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Imaging protocols of acute ischemic stroke continue to hold significant uncertainties
regarding patient selection for reperfusion therapy with thrombolysis and mechanical
thrombectomy. Given that patient inclusion criteria can easily introduce biases that may
be unaccounted for, the reproducibility and reliability of the patient screening method is
of utmost importance in clinical trial design. The optimal imaging screening protocol for
selection in targeted populations remains uncertain. Acute neuroimaging provides a snap-
shot in time of the brain parenchyma and vasculature. By identifying the at-risk but still
viable penumbral tissue, imaging can help estimate the potential benefit of a reperfusion
therapy in these patients. This paper provides a perspective about the assessment of the
penumbral tissue in the context of acute stroke and reviews several neuroimaging models
that have recently been developed to assess the penumbra in a more reliable fashion. The
complexity and variability of imaging features and techniques used in stroke will ultimately
require advanced data driven software tools to provide quantitative measures of risk/benefit
of recanalization therapy and help aid in making the most favorable clinical decisions.
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INTRODUCTION
Stroke is a leading cause of death and a major cause of long-
term disabilities across the globe. In the United States, 795,000
people are affected by strokes each year resulting in about $74
billion of total annual costs (1). Encouraging results of recent
clinical trials [such as EXTEND-IA (2), ESCAPE (3), SWIFT-
PRIME (4), and MR CLEAN (5)] have demonstrated the promise
of endovascular therapies, yet we are far from a cure for stroke
and much work remains to further increase the potential recovery
in targeted populations. Neurovascular disorders are now recog-
nized as a prominent public health issue worldwide due to aging
populations and the socioeconomic burden of stroke. Improved
utilization of stroke imaging to derive maximal knowledge from
embedded data and associated underlying features may be lever-
aged to tailor therapeutic decisions and optimize outcomes after
acute stroke.

In the best-case scenario, the treatment of acute ischemic stroke
can lead to a full recovery. This generally happens when revascular-
ization occurs early enough. If revascularization is not achieved or
if it occurs too late, chances of recovery decrease and severe com-
plications associated with devastating neurological effects become
more likely. Revascularization, or rapidly reopening occluded
arteries, is therefore the main interventional strategy in acute
ischemic stroke. The purpose of such therapy is to restore per-
fusion in the ischemic tissue. As of today, the only FDA-approved
therapy for reopening vessels in acute ischemic stroke remains
intravenous tissue plasminogen activator (tPA) (6). Endovascular
interventions such as intra-arterial thrombolysis and mechanical
thrombectomy have both demonstrated potential for improved
outcomes after stroke. The possible benefits of these therapies
have to be carefully balanced with the concomitant risks, including

hemorrhagic transformation (7) and other complications (8). The
most common way to estimate the potential benefit is by mea-
suring the extent of the salvageable ischemic tissue, previously
described as the penumbra.

This paper provides a perspective on the penumbra by identi-
fying a few challenges that render the characterization and defini-
tions uneasy and by discussing the lessons that we have learned so
far and toward where they could lead in the future of stroke care.
After describing the current clinical practice (see Current Clinical
Practice) and pathophysiology (see Pathophysiology of Cerebral
Ischemia), we review imaging based definition of the penumbra.
We then describe the heterogeneity of acute stroke in terms of
imaging patterns (see Imaging Definitions of Penumbra). Finally,
we discuss in Section “MRI and CT Definitions,” how advanced
methods such as computer vision and machine could help to
bring a new dimension to the understanding and definition of
salvageable tissue.

CURRENT CLINICAL PRACTICE
Cerebral ischemia is a dynamic process that spans from hyperacute
presentation to acute, subacute, and chronic phases. Minimizing
the time elapsed from stroke onset to treatment has been a priority
target of current clinical practice (9) as acting early and decisively
becomes integral to improving patient outcomes.

