Submitted 10 September 2019
Accepted 20 November 2019
Published 13 January 2020

Corresponding author
Bérenger Bramas,
berenger.bramas@inria.fr

Academic editor
Gang Mei

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.247

© Copyright
2020 Bramas and Ketterlin

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Improving parallel executions by
increasing task granularity in task-based
runtime systems using acyclic DAG
clustering

Bérenger Bramas'” and Alain Ketterlin"*”

'CAMUS, Inria Nancy - Grand Est, Nancy, France
2ICPS Team, ICube, Illkirch-Graffenstaden, France
* Université de Strasbourg, Strasbourg, France

ABSTRACT

The task-based approach is a parallelization paradigm in which an algorithm is
transformed into a direct acyclic graph of tasks: the vertices are computational elements
extracted from the original algorithm and the edges are dependencies between those.
During the execution, the management of the dependencies adds an overhead that can
become significant when the computational cost of the tasks is low. A possibility to
reduce the makespan is to aggregate the tasks to make them heavier, while having fewer
of them, with the objective of mitigating the importance of the overhead. In this paper,
we study an existing clustering/partitioning strategy to speed up the parallel execution
of a task-based application. We provide two additional heuristics to this algorithm and
perform an in-depth study on a large graph set. In addition, we propose a new model to
estimate the execution duration and use it to choose the proper granularity. We show
that this strategy allows speeding up a real numerical application by a factor of 7 on a
multi-core system.

Subjects Algorithms and Analysis of Algorithms, Distributed and Parallel Computing, Scientific
Computing and Simulation
Keywords Task-based, Graph, DAG, Clustering, Partitioning

INTRODUCTION

The task-based (TB) approach has become a popular method to parallelize scientific
applications in the high-performance computing (HPC) community. Compared to the
classical approaches, such as the fork-join and spawn-sync paradigms, it offers several
advantages as it allows to describe the intrinsic parallelism of any algorithms and run
parallel executions without global synchronizations. Behind the scenes, most of the runtime
systems that manage the tasks use a direct acyclic graph where the nodes represent the tasks
and the edges represent the dependencies. In this model, a task becomes ready when all
its predecessors in the graph are completed, which causes the use a local synchronization
mechanism inside the runtime system to manage the dependencies. There are now many
task-based runtime systems (Danalis et al., 2014; Perez, Badia ¢ Labarta, 2008; Gautier et
al., 2013; Bauer et al., 2012; Tillenius, 2015; Augonnet et al., 2011; Bramas, 2019b) and each
of them has its own specificity, capabilities and interface. Moreover, the well-known and

How to cite this article Bramas B, Ketterlin A. 2020. Improving parallel executions by increasing task granularity in task-based runtime
systems using acyclic DAG clustering. Peer] Comput. Sci. 6:€247 http://doi.org/10.7717/peerj-cs.247

https://peerj.com/computer-science
mailto:berenger.bramas@inria.fr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.247
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

widely used OpenMP standard (OpenMP Architecture Review Board, 2013) also supports
the tasks and dependencies paradigm since version 4. The advantage of the method to
achieve high-performance and facilitate the use of heterogeneous computing nodes has
been demonstrated by the development of many applications in various fields (Sukkari et
al., 2018; Moustafa et al., 2018; Carpaye, Roman ¢ Brenner, 2018; Agullo et al., 2016; Agullo
et al., 2017; Agullo et al., 2015; Myllykoski ¢ Mikkelsen, 2019).

However, multiple challenges remain open to bring the task-based approach to non-HPC
experts and to support performance portability. In our opinion, the two main problems
on a single computing node concern the scheduling and granularity. The scheduling is
the distribution of the tasks over the processing units, i.e., the selection of a task among
the ready ones and the choice of a processing unit. This is a difficult problem, especially
when using heterogeneous computing nodes as it cannot be solved optimally in general.
Much research is continuously conducted by the HPC and the scheduling communities
to provide better generic schedulers (Bramas, 2019a). The granularity issue is related to
the size of the tasks. When the granularity is too small, the overhead of task management,
and the potential data movements, becomes dominant and can dramatically increase
the execution time due to the use of synchronizations (Tagliavini, Cesarini ¢» Marongiu,
2018). On the other hand, when the granularity is too large, it reduces the degree of
parallelism and leaves some processing units idle. Managing the granularity can be done
at different levels. In some cases, it is possible to let the developer adapt the original
algorithms, computational kernels, and data structures, but this could require significant
programming effort and expertise (Bramas, 2016). An alternative, as we aim to study in this
paper, is to investigate how to cluster the nodes of task graphs to increase the granularity of
the tasks and thus obtain faster execution by mitigating the overhead from the management
of the dependencies. An important asset of this approach is that working at the graph level
allows creating a generic method independent from the application and what is done at
the user level, but also independent of the task-based runtime system that will be used
underneath.

While graph partitioning/clustering is a well-studied problem, it is important to note that
the obtained meta-DAG (direct acyclic graph) must remain acyclic, i.e., the dependencies
between the cluster of nodes should ensure to be executable as a graph of tasks, and keep
a large degree of parallelism. Hence, the usual graph partitioning methods do not work
because they do not take into account the direction of the edges (Hendrickson ¢ Kolda,
2000). Moreover, the DAG of tasks we target can be of several million nodes, and we need
an algorithm capable to process them.

In the current study, we use a generic algorithm that has been proposed to solve this
problem (Rossignon et al., 2013), and we refer to it as the general DAG clustering algorithm
(GDCA).

The contributions of the paper are the following:

e We provide two variants of the GDCA, which change how the nodes are aggregated and
allow to have clusters smaller than the targeted size;

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 2/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

! An implementation of our method is
publicly available at https://gitlab.inria.
fr/bramas/dagpar. Besides, we provide

the test cases used in this paper at https:

//figshare.com/projects/Dagpar/71198.

e We provide a new model to simulate the execution of a DAG, by considering that there
are overheads in the execution of each task, but also while releasing or picking a task,
and we use this model to find the best clustering size;

e We evaluate and compare DGCA and our approach on a large graph set using emulated
executions;

e We evaluate and compare DGCA and our approach on Chukrut (Conservative
Hyperbolic Upwind Kinetic Resolution of Unstructured Tokamaks) (Coulette et al.,
2019) that computes the transport equation on a 2D unstructured mesh.

