many conditions, two clinical trials of curcumin have examined NRF2-driven
biomarkers. Yang et al. [201] reported that curcumin (500 mg, daily) induced NQO1 levels in
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lymphocytes and reduced plasma malondialdehyde levels in plasma of T2DM patients. Modulation
of inflammatory biomarkers was also observed. Jiménez-Osorio et al. [202] failed to observe any
effects of curcumin (320 mg/d for 8 weeks) on the activities of NRF2 target genes (glutathione
peroxidase, glutathione reductase, superoxide dismutase (SOD), and catalase) in peripheral blood
mononuclear cells (PBMCs) of diabetic proteinuric chronic kidney disease (CKD) patients enrolled in
a placebo-controlled, double-blind trial. Similar mixed results were seen in two placebo-controlled,
randomized trials with resveratrol, another polyphenol, which in this instance is found in the skins of
grapes and berries and is widely marketed as a dietary supplement. Saldanha [203] reported no effect
of 500 mg/d on NRF2 expression in peripheral blood mononuclear cells (PBMCs) of non-dialized CKD
patients, whilst Seyyedbrahimi et al. [204] observed significant changes in NRF2 and SOD levels with
400 mg twice-daily in T2DM patients. Flaxseed, a dietary botanical supplement with high fiber, lignan
phenolics, and omega-3 fatty acids, has anti-inflammatory and antioxidant properties in murine models
of acute and chronic lung injury. Ten cystic fibrosis patients and five healthy volunteers consumed 40 g
of flaxseed daily for 4 weeks in a pilot study of tolerability and possible pharmacodynamic action. No
significant effects were observed on biomarkers of NRF2 signaling or attenuation of oxidative stress.
Thus, the translation of these broadly touted natural products towards effective modulation of NRF2
signaling and possible disease mitigation remain largely unfulfilled. This outcome likely reflects the
relative lack of potency of these molecules and the myriad of molecular targets that may be modified.

3. Biomarker-Based Clinical Studies and NRF2 Inducers

Prospective clinical studies have revolutionized the development of medicine by providing
reliable evidence on the efficacy and safety of novel treatment strategies. In newer paradigms of
drug development, biomarkers are often used to guide early clinical development (e.g., phase 0
studies). A biomarker is defined as “a characteristic that is objectively measured and evaluated as
an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention” [205]. A simple distinction can be made between clinical biomarkers
and mechanism-specific biomarkers. Clinical biomarkers are thought to reflect disease activity and
pathophysiology, which are not discussed in any detail in this article. The mechanism-specific
biomarkers, which are the main focus of this article, reflect the molecular action of an agent on the
pharmacology or pathophysiology, where biomarkers are used to evaluate pharmacokinetic and
pharmacodynamic aspects, including target activation [206].

Screening of peer-reviewed clinical studies of NRF2 inducers from 1982 to June 2020 (Table S1)
identified 12, 21, 41, and 78 published studies for BARD-Me, oltipraz, DMF, and SFN, respectively.
Not all studies utilized mechanistic biomarkers. The most frequently used mechanistic biomarkers are
enumerated in Figure 2A, according to their placement in 6 broad categories, which are reflective of
NRF2 and other modes of action. To give some context regarding the actual usage of these biomarkers,
the distributions of these biomarkers in the clinical studies with each of the 4 agents were further
analyzed (Figure 2B). There is a varied landscape with unique distributions for each clinical agent.
As the NRF2 signaling pathway is a new and evolving proposed molecular target for clinical application,
mechanistically linked assessments within clinical studies would a priori seem to be fundamental.
Indeed, several mechanically linked biomarkers have been investigated widely in the clinical studies
for SFN and oltipraz, agents that were developed largely in academic settings. Presumably, these
biomarkers have been used to guide selection of dose or formulation in advance of efficacy trials.
On the other hand, within the clinical studies for BARD-Me and DMF, agents developed by Pharma,
clinical biomarkers account for the majority usage in publications. Here, mechanistic biomarker use
tends to be confirmatory once some efficacy has been established.

Although standardizing NRF2 biomarker definitions presents a challenge as there is a significant
overlap in biomarker categories, here we breakdown and describe each mechanistically linked
biomarker that can be potentially modulated by NRF2 inducers.
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3.1. Nrf2 Target Genes

Quickly after its discovery, it was established in mice that Nrf2 regulates the expression of several
hundreds of genes, encoding a network of enzymes involved in a broad-based cellular defense system
in mice [6,8]. Less extensive cataloging has been undertaken in humans; however, there appears to a
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largely concordant, albeit likely more limited set of NRF2 target genes [207–209]. Thus, tracking changes
in the expression or activities of NRF2-targeted enzymes could be one of the most direct biomarkers
for monitoring the effects on the downstream pathway of NRF2 signaling. NAD(P)H: quinone
oxidoreductase-1 (NQO1) and heme oxygenase-1 (HMOX1) are widely examined NRF2-targeted
enzymes exhibiting sensitivity and reliability of their quantification, wherein the mRNA expression
levels of these genes have been evaluated in clinical samples, such as in PBMCs and biopsy samples
from study subjects.

Reduced glutathione (GSH; the oxidized form of which is glutathione disulfide, GSSG) is the most
abundant cellular antioxidant and a major thiol utilized for detoxication of reactive intermediates. NRF2
regulates the expression of enzymes involved in the synthesis and recycling of GSH, such as the catalytic
and modulator subunits of glutamate–cysteine ligase (GCLC and GCLM), glutathione reductase (GR),
glutathione peroxidase (GPX), and several glutathione S-transferases (GSTs). Moreover, several proteins
within the redoxin family, such as thioredoxin (TRX), thioredoxin reductases (TrxRs), peroxiredoxins
(Prxs), and sulfiredoxins (SRXNs), are all regulated by NRF2 and provide compartmentalized sensing
and signal transduction of regional production of reactive oxygen species. Thus, the redox regulation
by NRF2-targeted genes can modulate the level of oxidative stress, which is considered to be one of
therapeutic targets by NRF2 inducers. In this article, these genes are considered as NRF2 target gene
biomarkers, as distinguished from oxidative stress biomarkers. GCLC, GCLM, GPX, and GST have
been used as biomarkers for several clinical studies of NRF2 inducers [104,107,134].