While the safety time window for IV-tPA administration is 3 h
in all and 4.5 h in a subset of patients, exact time of stroke onset
is usually unknown and the onset of symptoms is used as an indi-
rect marker of stroke. Last known well time is widely used as the
standard to designate stroke onset. It is, however, an approximate
variable for two main reasons. First, about 15% of all strokes occur
during sleep and therefore the time of onset for those patients is
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only approximate. Second, the last known well time, or the start
of the detectable symptoms may not correspond to the exact time
of the true stroke onset. Time is a relative notion in stroke as it
has been shown that the dynamics of lesion growth and the rate of
cell death in the ischemic territory vary drastically from patient to
patient. Several studies (10) have shown that some patients could
benefit from thrombolysis and recanalization procedures after the
4.5 h window. However, variability of response and increased risk
associated with late therapies leads to heterogeneous results related
to successful recovery.

Facing this uncertainty, the selection of patients who may ben-
efit from reperfusion therapy is one of the most critical tasks in
acute stroke care. Evidence suggests that time alone is not suffi-
cient to optimally select patients and that neuroimaging can play
an influential role in refining treatment decisions. Imaging, such
as multimodal CT, MRI, and angiography, have been increasingly
used and reflect a snapshot of the state of the brain tissue at a
point in time. The most important task of imaging has been to rule
out intracranial hemorrhage for determination of tPA eligibility.
Visual examination of non-contrast CT or GRE offer high accu-
racy in detecting any sign of hemorrhage (11). Beyond exclusion
for safety reasons, neuroimaging is used to determine eligibility for
endovascular treatments and quantification of possible benefits.
This is done through identifying at-risk, but viable and ischemic
tissue. The penumbra is seen as the target tissue for revascular-
ization therapies as it is thought of as viable but tissue at risk
of becoming irreversibly infarcted. When reperfusion or collat-
eral circulation is established, these areas may recover. Without
reperfusion, such brain cells in the penumbra will die, and the
lesion will expand. In addition to the assessment of the penum-
bra, the collateral status of the involved cerebrovascular territory,
which represents the quality of the blood flow diversion in the
presence of arterial occlusion, is also recognized as a predictor of
poor outcome. Although multimodal CT or MRI can be used to
characterize acute strokes, guide treatment decisions, and evaluate
recovery, the image acquisition, processing, and interpretation are
complex and time-consuming and may lead to unnecessary delays
in care. There is an overt need to accelerate imaging protocols and
extract imaging markers to guide clinical decisions in acute stroke.

PENUMBRA IN PERSPECTIVE
PATHOPHYSIOLOGY OF CEREBRAL ISCHEMIA
The ischemic penumbra is described as the cerebral parenchyma
adjacent to the area of dense ischemic infarction. Early on, mul-
tiple animal models were used to examine the limits of cerebral
blood flow (CBF) volumes at which cerebral ischemia has func-
tional implications on neuronal networks (12–16). Astrup et al.
(17) described the ischemic core and penumbra as a ring of
parenchyma surrounding an area of dense ischemia at the center.
They further described the ischemia as existing in a range between
a threshold of electrical failure as in the penumbra contrasted
with a threshold of energy and ion pump failure that exists in the
ischemic core. The greatest value hence in defining the ischemic
penumbra is perhaps the potential that exists for its salvage by
timely restoration of blood flow prior to reaching the threshold for
neuronal cell death. The ischemic cascade in itself involves both
apoptotic and necrotic cell death mechanisms (18). Patterns of

cerebral arterial and venous blood flow have been characterized as
consistent with autoregulation, oligemia, ischemia, or irreversible
injury by using positron emission tomography (PET) and obtain-
ing objective information with regards to CBF, CBV, metabolic rate
of oxygen, and oxygen extraction (19). However, the use of PET
imaging in acute stroke remains limited due to impracticability.