The paper is organized as follows. In ‘Related Work’, we summarize the related work and
explain why most existing algorithms do not solve the DAG of tasks clustering problem.
Then, in ‘Problem Statement and Notations’, we describe in detail the DAG of tasks
clustering problem. We introduce the modifications of the GDCA in ‘DAG of Tasks
Clustering’. Finally, we evaluate our approach in ‘Experimental Study’.

The source code of the presented method and all the material needed to reproduce the
results of this paper are publicly available'.

RELATED WORK

Partitioning or clustering usually refers to dividing a graph into subsets so that the sum
of costs on edges between nodes in different subsets is minimum. However, our objective
here is not related to the costs of the edges, which we consider null, but to the execution
time of the resulting graph in parallel considering a given number of threads and runtime
overhead. Hence, while it is generally implicit that partitioning/clustering is related to the
edge cut, we emphasize that it should be seen as a graph symbolic transformation and that
the measure of quality and final objective differ depending on the problem to solve.

Partitioning tends to refer to finding a given number of subgraphs, which is usually
much lower than the number of nodes. In fact, once a graph is partitioned, it is usually
dispatched over different processes and thus there must be as many subgraphs as there
are processes, whereas clustering is more about finding subgraphs of a given approximate
size or bounded by a given size limit, where nodes are grouped together if it appears that
they have a certain affinity. This is a reason why the term clustering is also used to describe
algorithms that cluster indirect graphs by finding hot spots (Schaeffer, 2007; Xu & Tian,
2015; Shun et al., 2016). Moreover, the size of a cluster is expected to be much lower than
the number of nodes.

The granularity problem of the DAG of tasks with a focus on the parallel execution has
been previously studied. Sarkar and Hennessy designed a method to execute functional
programs at a coarse granularity because working at fine granularity, i.e. at the instruction
level, was inefficient on general purpose multiprocessors (Sarkar ¢~ Hennessy, 1986; Sarkar,
1989). They proposed a compile-time clustering approach to achieve the trade-off between
parallelism and the overhead of exploiting parallelism and worked on graphs obtained
directly from the source code. As we do in the current paper, they focused on the
performance, i.e. best execution time, as a measure of the quality of the clustering and their
estimation of execution times were based on the number of processors, communication

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 3/26

https://gitlab.inria.fr/bramas/dagpar
https://gitlab.inria.fr/bramas/dagpar
https://figshare.com/projects/Dagpar/71198
https://figshare.com/projects/Dagpar/71198
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

2The thesis that includes this final version is
written in French.

and scheduling overhead. However, their clustering algorithm is different from ours. It
starts by considering each node as a cluster and successively merges them until it obtains a
single subgraph while keeping track of the best configuration found so far to be used at the
end. By doing so, their algorithm has above quadratic complexity and thus is unusable to
process very large graphs. Also, in our case, we do not take communication into account,
and we consider that some parts of the scheduling overhead are blocking: no threads can
peek a task when another thread is already interacting with the scheduler.

More recently Rossignon et al. (2013) proposed GDCA to manage DAG of fine grain
tasks on multi-core architectures. Their first solution is composed of three main algorithms
called sequential, front and depth front. The sequential algorithm puts together a task that
has only one predecessor with its parent. The front algorithm reduces the width of the
graph at each level. The depth front performs a breadth-first traversal of the descendants
of a task to aggregate up to a given number of tasks together. They extended this last
algorithm (Rossignon, 2015) by proposing a generic method, GDCA, that we use in the
current study’. The authors also provided a new execution model to simulate the execution
of a DAG where they use an overhead per task and a benefit coefficient for aggregation.

In a more general context, the community has focused on indirect graph partitioning.
A classical approach, called the two-way partitioning, consists in splitting a graph
into two blocks of roughly equal size or in minimizing the edge cut between the two
blocks (Kernighan ¢ Lin, 1970; Fiduccia ¢~ Mattheyses, 1982). The method can be applied
recursively multiple times until the desired number of subgraphs is reached. Later, multi-
way methods have been proposed (Hendrickson ¢ Leland, 1995; Karypis & Kumar, 1998;
Karypis et al., 1999) and most of them have been done in the context of very-large-scale
integration (VLSI) in an integrated circuit. The motivation is to partition large VLSI
networks into smaller blocks of roughly equal size to minimize the interconnections
between the blocks. The multi-way partitioning has been improved by taking into account
the direction of the edges in the context of Boolean networks (Cong, Li ¢ Bagrodia, 1994).
The authors showed that considering the direction of the edges is very helpful, if not
mandatory, in the design in order to have acyclic partitioning.

The problem of acyclic DAG partitioning has also been studied by solving the edge-
cut problem, i.e., by minimizing the number of weights of the edges having endpoints in
different parts and not by focusing on the execution time (Herrmann et al., 2017). We argue
that the execution time is the only criteria that should be evaluated and that measuring the
edge-cut coefficient is not accurate to estimate the benefit of the clustering.

Other studies have focused on partitioning with special constraints, such as finding
a minimum cost partition of the graph into subsets of size less than or equal to a
criteria (Kernighan, 1971), which can be seen as dividing a program into pages of fixed size
to minimize the frequency of inter-page transitions. The problem also exists with FPGA,
where a complete program does not fit in the field and thus should be divided in sub-parts
with the objective of minimizing the re-programming (Purna ¢ Bhatia, 1999). In linear
algebra, the LU factorization can be represented as a tree graph that can be partitioned in
linear time (Pothen ¢ Alvarado, 1992).