3.2. Gene Expression and Function

In addition to prototypic NRF2 target genes, other genes are also examined as biomarkers,
where links to NRF2 signaling are more tenuous or perhaps nonexistent. Mounting reports describe
how SFN affects multiple potential downstream pathways, such as epigenetic alterations and heat
shock. Epigenetic effects mediated through modulation of histone deacetylase (HDAC) activity
have been explored in several clinical studies and may relate to the chemopreventive effects of
SFN [129,135,140,159,170]. In a study targeting autism spectrum disorder, heat shock proteins were
employed as biomarkers reflecting therapeutic effects by SFN [195]. Comprehensive, unbiased analyses
for gene expression (e.g., microarray, RNA-sequencing, and ChIP-seq) have provided powerful
assessments for gene expression profiling and transcriptional networks. Several studies, principally
focused on SFN, have been performed [128,131,193], revealing characteristic and novel gene expression
profiling correlated with intervention.

Rajendran et al. [170] reported that wild-type mice, which are more susceptible to
dimethylhydrazine-induced colon carcinogenesis than Nrf2-deficient mice, had higher HDAC levels
globally and locally. SFN treatment reduced tumor burden, most notably in the wild-type mice, and
reduced HDAC3 expression. Thus, Nrf2 status may influence HDAC levels and signaling by its
downstream targets, including p16.

3.3. Oxidative-Stress-Mediated Biomarkers

Oxidative stress has been defined as “an imbalance in pro-oxidants and antioxidants, with
associated disruption of redox circuitry and macromolecular damage” [210]. Measuring oxidative
stress in the context of clinical trials has a long and somewhat unsuccessful history, especially
relating to intervention studies with “traditional” direct antioxidant compounds. In accord with the
definition, many oxidative markers found in the body have been proposed, including lipid peroxidation
products, such as malondialdehyde (MDA), isoprostane products, oxidized low-density lipoproteins
(LDL), hydroperoxides, and 4-hydroxynonenal; protein oxidation products, such as thiobarbituric
acid reactive substances (TBARS); carbohydrate oxidation products, such as 3-nitrotyrosine; and
nucleic acid oxidation products, such as 8-hydroxy-2-deoxyguanosine (8-OHdG) [211,212]. These
biomarkers, based on molecular oxidation products, have also been applied in trials with NRF2
inducers. As alternatives to measures of oxidation products, tests measuring total oxidative status
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(TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) have also been used as
oxidative stress markers for clinical studies with NRF2 inducers [138,175]. TOS and total antioxidant
status (TAS) are usually used to measure the overall oxidation status or antioxidant status of the body,
the ratio of which is expressed as the OSI. The TAC measures the amount of free radicals scavenged
by a test solution and is used to evaluate the antioxidant capacity of biological samples. GSH and
its oxidized form GSSG in blood are global indices of the redox status in the whole organism. In the
case of NRF2 inducers, GSH measurements attempt to reflect the balance between oxidant stress and
the biosynthesis of GSH, as well as the recycling of oxidized glutathione through genes responding
within the NRF2 downstream pathway. More comprehensive means to assess redox dynamics have
been developed by monitoring the reversible oxidation of sulfur-containing amino acids and peptides,
notably GSH. The redox states of glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine
(Cys/CySS) are oxidized in association with several known oxidative-stress-related exposures, health
conditions, and measures of physiologic function [210]. Applications to NRF2-targeting drugs have
not been undertaken to date.

Nrf2 knockout (Nrf2−/−) mice are more susceptible to oxidative-stress-based diseases [213]. Many
lines of animal experiments show that Nrf2 activation by pharmacological or genetic approaches
significantly reduces cellular damage caused by oxidative stress and suppress the development of
several kinds of diseases [214,215]. Because an increased oxidative stress is crucial in the pathogenesis
of several kinds of diseases in humans, the notion of targeting oxidative stress with NRF2 inducers
has been expanding. As mentioned above, the target genes of NRF2 include genes involved in the
regulation of the synthesis and conjugation of GSH. Supported by molecular biology and in vivo
experimental studies, assessments of changes in levels of oxidative stress biomarkers could be one
important means for optimizing clinical studies of NRF2 inducers (Figure 3).

3.4. Inflammation-Mediated Biomarkers

The oldest definition of inflammation is by Aulus Cornelius Celsus, who defined the four
hallmarks of inflammation: “rubor, et tumor, cum calore, et dolore”, meaning redness, swelling, heat,
and pain [216], respectively, which are described as the cardinal signs of inflammation. Surprisingly,
the concept of inflammatory biomarkers was established in the first century AD. Studies investigating
the molecular basis of inflammation have led to the identification of markers that may also serve as
new targets of therapy for inflammation-related diseases. Inflammation and oxidative stress are tightly
linked. Although oxidative stress biomarkers mainly approach the formation of effector molecules,
such as lipid peroxides and oxidized proteins of DNA, the inflammatory markers measure the response
of the organism, for example through the production of inflammatory cytokines and lipid mediators
(Figure 2A) [217].