IMAGING DEFINITIONS OF PENUMBRA
Neuroimaging plays a major role at several stages during the clini-
cal management of patients treated for acute ischemic stroke. It is
used to confirm diagnosis of stroke with respect to symptomatic
presentation and clinical examination, to determine blood flow
pathology by locating the stenosed or occluded vessel, to direct
treatment decisions by identifying ischemic tissue or presence of
hemorrhage, to guide endovascular procedures, and to assess treat-
ment response and neurological recovery of the patient. In this
section, we review imaging definitions of the penumbra that are
used to estimate the benefits of an endovascular procedure and
balance them with the risk of complications.

MRI and CT definitions
The availability of MRI in clinical practice permits estimation of
the infarct core and the extent of penumbral tissue. The infarct
core is detected as the volume of abnormal diffusion-weighted
image (DWI). The volumetric difference, or mismatch, observed
between the DWI and perfusion-weighted image (PWI) abnor-
malities is considered as a reliable indicator of salvageable tissue
at risk (20–22). TTP or T max parameters, extracted from PWI
images, are thresholded to obtain a volume of hypoperfused but
viable tissue. While a meaningful volume of penumbral tissue sup-
ports the decision for reperfusion therapy, there is no consensus in
the computation of mismatch [it is usually in the range T max > (2,
10) s] or on the exact definition of what significant mismatch con-
stitutes (23, 24). In a systematic study of the patients enrolled in the
DEFUSE study (25), it was found that a mismatch ratio of 38%
provided the highest accuracy for identifying patients in whom
reperfusion was associated with a favorable response (for a T max

threshold of 2 s).
Although MR perfusion studies accurately detect early signs

of ischemia, it is contraindicated for some patients (e.g., with
metallic foreign body or claustrophobia), not available in many
institutions, and may not be utilized in a timely fashion. CT per-
fusion (CTP), on the other hand, is usually associated with lower
cost, greater availability, and faster imaging. It has been estab-
lished as an attractive alternative imaging method in many stroke
care facilities. Although MR perfusion is more sensitive to early
ischemic changes, the parameter maps extracted with CTP and
MR perfusion are closely correlated. CTP can delineate infarct
core and penumbral tissue using CBF and CBV thresholds of 34%
(in comparison to a region defined in the healthy hemisphere)
and 2.5 mL/100 g, respectively (26). These thresholds allow for
automatic computation of infarct core and penumbral maps com-
parable to the ones obtained from MR perfusion (27). With the
extraction of more advanced feature maps from perfusion stud-
ies (as described in the subsequent paragraphs), it is anticipated
that some features extracted from MRI may not be equivalent
with CTP. Such competitivity might be beneficial to bring further
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imaging advances in the long run. The importance of continued
focus on developing these imaging modalities and in streamlining
protocols lies in the potential for preventing further neurological
deterioration in patients presenting with acute ischemic stroke.

Alternative quantitative methods
Beyond the DWI/PWI mismatch and CTP models, other imaging
modalities and quantitative models have been studied to estimate
the extent of viable tissue at risk. These models are typically built
by analyzing voxel intensity at onset with respect to the observed
tissue fate, as measured in FLAIR images several days after inter-
vention. Wu et al. (28) evaluated a generalized linear model (GLM)
based on DWI and PWI in 14 patients. Rose et al. (29) used
Gaussian models trained on multiple parameters to predict tis-
sue outcome in 19 patients. Other studies were performed based
on logistic regression (30) and ISODATA (31) applied to appar-
ent diffusion coefficient (ADC) and CBF. The main advantage
of these methods is that they do not rely on specific thresholds
to make predictions and can handle noisy observations better.
Most recently, Kidwell et al. (32) described a voxel-based multi-
modal CT and MRI models aimed to effectively define penumbral
patterns.