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

The real application we used to assess our method solves the transport equation on
unstructured meshes. Task-based implementations to solve the transport equation on
a grid (i.e. structured and regular mesh) have already been proposed by Moustafa et al.
(2018). The authors have created a version on top of the ParSEC runtime system where
they partitioned the mesh and avoided working on the graph of tasks. Working on the
mesh is another way to partition the graph, but this was possible in their case because the
dependencies on the mesh were known and regular. The dependencies were not impacted
by the clustering because an inter-partition dependency would simply be transformed
into the exchange of a message. In other words, a process could work on its sub-graph
even if some of its nodes are pending for input that will be sent by other processes. This
is quite different from our approach, as we consider that a sub-graph is transformed into
a macro-task, and hence all input dependencies must be satisfied before a thread starts to
work on it.

PROBLEM STATEMENT AND NOTATIONS

Consider a DAG G(V, E) where the vertices V are tasks and the edges E are the dependencies
between those. The clustering problem of a DAG of tasks consists in finding the best
clusters to obtain the minimal makespan possible when the DAG is executed on a specific
hardware or execution model. Implicitly, the hardware or execution model should have
some overheads, which could come from the management of the tasks for example, or
the minimal execution time will always be obtained without clustering, i.e. on irrealistic
hardware without overhead, any clustering of tasks will reduce the degree of parallelism
without offering any advantages. Finding the optimal solution is NP-complete (Johnson ¢
Garey, 1979) because it requires to test all the possible combinations of clusters. Moreover,
evaluating a solution is performed by emulating a parallel execution, which has a complexity
of O(Viog(W)+E), where W is the number of workers and usually considered constant.

In this paper, we solve a sub-problem that we call the clustering problem of a DAG
of tasks with no-communications since we consider that the weights of the edges are
insignificant and the edges are only here to represent the dependencies. This problem is
met when moving data has no cost or is negligible, which is the case if the workers are
threads and the NUMA effects negligible or if we use processes but have a way to hide
communication with computation.

Classical partitioning algorithms for indirected graphs cannot be used because they will
not obtain an acyclic macro-graph. Formally, a macro-graph remains acyclic if for any edge
a— b the corresponding clusters C(a) <C(b) (note that C(a) =C(b) means that a and b
are in the same cluster). This is also know as the convexity constraint (Sarkar ¢ Hennessy,
1986) where we say that a subgraph H of graph G is convex if any path P(a,b), with a, b
€ H, is completely contained in H. Consequently, one way to solve the problem would be
to find a valid topological order of the nodes and divide it into clusters.

We write M the desired size of clusters, which should be seen as an upper limit such
that no cluster will have more than M nodes.

Parallel efficiency and edge cut. There is a relation between the edge-cut and the parallel
execution when the edges represent communication costs between cluster owners.

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 5/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

(a) (b)

Figure 1 Example of clustering a DAG of 7 nodes targeting cluster of M = 2 nodes. If each edge has a
weight of 1, the cut cost is 7 for (A) and 8 for (B). If each node is a task of cost 1 and edges are not taken
into account, the parallel execution duration is 7 units for (A) and 5 units for (B). If each node is a task of
cost 1 and edges are considered as communication of 1 unit sent sequentially after completion of the clus-
ter, the parallel execution duration is 11 units for (A) and 9 units for (B).

Full-size & DOI: 10.7717/peerjcs.247/fig-1

(a) (b)

Figure 2 Example of clustering a DAG of 7 nodes targeting cluster of M = 2 nodes. If each edge has a
weight of 1, the cut cost is 4 for (A) and 5 for (B). If each node is a task of cost 1 and edges are not taken
into account, the parallel execution duration is 7 units for (A) and 5 units for (B). If each node is a task of
cost 1 and edges are considered as communication of 1 unit sent sequentially after completion of the clus-
ter, the parallel execution duration is 10 units for (A) and 6 units for (B).

Full-size Gl DOL: 10.7717/peerjcs.247/fig-2

However, looking only at the edge-cut is not relevant when the final and only objective
is the parallel efficiency. Moreover, this is even truer in our case because the weights of
the edges are neglected. To illustrate the differences, we provide in Figs. 1 and 2 examples
that demonstrate that when attempting to obtain a faster execution, the edge-cut is not the
most important feature. In both examples, the configuration with the lowest edge-cut is
slower when executed in parallel whether communications are taken into account or not.
Clustering and delay in releasing dependencies. Traditionally, graph partitioning is used
to distribute the workload on different processes while trying to minimize communications.
In our case, however, a cluster is a macro-task and is managed like a task: it has to wait

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 6/26

https://peerj.com
https://doi.org/10.7717/peerjcs.247/fig-1
https://doi.org/10.7717/peerjcs.247/fig-2
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

(a) (b) (c)

Figure 3 Example of clustering three DAGs of eight nodes targeting in two cluster of M = 4 nodes.
The obtained meta-DAG is the same despite the original dependencies between the nodes, and the cluster
on the right will have to wait that the cluster on the left is fully executed to become ready. (A) Graph with
a dependency between the two first nodes. (B) Graph with dependencies between first and last nodes. (C)
Graph with multiple dependencies.

Full-size Gl DOL: 10.7717/peerjcs.247/fig-3

for all its dependencies to be released to become ready, and it releases its dependencies
once it is entirely completed and not after the completion of each task that composes it.
This means the number of dependencies that exists originally between the tasks of two
macro-tasks is not relevant, because if there is one or many then the two macro-tasks are
linked, as illustrated by the Fig. 3. A side effect is that creating macro-tasks delays the release
of the dependencies. In fact, the release of the dependencies can be delayed by the complete
duration of the macro-task compared to execution without clustering and this delay also
implies a reduction of the degree of parallelism. However, if the degree of parallelism at a
global level remains high, the execution could still be faster because it is expected that the
clustering will reduce the overhead.

DAG OF TASKS CLUSTERING
Modification of the GDCA

Before entering into the details of our approach, we first give a general description of
the original algorithm. The algorithm continuously maintains a list of ready tasks by
processing the graph while respecting the dependencies. It works on the ready tasks only
to build a cluster. By doing so, all the predecessors of the ready tasks are already assigned
to a cluster, and all the ready tasks and their successors are not assigned to any cluster.
This strategy ensures that no cycle will be created while building the clusters. To create
a cluster, the algorithm first picks one of the ready tasks, based on a heuristic that we
call the initial-selection. Then it iteratively aggregates some ready nodes to it until the
cluster reaches M nodes, using what we call aggregate-selection. Every time a node is put
in a cluster, the algorithm releases its dependencies and potentially adds new ready tasks
to the list.