Emerging evidence demonstrates the linkage between NRF2 signaling and inflammatory response.
Inflammation and oxidative stress can cause tissue damage with a complex interplay of processes,
indicating that the defensive response to oxidative and electrophilic insults by activation of NRF2 can
lead to the synergic anti-inflammatory effects. In addition, many lines of experimental results indicate
that the activation of NRF2 signaling modifies inflammatory reaction though multiple pathways
(Figure 3) [5].

Nrf2 activation by the triterpenoid (CDDO-Im) induces a series of antioxidant genes, accompanied
by suppressed expression of inflammatory-related genes, such as TNF- α, IL-6, MCP-1 (monocyte
chemo attractant protein-1), and MIP2 (macrophage inflammatory protein-2) in LPS-stimulated
mouse peritoneal macrophages, as well as LPS-treated mice (in which anti-inflammatory effects did
not occur in Nrf2-deficient cells and mice) [218]. In mouse peritoneal macrophages stimulated by
prostaglandin, Nrf2 induces Hmox1 and peroxiredoxin 1 (Prx-1) gene expression, which appears
to inhibit inflammatory-related gene expression [219]. Interestingly, human PRX-1 is reported
to negatively regulate macrophage migration inhibitory factor (MIF) [220], a crucial factor in the
regulation of inflammation. Accordingly, MIF activity was measured in human urine samples after
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SFN administration to investigate the possibility for MIF as a biomarker to assess anti-inflammatory
efficacy in interventions [142]. SFN seems to affect multiple downstream pathways associated with
anti-inflammatory actions and NRF2 signaling may be but one pivotal pathway. Pretreatment of
primary peritoneal macrophages by SFN inhibits inflammatory-related gene expression, including
Cox-2 and iNOS, which was attenuated in Nrf2-deficient cells [221]. The suppression of COX-2
expression in PBMCs was indicated in a clinical study, where the treatment response by SFN for
autism spectrum disorder patients was examined [195]. The association between Keap1-Nrf2 signaling
and the nuclear factor-κB (NF-κB) signaling pathway, one of the essential immune-related pathways,
is another potential mechanism underlying anti-inflammatory effects by Nrf2 activation [222–224].
Nrf2 and NF-κB individually affect other signaling cascades, in addition to crosstalk between two
pathways. The absence of Nrf2 amplifies NF-κB activity, suggesting an inhibitory action of Nrf2
toward NF-κB [225], whereas NF-κB can modulate Nrf2 transcriptional activity [226]. Understanding
the molecular links between these two signaling pathways may lead to more informative biomarkers.
Intracellular NF-κB signaling molecules have been examined to evaluate responses for inflammatory
disease in clinical studies using DMF and BARD-Me [50,66]. Other molecular mechanisms behind
Nrf2-mediated anti-inflammatory effects have been described, such as transcriptional suppression of
proinflammatory cytokine genes (Il-6 and Il-1β) [227] and the correlation between Nrf2 signaling and
NLRP3 inflammasome activity [228].

Leaving aside the linkage of specific molecular pathways indicated above, the general approaches
for monitoring anti-inflammatory responses are widely examined as well, using global inflammatory
markers such as C-reactive proteins (CRP), cytokines, chemokines, inflammatory lipid mediators, and
the immune cell counts.
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3.5. Carcinogen Metabolites/DNA Adducts

Initial studies probing the functional consequences of enhanced Nrf2 signaling have focused
on toxicological models, in which pharmacologic and genetic means were used to alter pathway
flux in mice [6,229]. For example, Nrf2-deficient mice had a significantly higher burden of gastric
neoplasia after treatment with benzo[a]pyrene than did wild-type mice [113]. Oltipraz significantly
reduced the multiplicity of gastric neoplasia in wild-type mice but had no effect on tumor burden in
Nrf2-deficient mice. A similar result was observed when SFN was used as the chemopreventive agent
in this model [230]. At the same time, biomarkers based on carcinogen metabolites and excreted DNA
adducts were being developed and validated as modifiable, short-term endpoints to assess the efficacy
of chemopreventive interventions and for cohort selection in clinical trials [231].

Aflatoxin biomarkers were first used in 1995 as intermediate endpoints in a chemoprevention trial
of oltipraz in Qidong, China, a hotspot for the development of liver cancer [100]. Aflatoxin, found in
moldy corn, is a potent human hepatocarcinogen. In a placebo-controlled, double-blind study of daily
oltipraz, median urinary levels of a detoxication product—aflatoxin-mercapturic acid (a glutathione
conjugate derivative)—were elevated six-fold. Increased formation of aflatoxin-mercapturic acid
reflects induction of aflatoxin conjugation through the actions of oltipraz on the expression of GSTs
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and is presumed to be a NRF2-mediated action (Figure 4). When metabolically activated, aflatoxin can
also form stable covalent adducts with a lysine residue in serum albumin and the N7 atom of guanine
in DNA. In as much as albumin has a circulating half-life of about 3-weeks, albumin adducts provide
an integrated estimate of sub-chronic to chronic exposures to toxicants. By contrast, the DNA adduct,
which rapidly depurinates from DNA and is excreted in urine, reflects exposures within the past 24 h.
In the same trial, aflatoxin-albumin adducts were noted to slowly decline during the active intervention
phase with oltipraz and to rebound to placebo control levels after cessation of the intervention [99].
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Figure 4. Induction of KEAP1-NRF2 signaling leads to enhanced detoxication of carcinogens in
clinical trials. Air-borne (e.g., acrolein, benzene, polycyclic aromatic hydrocarbons) and food-borne
(e.g., aflatoxins) carcinogens are metabolized to reactive electrophiles (E*) by cytochrome P450 and
other enzymes. NRF2 target genes such as GSTs can conjugate glutathione (GSH) to E*, leading to
formation of nonreactive, water-soluble mercapturic acids. E* can also initiate carcinogenesis by forming
promutagenic DNA adducts. Some DNA adducts undergo spontaneous or enzymatic depurination
allowing for excretion in urine. E* can also form protein adducts with lysine or cysteine residues in
albumin. Mercapturic acids and the adducts can be quantified in clinical samples following ambient
exposures using mass spectrometric techniques. Cys, cysteine; SH, sulfhydryl; Ub, ubiquitin; Cul3,
cullin 3, Rbx1, ring-box 1.