Regional models. Infarct growth rate or the evolving ischemic
core is quite variable, likely driven by collateral status, and may
spatially vary over time due to regional hemodynamic com-
promise. Even in some cases of successful revascularization, the
ischemic core may still expand into nearby or adjacent brain tis-
sue. Consequently, a healthy voxel surrounded by injured tissue
at early stages is more likely to become irreversibly damaged even
though it may not meet the criterion to be labeled as tissue at
risk. Unlike previously mentioned quantitative models that con-
sider each voxel independently, research efforts (33) have shown
that the regional distribution of intensities surrounding a voxel
at early stages may capture characteristics about the dynamic of
lesion growth and be predictive of tissue outcome (Figure 1).
These studies have integrated regional information by exploit-
ing spatial correlation between voxels (34), prior map of spatial

frequency-of-infarct (35), and neural networks (36). Such emerg-
ing approaches offer potential refinement of single voxel-based
models of penumbra.

Gradient: a glimpse at spatiotemporal changes. Finding the
optimal threshold of a single parameter that generalizes across
a diversified patient population is not trivial and beyond current
methods. Instead, recent studies (37) have indicated that the local
gradient (i.e., relative spatial change) of a parameter may be a
complementary predictor. Gradient images can be computed reli-
ably using a series of image filtering operations. CBV-gradient
maps were retrospectively studied on 42 acute MCAO cases with
serial MRI (37). CBV is an essential measure of perfusion in
acute ischemic stroke that is biphasic in nature; it exhibits periph-
eral hyperemia (increase) and central collapse (decrease) near the
ischemic core. When used to detect ultimate infarction, CBV often
underestimates final volume. CBV gradients, on the other hand,
represent the propensity for hemodynamic failure to distinguish
benign hyperemia from penumbra surrounding the ischemic core.
As seen in Figure 2, CBV gradient maps are able to demonstrate
a concentric region of abnormality around the ischemic core.
CBV gradient maps are able to accurately classify voxel outcome
defined as infarction on day 5 fluid attenuation inversion recovery
sequences, correctly predicting voxel-based hemodynamic failure.
Although CBV gradient is not observed on uniformly low distri-
butions of CBV, it can depict zones around the ischemic core that
are vulnerable to hemodynamic failure and infarct evolution; thus
refining further the estimation of the penumbra.

Perfusion angiography. MRI-based estimates of penumbra are
only feasible in the acute phase and the follow-up of treatment. If
the patient is deemed eligible for endovascular thrombectomy, a
significant time lapse may occur from MRI; thus leading to possible
infarct growth and inaccurate penumbra volume estimates due to
time inconsistencies. Estimation of viable tissue through routine
biplane angiograms is currently being investigated in research set-
tings and may become available during thrombectomy in the near
future. Dedicated processing software, such as perfAngio®, can

FIGURE 1 | Illustration of map of tissue outcome (B) predicted fromTmax (A) using a regional computational model. Red areas in (A) depict tissue likely
to be infarcted (despite intervention), while green areas represent tissue at risk and can be thought of as penumbral tissue. The groundtruth in terms of Flair (at
day 4) is shown in (C).
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FIGURE 2 | CBV (A) and CBV (B) gradient map computed in presence
of a MCA occlusion. High CBV gradient (shown in red in (B)) indicates
areas at risk of collateral failure.

process the angiogram within seconds to extract perfusion para-
meters. It stems from video densitometry theory that relates blood
flow to the observed image intensity. Parameters such as CBF,
CBV, MTT, and TTP can be displayed in color-mapped images.
While animal studies (38) have demonstrated that absolute flow
could be estimated precisely from DSA, it has several practical
limitations in the acute stroke setting. Challenges arise in such
approaches as the diameter of the vessels and exact parameters
of the x-ray imaging system are typically unknown. While raw
DSA data are generally used to visualize flow at the macrovascu-
lar level (large blood vessels), flow parameters extracted with DSA
perfusion provide insights about the microvascular circulation as
recently demonstrated in a recent animal study (39).

Although these alternative models of the penumbra may pro-
vide more accurate raw prediction of tissue outcome in presence of
reperfusion, they have yet to be effectively translated into clinical
decision support tools.