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 7/26

https://peerj.com
https://doi.org/10.7717/peerjcs.247/fig-3
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

900 000 00060 000
010 © @ o0 60
@ (b) (d)

(©

Figure 4 Illustration of the GDCA. Ready tasks are in blue, tasks assigned to the new cluster are in
red. (A) Nodes x, y and z are ready, and here y is selected as first node for the current cluster p to create
(initial-selection). (B) Nodes x, v and z are ready, and we have to select the next nodes to put in p
(agregate-selection). If the criteria to decide is the number of predecessors in the cluster, then v is selected.
(C) Nodes x and z are ready, and both nodes have zero predecessors in p. If we look at the successors
they have in common with p, then u is selected. (D) node z is ready, and it might have no predecessors
or successors in common with nodes in p. If we use a strict cluster size, then z should be added to p,
otherwise, the cluster p is done.

Full-size Gl DOL: 10.7717/peerjcs.247/fig-4

The initial-selection and the aggregate-selection are the two heuristics that decide which
node to select to start a cluster, and which nodes to add to the ongoing cluster. The
initial-selection picks the node with the lowest depth, where the depth of a node is the
longest distance to the roots. The aggregate-selection picks the tasks that has the largest
number of predecessors in the new cluster. For both selections, the lowest ids is selected in
case of equality to enforce a strict order of the nodes.

In Figure 4, we provide an example of clustering that illustrates why we potentially need
additional heuristics for the aggregate-selections. In Fig. 4B both nodes x and z are ready
and could be selected, but node z has no connections with the new cluster. The original
algorithm does not have a mechanism to detect this situation. Second, in Fig. 4D since
z has no connections with the new cluster, it could be disadvantageous to add it. If we
imagine the case where a graph is composed of two independent parts, connecting them is
like putting a synchronization on their progress. On the other hand, if we need clusters of
a fixed size, as it is the case in the original algorithm, there is no choice and z must be put
in the cluster.

In Appendix, we provide two graphs that were clustered using GDCA, see Figs. Al and
A2.

Change in the initial-selection. We propose to select the node using the depth (like in
the original algorithm), but also to use the number of predecessors. Our objective is to
privilege the nodes with the highest number of predecessors that we consider more critic.
Change in the aggregate-selection. To select the next node to add to a cluster, we choose
the node with the highest number of predecessors in the cluster, but in case of equality,
we compare the number of nodes in common between the successors of the cluster and
the successors of the candidates. For instance, in Fig. 4A, the node x has one common
successor with the new cluster (node u), but as the number of predecessors in the cluster is
more significant v is selected. Then, in Fig. 4B, x has one common successor, and z none,
therefore, with this heuristic x is selected.

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 8/26

https://peerj.com
https://doi.org/10.7717/peerjcs.247/fig-4
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

Flexible cluster size. If no nodes in the ready list have a predecessor in the cluster or a
common successor, then we can decide to stop the construction of the current cluster and
start a new one, which means that some clusters will have less than M nodes. This heuristic
would stop the construction of the new cluster in Fig. 4D.

Full algorithm. The complete solution is provided in Algorithm 1. The GDCA algorithm
is annotated with our modifications and we dissociate GDCAv2 that includes the change
in the nodes selections, and GDCAws that includes the stop when no ready node has a
connection with the new cluster.

The main loop, line 6, ensures that the algorithm continues until there are no more ready
nodes in the list. The initial-selection is done at line 12, where the algorithm compares the
depth, the number of predecessors and the ids of each node. This can be implemented using
a sort or simply by selecting the best candidate as the list will be rearranged and updated
later in the algorithm. At line 16, the dependencies of the master node are released. If
some of its predecessors become ready (line 18), they are put in the list and their counters
of predecessors in the new cluster are incremented. Otherwise (line 21), they are put
in a set that includes all the successors of the new cluster. This set is used line 27, to
count the common successors between the cluster and each ready node. In an optimized
implementation, this could be done only if needed, i.e. if the best nodes have equal number
of predecessors in the cluster during the aggregate-selection. At line 33, the ready nodes
are sorted using their number of predecessors in the cluster, their number of common
successors with the cluster and their ids. If we have flexible cluster size, we can stop the
construction of the new cluster (line 35) if we consider that no nodes are appropriate.
Otherwise, the next node is added to the cluster, its dependencies are released and the
counter updated (from line 38 to line 38).

In Appendix, we provide an example of emulated execution of a DAG using this method,
see Fig. A3.

Emulating the execution of DAG of tasks

Iterating on a DAG to emulate an execution with a limited number of processing units is
a classical algorithm. However, how the overhead should be defined and included in the
model is still evolving (Kestor, Gioiosa & Chavarra-Miranda, 2015). We propose to take
into account three different overheads: one overhead per task execution, and two overheads
for the release and the selection of a ready task.

Using an overhead per task is classically admitted in the majority of models. In our case,
this overhead is a constant per task - no matter the task’s size - and only impacts the worker
that will execute the task. For example, if the overhead per task is O; and a worker starts the
execution of a task of duration d at time ¢, the worker will become available at t +d + O;.
The accumulated cost duration implied by this overhead decreases proportionally with the
number of tasks (i.e., the more tasks per cluster the less total overhead).

Second, our model includes an overhead every time a task is released or assigned to a
worker. When a task is released, it has to be pushed in the ready task list, and this implies
either some synchronization or lock-free mechanisms with a non-negligible cost. The same
happens when a task is popped from the list and assigned to a worker. Moreover, the

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 9/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

pushes and pops compete to modify the ready list, and in both cases, this can be seen as a
lock with only one worker at a time that accesses it. As a result, in our model, we increment
the global timestamp variable every time the list is modified.