A broccoli beverage containing defined concentrations of glucoraphanin was evaluated for its
ability to alter the metabolic disposition of aflatoxin [125]. In this study, 200 healthy adults drank
beverages containing either 400 or <3 µmol glucoraphanin nightly for 2 weeks. Measurement of
urinary levels of SFN metabolites indicated striking inter-individual differences in bioavailability,
likely reflecting individual differences in the rates of hydrolysis of glucoraphanin to SFN by the
intestinal microflora of the study participants. Accounting for this variability, in a secondary analysis a
significant inverse association was observed for the uptake and subsequent urinary excretion of SFN
and aflatoxin-N7-guanine adducts in individuals receiving broccoli sprout beverage. Changes in the
metabolism of phenanthrene-tetraol were also noted in this trial.

Follow-up studies with broccoli-sprout-based interventions in Qidong demonstrated enhanced
detoxication of air pollutants over one-week or three-month time frames. Higher urinary excretion
levels for benzene and acrolein mercapturic acids were observed [146,154] compared to the placebo
beverage. A recent dose-response study with a broccoli sprout beverage indicated that the dynamic
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range for induction of NRF2-driven detoxication of benzene metabolism to it mercapturic acid was
rather limited in participants exposed to ambient air pollutants (~60% elevation) and saturated a
relatively low level of SFN dosing [188].

In a study in which smokers were administered phenethyl isothiocyanate (PEITC), the PEITC
arm reduced metabolic activation of NNK, one of the most potent lung carcinogens present in
cigarettes [232]. Larger increases in rates of excretion of detoxification metabolites (often mercapturic
acids) of combustion pollutants such as benzene and aldehydes were observed following PEITC
intervention [232]. The mechanisms of action of the two isothiocyanates, SFN and PEITC, are not
identical, but do include Nrf2 activation. In a small trial, subjects ingested 250 g each of Brussels
sprouts and broccoli per day [233]. At the end of this feeding phase, subjects consumed a cooked meat
meal with measured levels of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic
amine carcinogen formed from char-broiling meats) and urine samples were collected. Cruciferous
vegetable consumption significantly increased hepatic CYP1A2, as demonstrated by changes in saliva
caffeine kinetics. and significantly increased the urinary excretion of N2-hydroxy-PhIP-N2-glucuronide,
another possible detoxication outcome through NRF2 induction in humans.

Many—but certainly not all—environmental carcinogens such as benzene, polycyclic aromatic
hydrocarbons, and aflatoxins can be detoxified through the molecular pathways induced by agents
such as oltipraz and SFN (Figure 4).

3.6. Metabolomics

Widespread application of “omic” technologies is providing precise guidance for selection of
therapeutic interventions based on patient biology [234]. Metabolomics is an emerging field of “omics”
that characterizes small-molecule metabolites in biological systems. Metabolomic analyses reflect both
the steady-state physiological equilibrium of cells or organisms, as well as their dynamic metabolic
responses to stimuli, including drugs. The opportunity to use perhaps hundreds of analytes for
assessment drug pharmacodynamics, or indeed as descriptors of human health and disease, will
provide greater accuracy in unraveling the complexity of human biology. Already, metabolomic
profiles obtained prior to, during, or after drug treatment are used to provide insights about the drug
mechanism of action and variation of response to treatment [235].

Metabolomics technologies are beginning to be applied to the discovery of biomarkers in clinical
studies using NRF2 inducers. Importantly, several untargeted metabolomic studies have been
performed [149,183,190]. Bent et al. [182] identified altered urinary metabolites that were correlated
with changes in symptoms in patients of autism spectrum disorder by SFN treatment, and which they
were clustered into pathways of oxidative stress, amino acid and gut microbiomes, neurotransmitters,
hormones, and sphingomyelin metabolism.

Specific metabolite biomarkers are also widely used for monitoring physiological responses and
pharmacotherapy in clinical studies. Dyslipidemia is a risk factor for cardiovascular decease and
fatty liver. To examine the beneficial effect for dyslipidemia, the lipid profiles in blood samples, such
as total cholesterol, triacylglycerol, and lipoproteins (low-density lipoproteins; LDL, high-density
lipoproteins; HDL), are investigated in the clinical studies of SFN [122,149,151,161]. It is reported
that the activation of Nrf2 represses the expression of key enzymes involved in fatty acid synthesis,
with concomitant reduction in the levels of hepatic lipids in mice [236]. Kikuchi et al. indicated that
intervention by SFN-rich broccoli sprout extract improved hepatic abnormalities; however, TG, HDL,
and LDL-cholesterol were not changed in this study [167]. As these biomarkers are commonly used in
clinical diagnostics, they have been allocated as clinical biomarkers in this article (Table S1).

The recent global approach of identifying NRF2 target genes reveals novel gene candidates,
including metabolic genes [209,237,238]. In addition to GSH-metabolism-related genes, xenobiotic
metabolism, lipid metabolism, glucose metabolism, and several amino acid transporter mediated genes
are considered to be NRF2 target genes, which seemingly have expanded the role of NRF2 toward
metabolic regulation. Integrated approaches combining metabolomics and genomics could lead to
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new discoveries of mechanism-based metabolite biomarkers for NRF2 inducers. NRF2 influences
heme, iron, and hemoglobin metabolism in human blood cell lines. Furthermore, NRF2 regulates fetal
γ-globin gene expression and fetal globin genes [239,240]. Given these findings, NRF2 activation by
SFN was introduced to sickle cell disease patients, and mRNA expression of HbF and HbF protein
levels was examined [172].