HETEROGENEITY OF ISCHEMIC STROKE AND POTENTIAL OF STROKE
IMAGING
Generalization in stroke care is challenged by the wide vari-
ability of symptoms presentation and outcomes observed across
patients. Identifying population subgroups that may share simi-
lar outcomes after stroke may be identified by specific patterns in
stroke imaging. Importantly, such data-driven approaches using
the examples of imaging techniques highlighted above may ulti-
mately permit tailored therapies for the individual stroke patient.
Even with revascularization of various stroke patients presenting
with proximal middle cerebral artery occlusion, the heterogene-
ity of collateral status and patterns of ischemic injury may limit
our ability to predict subsequent outcomes. Unfortunately, rou-
tine clinical parameters and even basic imaging variables used in
clinical practice cannot reliably portend expected outcomes. For
instance, age and stroke severity remain highly influential vari-
ables in determining stroke outcomes across a population, yet such
variables may be less informative for predicting the outcome of an
individual patient.

Distinct lesion patterns are known to occur depending on the
severity, location, and evolution of a stroke. Significant research
efforts have been devoted to study if specific lesions patterns
would help prediction of early prognosis of three different time
points after ischemic stroke: unstable hospital course, recurrence
of stroke, and poor neurological outcome at 3 month follow-up.
Bang et al. (40) classified DWI lesions into six groups: territorial,
other cortical, small superficial, internal border zone, small deep,
and other deep infarcts. The study focused on 426 patients with
acute cerebral infarcts within the middle cerebral artery territory
and any recurrent strokes and prognosis at 3 month follow-up were
recorded. DWI lesion pattern was a stronger and more consistent
predictor of outcome than DWI lesion volume. Such results indi-
cate that the DWI lesion pattern may help in recognition of likely
differences in the early prognostic endpoints after ischemic stroke,
and DWI analysis may guide targeted interventions to prevent
negative outcomes.

COMPUTER VISION AND MACHINE LEARNING FOR CLINICAL DECISION
SUPPORT
Patient selection and clinical decisions in acute stroke are often
guided by review of noisy raw images or use of complex imag-
ing features that requires a high level of expertise and experience.
For example, although collateral grade is an important predic-
tor of outcome, it is not trivial to assess and as a result, very few
neurologists routinely grade collateral status. To circumvent such
issues in the complexity of stroke imaging and their visual inter-
pretation in real time, the solution has been so far to simplify,
and perhaps over-simplify, the amount of information used so
that it can become readily amenable to make a decision. One
can easily argue that inclusion criteria in current clinical trials
have so far followed the same logic with specific cut-off mismatch
volume values, etc. With the availability of big data analytics, mod-
ern computer vision techniques and machine learning algorithms
are revolutionizing many aspects of daily life. Several domains
(such as finance and weather forecasting) where fast and accu-
rate decisions have to be made based on a very complex amount
of information have already started to integrate machine learn-
ing in their decision-making process. The real purpose of these
technologies is not to replace the clinician, but rather to provide
a translation of the data into a more meaningful representation.
While computer vision methods can be developed to extract subtle
visual features from complex images, machine learning algorithms
can be designed to combine a very large amount of complex
information into a more easily interpretable “benefit” or “risk”
score, with associated confidence value. The application of such
methods in stroke imaging may lead to automated, objective quan-
tification of images and would avoid issues of operator or reader
dependence.

CONCLUSION
Stroke imaging techniques provide extensive data on the patho-
physiology of acute ischemic stroke, including the therapeutic
target of the penumbra. Clinical decision-making and selection
strategies for therapeutic interventions, formulated from esti-
mates of risk–benefit associated with penumbral extent, may be
enhanced with extraction of detailed features currently untapped
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in routine clinical practice. Data science of routine multimodal CT
or MRI studies may yield clinically relevant knowledge to improve
patient outcomes in the future. Such recently developed tech-
niques will be further bolstered in coming years as increasingly
larger imaging datasets may be shared from around the world.
Ultimately, practical automated computer vision and machine
learning approaches may provide critical information in real time,
immediately prior to and even during therapeutic interventions.
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