We provide our solution in Algorithm 2, which is an extension of the DAG execution
algorithm with a priority queue of workers. The workers are stored in the queue based on
their next availability and we traverse the graph while maintaining the dependencies and
a list of ready tasks. At line 5, we initialize the current time variable using the number of
ready tasks and the push overhead, considering that all these tasks are pushed in the list and
this makes it impossible to access it. Then, at line 8, we assign tasks to the available workers
and store them in the priority queues using the cost of each task and the overhead per
task, see line 12. Then, in the core loop, line 16, we pick the next available worker, release
the dependencies for the task it was computed, and assign tasks to idle workers (until
there are no more tasks or idle workers). Finally, we wait for the last workers to finish at
line 34.

Our execution model is used to emulate the execution of a DAG on a given architecture,
but we also use it to found the best cluster granularity. To do so, we emulate executions
starting with a size M =2 and we increase M and keep track of the best granularity found
so far B. We stop after granularity 2 x B. The idea is that we will have a speedup as we
increase the granularity until we constraint too much the degree of parallelism. But in order
not to stop at the first local minima (the first time an increase of the granularity results
in an increase of the execution time), we continue to test until the granularity equals two
times the best granularity we have found.

EXPERIMENTAL STUDY

We evaluate our approach on emulated executions and on a real numerical application.

Emulated executions

Graph data-set. We use graphs of different properties that we summarize in Table 1. They
were generated from the Polybench collection (Grauer-Gray et al., 2012), the daggen tool

(Suter, 2013) or by ourselves. The graphs from daggen are complex in the sense that their
nodes have important number of predecessors/successors and that the cost of the tasks are
significant and of large intervals. The graphs with names starting by Chukrut are the test

cases for the real application.

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 10/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

ALGORITHM 1: GDCA algorithm, where M is the desired cluster size. GDCAV2 includes the lines in
black underlined-bold. GDCA-ws includes the lines in gray.

1
2
3
4
5
6
7
8
9

function cluster(G=(V,E), M)

end

ready <— Get_roots(G) // Gets the roots

depths < Distance_from_roots(G, ready) // Gets the distance from roots
count_deps_release = @ // # of released dependencies

cpt_cluster =0

while ready is not empty do

count_pred_master = @ // # predecessors in the new cluster
count_next_common = & // # common successors

// Sort by, first increasing depths, second decreasing number
// of predecessors, third increasing ids (to ensure a strict
// order)

ready.sort()

master = ready.pop_front()

clusters[master]| = cpt_cluster

master_boundary = &

for u € successors[master] do

count_deps_release[u] +=1

if count_deps_release[u] equal |predecessors[u]| then

ready.insert(u)

count_pred_master[u] =1

else
| master_boundary.insert(u)
end
end
cluster_size =1
while cluster_size < M do
for u € ready do
| count_next_common[u] = | successors[u] N master_boundary |
end
// Sort by, first decreasing count_pred_master, second
// increasing depths, third decreasing count_next_common,

// fourth increasing ids (to ensure a strict order)
ready.sort()
next = ready.front();
if count_pred_master[next] is 0 AND count_next_common[next] is 0 then
| break;

end
ready.pop_front()
cluster_size +=1
clusters[next] = cpt_cluster
for u € successors[next] do
count_deps_release[u] +=1
if count_deps_release[u] equal |predecessors[u]| then
ready.insert(u)
count_pred_master[u] = 0
for v € predecessors(u] do

if clusters[v] == clusters[master] then

| count_pred_master[u] +=1
end

end
master_boundary.erase(u)
se

| master_boundary.insert(u)
end

€

end
end
cpt_cluster +=1

Hardware. We consider four systems in total, two imaginary hardware with two type of

overhead low (L) and high (H), with the following properties:

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247

11/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

ALGORITHM 2: Emulate an execution of G using W workers. The overheads are push_overhead,
pop_overhead and task_overhead.

function Emulate_execution(G=(V,E), W, push_overhead, pop_overhead, task_overhead)

1
2 idle_worker < list(0, W-1)
3 current_time < 0
4 ready < Get_roots(G)
5 current_time < push_overhead x ready.size()
6 nb_computed_task < 0
7 workers <— empty_priority_queue()
8 while ready is not empty AND idle_worker is not empty do
9 task < ready.pop()
10 worker <« idle_worker.pop()
11 current_time <— current_time + pop_overhead
12 workers.enqueue(worker, task, current_time, costs[u] + task_overhead)
13 nb_computed_task <— nb_computed_task + 1
14 end
15 deps <— 0
16 while nb_computed_task # |tasks| do
17 [task, worker, end] < workers.dequeue()
18 current_time <— max(current_time, end)
19 idle_worker.push(worker)
20 for v € successors[u] do
21 deps[v] < deps[v] +1
22 if |deps[v]| = \ﬁredecessors[vﬂ then
23 | ready.push(v)
24 en
25 end
26 while ready is not empty AND idle_worker is not empty do
27 task <— ready.pop()
28 worker < idle_worker.pop()
29 current_time < current_time + pop_overhead
30 workers.enqueue(worker, task, current_time, costs[u] + task_overhead)
31 nb_computed_task <— nb_computed_task + 1
32 end
33 end
34 while nb_computed_task # |tasks| do
35 [task, worker, end] <— workers.dequeue()
36 current_time <— max(current_time, end)
37 end
38 return current_time

e Config-40-L: System with 40 threads and overhead per task 0.1, per push 0.2 and per

pop 0.2.

e Config-40-H: System with 40 threads and overhead per task 2, per push 1 and per pop
1.

e Config-512-L: System with 512 threads and overhead per task 0.1, per push 0.2 and per
pop 0.2.

e Config-512-H: System with 512 threads and overhead per task 4, per push 2 and per
pop 2.