4. Integrated Assessment of Biomarker Outcomes

Outcomes measured in published clinical studies of NRF2 inducers were identified, listed, and
categorized under pharmacokinetics or into six classes of mechanism-based biomarkers: NRF2 target
genes, gene expression and function, inflammation, oxidative stress, carcinogen metabolites and
adducts, and metabolomics, as well as disease-specific and clinical responses (Table S1). Using data
derived from the literature summarized in Table S1, a Sankey plot (Figure 5) was developed to indicate
the use and outcomes associated with the mechanistic biomarker measures reported for the four
clinically used agents. Measured biomarkers were designated “+” for statistically significant or “-“
for statistically nonsignificant changes, no change, or undetectability in the Sankey diagram. In each
clinical study, a biomarker category receives only one count, regardless of the number of specific
biomarkers measured in that category. As an example, in the 2009 SFN clinical study by Riedl et
al. [134], although several NRF2 target genes (HMOX1, NQO1, GSTP1, GSTM1) were measured, the
NRF2 target gene biomarker category for SFN still receives only one count for that biomarker category.
More detailed presentation of the numbers of individual biomarkers within each classification and
their outcomes in the clinical trials is provided in Table 1. Although the Sankey diagram provides
a somewhat dire picture of the utility of biomarker measurements for each NRF2 inducer, closer
inspection of each specific biomarker presented in Table 1 provides more hopeful insights.
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DMF (orange), BARD-Me (blue), and oltipraz (red). Darker lines (green, orange, blue, red) marked with
“+” are studies in which at least 1 biomarker was reported to exhibit a statistically significant (p < 0.05)
change. Lighter lines marked with “-“ indicate nonsignificant (i.e., null) responses for all biomarkers
examined within a study. This accounting overemphasizes positive outcomes. Lines emanating from
each inducer are connected to different measured biomarker categories. The box height for each NRF2
inducer and the thickness of the flow lines or nodes emanating from each inducer to the biomarker
categories are proportional to the number of biomarker category counts.
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Overwhelmingly, SFN dominated the use of mechanistically based biomarkers in clinical studies,
with 77 specific and distinct biomarkers being measured (Table 1); approximately two-thirds (53)
exhibited statistically significant responses. Several were modulated significantly in multiple trials.
Oltipraz studies collectively utilized only 18 biomarkers, followed by DMF and BARD-Me at 16 and 11
each, respectively.

NRF2 target gene biomarkers were the only biomarker class to be affected positively by all four
agents. Nineteen NRF2 target gene biomarkers were measured for SFN, with 14 (74%) biomarker
measurements exhibiting statistical significance. Half of the NRF2 biomarkers measured for oltipraz
were statistically significant. Unexpectedly, both BARD-Me and DMF only had one biomarker
measurement that was statistically significant. Of note, for the most studied NRF2 target gene, NQO1,
transcript levels showed significant induction in 7 out of 13 settings (54%). Of other transcripts with
multiple assessments, only γGCS, GCLM, and GSTP transcripts showed 50–100% of measurements as
statistically significant. However, the majority of the NRF2 target genes measured exhibited changes
that were statistically significant in at least one study.

SFN is the primary inducer to manifest statistically significant measurements for gene expression
or function biomarkers (8 of 11), although there have been almost no attempts with the other drugs
(one positive gene, cyclin D1, in a large set of cancer genes with BARD-Me). Limited assessments of
signaling pathways (e.g., TGF-β, EGFR, and insulin) have been undertaken. Modulation of epigenetic
marks through inhibition of HDAC activity and subsequent effects of cell proliferation and tumor
development may be an important mode of action that is possibly linked to NRF2.

Only SFN and oltipraz trials elicited statistically significant changes of oxidative stress biomarkers.
Most oxidative stress biomarkers (9 out of 12 biomarkers) measured in SFN clinical studies were
positive; oltipraz studies were less forthcoming (2 of 6). More than half of the oxidative biomarkers
exhibiting significant changes utilized either GSH, 8-OHdG, or MDA levels.

Although trials with all four inducers assessed inflammation biomarkers, SFN showed the most
positive responses (19), followed by BARD-Me (3), DMF (1), and oltipraz (0). Upon closer inspection
of the specific inflammation biomarkers measured, lipid mediators including PGD2, tetranor-PGEM,
11β-PGF2α, and 11-dehydro-TXB2; select chemokines and cytokines; NF-κB pathway markers; and
proinflammatory aggregate transcripts appear to be useful biomarkers in these settings.

Multiple clinical trials using either SNF or oltipraz have successfully used the measurements of
carcinogen metabolites or adducts to define a pharmacodynamic action. Outcomes dependent on the
carcinogens targeted detoxication of air pollutants (benzene, aldehydes) and aflatoxin, which were
consistently enhanced, whilst that of benzo[a]pyrene was not.

Metabolomic studies are an emerging approach to developing mechanism-based biomarkers.
Within these four agents, only SFN trials have utilized these technologies, albeit with some success
(3 out of 5).
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Table 1. Significant vs. null (nonsignificant) outcomes of individual biomarker measures.

DMF BARD-Me Oltipraz SFN TOTAL Percent Significant
OutcomesSig. ∆ NS Sig. ∆ NS Sig. ∆ NS Sig. ∆ NS Sig. ∆ NS

Nrf2 Target Genes Activity

NQO1 1 1 1 1 50%

GST 1 2 1 2 2 50%

SOD 1 0 1 ALL NULL

GPX 1 0 1 ALL NULL

Transcripts

NQO1 1 1 1 1 4 5 7 6 54%

HMOX1 1 3 6 3 7 30%

GCLC 1 2 0 3 ALL NULL

GCLM 2 2 2 2 50%

GSTM 1 1 2 1 3 25%

GSTP 1 1 1 1 50%

UGT 1 0 1 ALL NULL

GPX 1 1 0 2 ALL NULL

γGCS 2 2 0 100%

TR1 1 1 0 100%

LTB4DH 1 1 0 100%

AKR1C1 1 2 1 2 33%

AKR1C2 1 1 0 100%

AKR1C3 1 0 1 ALL NULL

HBG1 1 0 1 ALL NULL

CBR1 1 1 1 1 50%

SLC7A11 1 0 1 ALL NULL

PCA cytoprotection/detox/antioxidant 1 1 0 100%

Nrf2 related genes (aggregated transcripts)

NQO1, HMOX1, AKR1C1, HSP27, HSP70 1 1 0 100%
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Table 1. Cont.

DMF BARD-Me Oltipraz SFN TOTAL Percent Significant
OutcomesSig. ∆ NS Sig. ∆ NS Sig. ∆ NS Sig. ∆ NS Sig. ∆ NS

Gene Function/Expression HDAC 3 2 3 2 60%

Histone acetylation 1 1 1 1 50%

CYP3A4 1 0 1 ALL NULL

TGFβ pathway 1 1 0 100%

Epidermal growth factor receptor 1 1 0 100%

Insulin signaling 1 1 0 100%

Cancer-related

RNA-seq of prostate cancer genes 1 1 0 100%

p21WAF/CIP1 1 0 1 ALL NULL

Cyclin D1 1 1 0 100%

STAT3 1 0 1 ALL NULL

p-STAT3 1 0 1 ALL NULL

p21 1 0 1 ALL NULL

Active caspase 3 1 0 1 ALL NULL

VEGF 1 0 1 ALL NULL

HIF1α 1 0 1 ALL NULL

Decorin 1 1 0 100%

Insulin-like growth factor 1 0 1 ALL NULL

p16 1 1 0 100%

Oxidative Stress GSH (Glutathione) levels 2 3 2 1 4 4 50%

8-OHdG and oxidized nucleosides 1 3 3 1 75%

DNA strand breaks 1 1 0 100%

PCOOH (phosphatidylcholine hydroperoxide) 1 1 0 100%

8-isoprostane 1 3 1 3 25%

TBARS 2 0 2 ALL NULL

Protein carbonyls 1 0 1 ALL NULL

TAC (Total antioxidant capacity) 1 2 1 2 33%

TOS (Total oxidant status) 1 0 1 ALL NULL

OSI (Oxidative stress index) 1 1 0 100%

MDA 2 2 0 100%

Oxidized-LDL 1 1 0 100%
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Table 1. Cont.

DMF BARD-Me Oltipraz SFN TOTAL Percent Significant
OutcomesSig. ∆ NS Sig. ∆ NS Sig. ∆ NS Sig. ∆ NS Sig. ∆ NS

Inflammation Cytokine

IL-1 1 2 0 3 ALL NULL

IL-4 1 0 1 ALL NULL

IL-6 1 3 3 3 4 43%

IL-8 1 3 0 4 ALL NULL

IL-10 1 0 1 ALL NULL

IL-12 1 0 1 ALL NULL

IL-13 1 1 0 2 ALL NULL

IL-17 1 0 1 ALL NULL

TNFα 1 1 1 1 2 33%

IFNγ 1 2 0 3 ALL NULL

Chemokines

CCL5 1 0 1 ALL NULL

MIP-1B (CCL4) 1 0 1 ALL NULL

MCP-1 (CCL2) 1 2 2 1 67%

CXCL1 1 0 1 ALL NULL

IP-10 (CXCL10) 1 1 1 1 50%

MIG 1 1 0 100%

Lipid mediators

PGD2 1 1 0 100%

Tetranor-PGEM 1 1 0 100%

11β-PGF2α 1 1 0 100%

11-dehydro-TXB2 1 1 0 100%

NF-kB pathway 1 1 0 100%

CRP 2 3 2 3 40%

Immune response

WBC counts 1 1 0 100%

Neutrophil counts 1 0 1 ALL NULL

Monocyte counts 1 0 1 ALL NULL

Macrophage counts 1 0 1 ALL NULL
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Table 1. Cont.

DMF BARD-Me Oltipraz SFN TOTAL Percent Significant
OutcomesSig. ∆ NS Sig. ∆ NS Sig. ∆ NS Sig. ∆ NS Sig. ∆ NS