The given overheads are expressed in terms of proportion of the total execution time of
a graph. Consequently, if D is the total duration of a graph (the sum of the duration of the
N tasks), and if the overhead is Oy, then the overhead per task is given by D x O, /N.
Increasing granularity. In Figure 5, we show the duration of the emulated executions as
the granularity increases for twelve of the graphs. As expected the execution time decreases
as the granularity increases in most cases since the impact of the overhead is mitigated.
Using 512 threads (Config-512-L/red line) instead of 40 (Config-40-L/green line) does not
speed up the execution when the overhead is low, and this is explained by the fact that the
average degree of parallelism is lower than 512 for most graphs. In Figs. 5H and 5K, the

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 12/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

execution time shows a significant variation depending on the clustering size. This means
that for some cluster sizes several workers are not efficiently used by being idle (waiting
for another a worker to finish its task and release the dependencies), while for some other
sizes the workload per worker is well balanced and the execution more efficient. Note that
we increase the granularity up to two times the best granularity we have found, and this
appears to be a good heuristic to catch the best cluster size without stopping at the first
local minima.
Details. In Table 2, we provide the best speedup we have obtained by taking execution
times without clustering as reference. We provide the results for the GDCA and the updated
method (GDCAv2), and also show the best granularity for each case. The GDCAV2 provides
a speedup over GDCA in many cases. For instance, for the daggen’s graphs the GDCAv2
method is faster in most cases. In addition, there are cases where the GDCAv2 provide a
significant speedup, such as the graphs polybench - kernel trmm, polybench - kernel jacobi 2d
imper and polybench - kernel gemvr. For the Config-512-H configuration and the polybench
- kernel gemvr graph, the GDCA has a speedup of 24.73, and GDCAv2 83.47. However,
there are still many cases where GDCA is faster, which means that to cluster a graph from
a specific application it is required to try and compare both methods. In addition, this
demonstrates that while our modifications of GDCA seem natural when we look at the
graph at a low level, they do not necessarily provide an improvement at a global level due to
corner cases. Moreover, the ids of the nodes are more important in GDCA than in GDCAv2,
and this information is usually not random and includes the order of construction of the
tasks.

Concerning GDCAws, the method is not competitive for most of the graphs. However,
it provides a significant speedup for the Chukrut graphs, which are the ones use in our real
application.

Real application
Hardware configuration
We use the following computing nodes:

e Intel-24t : 4 x Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, with caches L1 32K,
L2256K and L3 15360K (24 threads in total).

o Intel-32t: 2 x Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz V4, with caches L1 32K,
L21024K and L3 22528K (32 threads in total).

Software configuration. We use the GNU C compiler 7.3.0. We parallelize using OpenMP
threads and we do not use any mutex during the execution. We only use lock-free
mechanisms implemented with C11 atomic variables to manage the dependencies and the
list of ready tasks, which is actually an array updated using atomics.

Test cases. The two test cases represent a 2D mesh that has the shape of a disk with
sizes 40 and 60. The details of the two corresponding graphs are provided in Table 1
under the names Chukrut - disque40 and Chukrut - disque60. The execution of a single
task takes around 1.5-1072s. To estimate the overhead, we take the execution time in
sequential T; and the execution time using a third of the available threads Ty and do

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 13/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

Table 1 Details of the studied graphs. The degree of parallelism is obtained by iterating on the graph, while respecting the dependencies, and measure the size of the
ready task list (the average size or the largest size found during the execution).

Lbegrso-liead/ 127701 104 “19S “Indwo) riead (0202) ullienad) pue sewelg

9¢/ivi

Name #vertices #edges #Predecessors Total cost Cost Degree of parallelism
avg max min avg max avg max
createdag - agraph-2dgrid-200 39999 79202 1.980 2 39999 1 1 1 100.5 398
createdag - agraph-deptree-200 10100 19900 1.970 2 10100 1 1 1 50.5 100
createdag - agraph-doubletree-200 10100 19900 1.970 2 10100 1 1 1 50.5 100
createdag - agraph-tree-200 20100 39800 1.980 2 20100 1 1 1 100.5 200
Chukrut - disque40 19200 38160 1.99 2 19200 1 1 1 80.3347 120
Chukrut - disque60 43200 86040 1.99 2 43200 1 1 1 120.334 180
daggen - 1000-0 5-0 2-4-0 8 1000 6819 6.819 42 2.2e+14 3.1e+08 2.2e+11 1.3e+12 27.7 52
daggen - 128000-0 5-0 2-2-0 8 128000 11374241 88.861 549 3.0e+16 2.6e+08 2.3e+11 1.4e+12 362.6 641
daggen - 16000-0 5-0 8-4-0 8 16000 508092 31.756 97 3.7e+15 2.7e+08 2.3e+11 1.4e+12 124.03 155
daggen - 4000-0 2-0 8-4-0 8 4000 6540 1.635 7 9.0e+14 2.6e+08 2.2e+11 1.4e+12 7.8 15
daggen - 64000-0 2-0 2-4-0 8 64000 169418 2.647 31 1.5e+16 2.6e+08 2.3e+11 1.4e+12 11.84 23
polybench - kernel 2 mm 14600 22000 1.507 40 14600 1 1 1 286.275 600
polybench - kernel 3 mm 55400 70000 1.264 40 55400 1 1 1 780.282 1400
polybench - kernel adi 97440 553177 5.677 7 97440 1 1 1 43.4806 86
polybench - kernel atax 97040 144900 1.493 230 97040 1 1 1 220.045 440
polybench - kernel covariance 98850 276025 2.792 70 98850 1 1 1 686.458 3500
polybench - kernel doitgen 36000 62700 1.742 2 36000 1 1 1 3000 3000
polybench - kernel durbin 94372 280870 2.976 250 94372 1 1 1 2.96088 250
polybench - kernel fdtd 2d 70020 220535 3.150 4 70020 1 1 1 1167 1200
polybench - kernel gemm 340200 336000 0.988 1 340200 1 1 1 4200 4200
polybench - kernel gemver 43320 71880 1.659 120 43320 1 1 1 179.008 14400
polybench - kernel gesummyv 125750 125500 0.998 1 125750 1 1 1 499.008 500
polybench - kernel jacobi 1d imper 79600 237208 2.980 3 79600 1 1 1 398 398
polybench - kernel jacobi 2d imper 31360 148512 4.736 5 31360 1 1 1 784 784
polybench - kernel lu 170640 496120 2.907 79 170640 1 1 1 1080 6241
polybench - kernel ludemp 186920 537521 2.876 80 186920 1 1 1 53.7126 64380
polybench - kernel mvt 80000 79600 0.995 1 80000 1 1 1 400 400
polybench - kernel seidel 2d 12960 94010 7.254 8 12960 1 1 1 62.3077 81
polybench - kernel symm 96000 93600 0.975 1 96000 1 1 1 2400 2400
polybench - kernel syr2k 148230 146400 0.988 1 148230 1 1 1 1830 1830
polybench - kernel syrk 148230 146400 0.988 1 148230 1 1 1 1830 1830
polybench - kernel trisolv 80600 160000 1.985 399 80600 1 1 1 100.75 400
polybench - kernel trmm 144000 412460 2.864 80 144000 1 1 1 894.41 1410