T cell counts 1 0 1 ALL NULL

NKT cells 1 0 1 ALL NULL

CD4+ and CD8+ T-lymphocytes 1 1 1 1 50%

Proinflammatory genes (aggregated transcripts) 1 1 0 100%

PCA immune-response genes 1 0 1 ALL NULL

Others

MIF 1 1 0 100%

SLPI 1 1 0 100%

CD105+ and iNOS+ cells 1 1 0 100%

Virus-induced granzyme B production in NK cells 1 1 0 100%

Serum pepsinogen I and II 1 1 1 1 50%

Carcinogen
Metabolites/Adducts Aflatoxin-albumin adducts 1 1 0 100%

Aflatoxin-DNA adducts 1 1 0 100%

Aflatoxin mercapturic acid 1 1 0 100%

Polycyclic aromatic hydrocarbon-DNA adducts 1 0 1 ALL NULL

Benzo(a)pyrene-7,8-diol-9,10-epoxide adducts 1 0 1 ALL NULL

Mutagenicity (urine) 1 0 1 ALL NULL

Acrolein mercapturic acid 2 2 0 100%

Benzene mercapturic acid 3 3 0 100%

Crotonaldehyde mercapturic acid 2 2 0 100%

Metabolomics Cystine 1 1 0 100%

Plasma metabolites 1 1 1 1 50%

Urinary metabolites 1 1 0 100%

Metabolites in prostate biopsies 1 0 1 ALL NULL

The abbreviations used are as follows: AKR1C, aldo-keto reductase family 1 member C; CBR, carbonyl reductase; CCL, chemokine ligands; CD, cluster of differentiation; CRP, C-reactive
protein; CXCL, C-X-C motif chemokine ligand; CYP3A4, cytochrome P450 3A4; GCLC, glutamate-cysteine ligase catalytic subunit; GCLM, glutamate-cysteine ligase modifier subunit;
γGCS, γ-glutamylcysteine synthase, GPX, glutathione peroxidase; GST, glutathione-S-transferase; GSTM, glutathione S-transferase M; GSTP, glutathione S-transferase P; HBG, hemoglobin
subunit gamma, HDAC, histone deacetylase; HIF1 α, hypoxia-inducible factor 1α; HSP, heat shock protein; IFNγ, interferon γ; IL – interleukin; iNOS, inducible nitric oxide synthase; IP-10,
interferonγ -induced protein 10; LDL, low-density lipoprotein; MCP-1, monocyte chemoattractant protein1; MDA, malondialdehyde; MIF macrophage migration inhibitory factor; MIG,
monokine induced by interferon γ; MIP-1β, macrophage inflammatory protein 1β; NFκB, nuclear factor κ β; NKT, natural killer T; NQO1, NAD(P)H: quinone oxidoreductase 1; NS,
not significant; p21, cyclin-dependent kinase inhibitor 1; PCA, principal component analysis; PGD2, prostaglandin D2; PGEM, prostaglandin E metabolite; PGF2α, prostaglandin F 2
α; Sig, significant; SLC7A11, solute carrier family 7 member 11; SLPI, secretory leukocyte peptidase inhibitor; SOD, superoxide dismutase; STAT3, signal transducer and activator of
transcription 3; TBARS, thiobarbituric acid reactive substances; TGFβ, transforming growth factor β; TNFα, tumor necrosis factor α; TR, thioredoxin reductase; TXB2, thromboxane B2;
UGT, UDP-glucuronosyltransferases; VEGF, vascular endothelial growth factor; WBC, white blood cell; 8-OHdG, 8-hydroxy-2′-deoxyguanosine.
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5. Conclusions

5.1. Critical Path for Biomarkers in NRF2 Drug Development?

The clinical development pathways for the four “NRF2 inducers” have been distinct. DMF appears
to have been appropriated for treatment of multiple sclerosis in the absence of precise mechanistic
understanding of its action in humans beyond the appreciation of its immunomodulatory effects.
Biomarkers were of limited use in guiding its regulatory approvals. BARD-Me was selected by
Reata Pharmaceuticals as a lead compound from a large series of triterpenoids known to potently
activate Nrf2 signaling in cells and animal models. However, biomarker studies in humans have
again seemingly played a minor role in its promising clinical development (other than eGFR). Oltipraz
was a drug originally developed by Rhône-Poulenc for the chemotherapy of schistosomiasis that
was repurposed, largely through the support and guidance of the Chemoprevention Branch of the
National Cancer Institute, for evaluation as a cancer chemopreventive agent. Biomarkers were central
to these early studies, although issues of drug availability and difficulties related to synthesis (cost) and
toxicities short-circuited its development. SFN arose out of extramurally funded academic labs, where
small biomarker-driven studies have led to a large series of incremental improvements in formulation,
dose selection, and identification of possible cohorts for clinical use. To date, no clinical application
shows a clear path to its therapeutic or prophylactic registration. Thus, depending upon the agent,
biomarkers have either been critical for their discovery and translational development or ancillary to
the process, as can be inferred from the data in Figure 2B.

5.2. Metrics of Success and Confounders

As highlighted in Figure 5 and Table 1, a large range of biomarkers have been employed with
somewhat limited success in clinical trials involving inducers of the NRF2 pathway. This uneven
outcome arises despite many animal studies supporting roles for the pathways and processes that
are measured. However, the approach herein of relying on “statistical significance” as the arbiter of
a successful outcome oversimplifies the complexity of the challenge. These biomarkers have been
studied in different settings with different populations (healthy and diseased), different treatment
regimens (dose, schedule, and time of biomarker measurement), and different formulations, even
within one agent, as well as differences in the sources of specimens interrogated (PBMCs vs. target
cells). Additionally, there is a lack of consensus regarding methodologies and the extent of validation,
standardization, and reproducibility of biomarker measurements in these clinical studies. There is
also a three-decade time period in across which these trials have been conducted, masking underlying
changes in analytic technologies applied to biomarker measures. Finally, it is evident that these
compounds can affect NRF2-independent responses and pathways in humans. With this diversity of
study populations, analytical methodologies and study designs, and unclear target specificity, it is
difficult to reach overarching evaluations of the performance of each biomarker or the degree of
association with the NRF2 pathway currently used in the clinical studies. While cognizant of these
limitations, there are some comments that can be made regarding both foundational observations and
gaps within the clinical studies of the current four agents thought to modulate NRF2 signaling.