80UsI0S Jeindwio)) uesd

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

- disque60.dot generated-dag-64000-0_2-0_2-4-0_8.dot kernel_atax.dot

Temps (s)
5
Temps (s)

£ 1o
100 "
6% 10"
10°
T 7 N
T B R w w m ® 3 2w @ w0 w0
Granularity Granularity Granularity
(a) (b) (c)
kernel_durbin.dot Kkernel_trmm.dot kernel_seidel_2d.dot
3x10°
2x10° 105 X
9.
_ _ _ 0 Y R e
§ o £ g .
H H H
»e
o
6x10° [
104 !
4x10*
o 10 o 0 bd 50 60 i L 0 10 20 30 40 60 70 5 10 1 20 25
Granularity Granularity Granularity
(d) (e) ()
kernel_jacobi_2d_imper.dot kernel_gemver.dot agraph-2dgrid-200.dot
10°
* I
. . 1) ﬁ
z 20t y ‘mw z
2 2 Jhiee 2
£ 10 § ||| H\H g
] © i
SO AL
i Mm“m l
.| Wl ;
: o ® P ® ® 3 %) R
Granularity Granularity Granularity
(2) (h) (i)
kernel_covariance.dot kernel_fdtd_2d.dot

—— Config 40/0.1/0.2/0.2
—— Config 40/2.0/1.0/1.0
— Config 512/0.1/0.2/0.2
—— Config 512/4.0/2.0/2.0

Temps ()

-@®&- GDCA
B —— GDCAv2
(1) Legend
0 (k)

Figure 5 Emulated execution times against cluster granularity G for different test cases, different ma-
chine configurations (colors ----) and different strategies (nodes @ A). (A) disque60. (B) generated-dag-
4000-0.2-0.2-4-0.8. (C) kernel atax. (D) kernel durbin. (E) kernel trmm. (F) kernel seidel. (G) kernel ja-
cobi 2D imper. (H) kernel gemver. (i) agraph 2dgrid-200. (J) kernel covariance. (K) kernel fdtf 2D.
Full-size G4 DOL: 10.7717/peerjcs.247/fig-5

O=(Tx xx—T1)/T;. We obtained an overhead of 3 on Intel-24t and of 3.5 on Intel-32t.
We dispatch this overhead one half for the overhead per task, and one quarter for the
push/pop overheads. The execution times are obtained from the average of 6 executions.

We increase the granularity up to M = 100 in order to show if our best granularity
selection heuristic would miss the best size.

Results. In Fig. 6, we provide the results for the two test cases on the two computing nodes.

Bramas and Ketterlin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.247 15/26

https://peerj.com
https://doi.org/10.7717/peerjcs.247/fig-5
http://dx.doi.org/10.7717/peerj-cs.247

/2122701 10Q “19S ‘Indwo) ria9d ‘(0202) ulliene)y pue seweig

*so-[1ead

VA £4

92/91

Table2 Speedup obtained by clustering the graphs on emulated executions for GDCA and GDCAvV2. The best granularity for the different graphs is provided, and the
speedup is in bold when one of the two clustering strategies appears more efficient than the other for a given hardware. GDCAws is slower in most cases, except for the
graphs from createdag and Chukrut. For the configuration Config-512-H, GDCAws get a speedup of 34 for Chukrut - disque40 and of 44 for Chukrut - disque60.

Name Config-40-L Config-40-H Config-512-L Config-512-H
GDCA GDCAv2 GDCA GDCAv2 GDCA GDCAv2 GDCA GDCAv2

G Sp. G Sp. G Sp. G Sp. G Sp. G Sp. G Sp. G Sp.
createdag - agraph-2dgrid-200 9 5.775 16 5.821 36 14.79 36 13.86 9 5.786 16 6.078 36 21.76 36 22.57
createdag - agraph-deptree-200 6 4.158 4 3.798 16 12.75 16 12.75 6 4.158 4 3.801 25 16.6 25 16.21
createdag - agraph-doubletree-200 6 4.158 4 3.798 16 12.75 16 12.75 6 4.158 4 3.801 25 16.6 25 16.21
createdag - agraph-tree-200 16 7.905 16 7.905 36 23.68 36 24.06 16 8.978 16 8.976 64 37.5 64 37.47
Chukrut - disque40 16 7.62 16 7.62 25 21.91 25 21.91 16 7.629 16 7.626 25 2391 25 23.91
Chukrut - disque60 16 10.9 16 10.9 36 30.6 36 30.6 16 11.35 16 11.34 36 34.22 36 34.22
daggen - 1000-0 5-0 2-4-0 8 2 1.425 2 1.575 3 2.34 4 2.221 2 1.425 2 1.575 6 2.704 5 2.858
daggen - 128000-0 5-0 2-2-0 8 2 1.835 2 1.872 4 2.88 5 2.994 2 1.839 2 1.875 7 3.517 6 3.689
daggen - 16000-0 5-0 8-4-0 8 2 1.787 2 1.806 3 2.528 3 2.646 2 1.786 2 1.805 4 2.955 4 3.1
daggen - 4000-0 2-0 8-4-0 8 2 1.066 2 1.08 3 1.95 3 1.97 2 1.066 2 1.08 4000 3.998 4000 3.998
daggen - 64000-0 2-0 2-4-0 8 2 1.214 2 1.203 3 2.085 3 2.115 2 1.214 2 1.203 4 2.476 4 2.555
polybench - kernel 2 mm 18 11.71 18 11.71 62 41.6 57 35.88 62 22.3 31 20.52 124 76.65 130 59.72
polybench - kernel 3 mm 20 13.05 20 13.05 102 48.3 52 43.05 51 30.82 52 28.54 153 97.71 154 77.7