5.3. Lessons from Dose-Response

Examination of dose-responses of biomarkers provides insights into associations between putative
mechanisms of action and clinical outcomes. In prevention studies especially, they can help define
minimally effective doses, with disease prevention being a setting in which any side-effects are
unacceptable. However, to date there have been very few studies that have examined dose-response in
the actions of these agents on NRF2-related biomarker levels in humans. Moreover, some of the studies
that attempted such analyses resulted in no modulation of biomarkers at any dose. O’Dwyer et al. [98]
did observe increases in NQO1 and γGCS transcripts in PBMCs and colon mucosa with doses of 125 to
250 mg/m2 of oltipraz. No additional increases were observed for 500 and 1000 mg/m2 doses. Only the
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lowest doses increased GST and NQO1 activity in PBMCs and colon mucosa; surprisingly, the higher
doses were not different from baseline. Riedl et al. [134] reported graded increases in transcript levels of
GSTM, GSTP, HMOX1, and NQO1 in nasal lavage samples from participants receiving 3 daily doses of
25 to 200g of a broccoli sprout homogenate to provide SFN. Maximal increases were of the magnitude
of 100%. Ushida et al. [241] also reported modest dose-dependent increases in serum GST and NQO1
activity after administering volunteers low doses of 30 or 60 mg of glucoraphanin-based tablets. Lastly,
Doss et al. [172] fed participants with 50, 100, or 150 g of a SFN-rich broccoli sprout homogenate and
reported significant induction pre- to post-treatment for HMOX1 mRNA at 150 g, for HBG1 at 100 g,
and no significant change at any dose for NQO1. Thus, dose-response data remains elusive to this
point, and possibly suggests greater pharmacodynamic action at lower rather than highest doses—a
so-called “∩”-shaped curve. In accord with this possibility, Chen et al. [188] reported that the enhanced
excretion of benzene mercapturic acids appeared to be saturated at modest doses of a glucoraphanin +

SFN-rich beverage. Given that these biomarkers likely represent direct effects on NRF2 signaling, it
appears that the dynamic range for pharmacological activation of the pathway might be more limited
in humans than in mice.

5.4. Take-Home Messages

Despite the variability in the biomarker responses, there are a few overarching conclusions that
may be drawn regarding the approaches taken to assess the pharmacodynamic action of NRF2 inducers
through the analysis of biomarkers in clinical trials.

• NRF2 Target Genes: Given the preclinical evidence that all 4 of the agents can activate Nrf2
signaling, it is comforting that all four increased activities or transcript levels of classic NRF2 target
genes in clinical trials. NQO1 was most studied and showed reasonable consistency across trials.
Worryingly, in most studies the induction of NQO1 transcripts exhibited a limited dynamic range
(~ < 2-fold). In an oltipraz study, concordance between expression in surrogate (e.g., PBMCs) and
target tissues (e.g., colonic mucosa) was reported. Limited studies suggest possible merit for PCA
or clustering analyses to characterize induction “signatures” that may be more revealing than
single candidate genes;

• Gene Expression/Function: Most studies here have focused on pathways affecting cancer
development and progression. The most promising outcomes (with SFN) have centered
on modulation of epigenetic regulators such as histone deacetylase (HDAC) and histone
acetyltransferase activities. One cancer-related gene expression panel was largely unaltered
in a BARD-Me study and the other two agents were not evaluated in this context;

• Oxidative Stress: Many of the workhorse biomarkers of oxidative stress have been applied to
clinical studies with SFN and oltipraz, but not the other two drugs. Oxidized DNA products along
with DNA strand breaks have shown protective responses in some of the interventions. Studies
using the oxidation products of lipids and proteins have been more variable in their responses,
although MDA looks promising. The more integrated measures of TAC, TOS, and OSI have not
been revealing in limited studies. Cellular GSH levels have been measured frequently and show
repeated, albeit still inconsistent, modulation by intervention;

• Inflammation: In the aggregate over 35 individual inflammation biomarkers have been measured,
while barely half evoked a significant response in any study; very few have been evaluated in
multiple studies. The context for selection of candidate biomarkers is rarely presented in these
studies. The NRF2 target gene Il-6 [227] shows some responsiveness, while other cytokines such
as IL-1, IL-8 IL-13, TNFα, and IFNγ have been null in multiple studies. Lipid mediators including
PGD2, tetranor-PGEM, 11β-PGF2α, and 11-dehydro-TXB2 offer some promise. Subgroup analyses
of responders only within a DMF trial exhibited significant reductions in intracellular NF-κB
signaling molecules [50];



Antioxidants 2020, 9, 716 22 of 36

• Carcinogen Metabolism/Adducts: Monitoring detoxication metabolites following interventions
in study populations provides strong links to canonical NRF2 mechanisms of action. Multiple
studies in settings of unavoidable exposures to air pollution and dietary carcinogens highlight
successful interventions with oltipraz and SFN. However, such studies require sophisticated mass
spectrometry methodologies for metabolite, DNA adduct, and protein adduct quantification.
Moreover, interception of all classes of carcinogens and toxins is not achievable. Perhaps phase 0
“microdosing” trials with small, safe amounts of heavy-isotope-labeled substrates can provide
an effective means to prioritize tractable exposures [242]. As with all reviewed biomarkers,
extrapolation from biomarker change to extent of risk reduction has not been realized;

• Metabolomics: Targeted and nontargeted metabolomics are beginning to be applied successfully
as biomarkers in clinical trials of NRF2 inducers, albeit exclusively to date with SFN. Recent
studies in mice have shown the power of these tools to define the impact of modulation of Nrf2
signaling on cancer cell metabolism [243] and the maintenance of health in space flight [244].
Combinations of omics approaches are likely to provide more integrated pictures of the actions
of targeted NRF2 activation on early, intermediate, and later events on the pathways of disease
prevention and mitigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/8/716/s1:
Table S1: Summary of literature reporting clinical studies with dimethyl fumarate, bardoxolone methyl, oltipraz,
and sulforaphane. Publications including the use of pharmacodynamic biomarkers are highlighted.
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