(continued on next page)

80UsI0S Jeindwio)) uesd

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

/2122701 10Q “19S ‘Indwo) ria9d ‘(0202) ulliene)y pue seweig

*so-[1ead

VA £4

9¢/L1

Table 2 (continued)

Name Config-40-1, Config-40-H Config-512-L Config-512-H
GDCA GDCAv2 GDCA GDCAv2 GDCA GDCAv2 GDCA GDCAv2

G Sn. G Sn. G Sn. G Sn G Sn G Sn G Sp G Sp
polybench - kernel adi 10 6.045 10 6.161 23 15.39 24 16.19 10 6.045 10 6.161 30 20.81 34 21.43
polybench - kernel atax 35 13.84 35 13.84 105 55.41 105 55.41 63 42.83 63 42.83 420 150.3 420 150.3
polybench - kernel covariance 17 13.6 17 13.6 68 46.93 143 60.2 142 48.29 142 48.29 284 178.3 211 144.7
polybench - kernel doitgen 960 14.77 960 14.77 960 69.37 960 69.37 120 59.98 120 59.98 360 188.5 360 188.5
polybench - kernel durbin 6 1.756 12 1.806 24 4.954 24 5.322 6 1.752 12 1.809 30 7.983 40 8.594
polybench - kernel fdtd 2d 8 7.116 10 8.339 15 12.39 20 16.74 8 7.116 10 8.34 17 15.26 26 21.49
polybench - kernel gemver 9 8.349 27 12.14 19 17.86 117 45.44 9 8.398 39 24.19 27 24.73 117 83.47
polybench - kernel gesummv 31 14.44 31 14.44 114 61.21 114 61.21 503 83.4 503 83.4 503 333.8 503 333.8
polybench - kernel jacobi 1d imper 15 7.114 12 8.295 32 19.84 32 20.1 15 7.114 12 8.295 32 28.17 60 28.7
polybench - kernel jacobi 2d imper 5 4.853 7 6.046 11 8.184 18 11.85 5 4.853 7 6.046 11 9.841 24 18.02
polybench - kernel lu 16 11.47 17 9.404 39 24.65 39 22.85 22 13.69 16 11.02 86 38.65 89 33.95
polybench - kernel ludemp 17 6.668 13 6.379 48 16.48 32 16.96 17 7.366 17 6.895 48 24.71 60 25.38
polybench - kernel mvt 400 15.62 400 15.62 400 70.99 400 70.99 200 88.87 200 88.87 600 280.7 600 280.7
polybench - kernel seidel 2d 4 2.319 4 2.659 6 4.219 8 4.856 4 2.319 4 2.659 8 5.705 12 6.772
polybench - kernel symm 2400 15.89 2400 15.89 2400 77.36 2400 77.36 200 97.94 200 97.94 600 308.7 600 308.7
polybench - kernel syr2k 27 14.24 27 14.24 3726 77.85 3726 77.85 324 116.9 324 116.9 810 383.5 810 383.5
polybench - kernel syrk 27 14.24 27 14.24 3726 77.85 3726 77.85 324 116.9 324 116.9 810 383.5 810 383.5
polybench - kernel trisolv 8 4.732 8 4.732 25 15.14 25 15.14 9 4.87 9 4.87 25 18.61 25 18.61
polybench - kernel trmm 11 8.255 14 10.6 25 15.94 29 21.6 11 8.622 14 11.44 32 20.68 37 29

80UsI0S Jeindwio)) uesd

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

Speedup

—— GDCA

—— GDCAws

—— GDCAv2

---- Emulation with overhead
—— Real execution

(a) Legend

Intel-24t-4s - Size 40 Intel-24t-4s - Size 60

10!
10t 4

Speedup

0
10 100 4

0 20 40 60 80 100 0 20 40 60 80 100
Granularity (M) Granularity (M)
(b) (c)

Intel-32t-2s - Size 40 Intel-32t-2s - Size 60

10! 4
10! 4

Speedup
Speedup

i
1004

0 20 40 60 80 100 0 20 40 60 80 100
Granularity (M) Granularity (M)
(d) ()

Figure 6 Speedup obtained for the two test cases with different clustering strategies. We show the
speedup obtained from emulated executions (dashed lines) and from the real executions (plain lines). (A)

Inter-24t-4s Size 40. (B) Inter-24t-4s Size 60. (C) Inter-32t-2s Size 40. (D) Inter-32t-2s Size 60.
Full-size & DOI: 10.7717/peerjcs.247/fig-6

In the four configurations, the emulation of GDCAws (blue dashed line) is too optimistic
compared to the real execution (blue line): on Intel-24t, Figs. 6B and 6C, GDCAws
performed poorly (blue line), but on Intel-32t, Figs. 6D and 6E, GDCAws is efficient for
large granularities. However, even if it is efficient on average on Intel-32t, it never provides
the best execution. This means that having a flexible cluster size is not the best approach
for these graphs and that having fewer clusters but of a fixed size (even if it adds more
dependencies) seems more appropriate. Concerning the emulation, our model does not
catch the impact of having clusters of different sizes.

The emulation of GDCA is more accurate (dashed green line) when we compare it
with the real execution (green line), even if the real execution is always underperforming.
However, the global shape is correct and, importantly, the performance peaks that happen

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247

18/26

https://peerj.com
https://doi.org/10.7717/peerjcs.247/fig-6
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

in the emulation also happen in the real execution. This means that we can use emulated
executions to find the best clustering size for the GDCA. In terms of performance, GDCA
provides the best execution on the Intel-32t for M between 10 and 20.

The emulation of GDCAv2 is accurate for the Intel-24t (Figs. 6B and 6C) with a
superimposition of the plots (dashed/plain purple lines). However, it is less accurate for
the Intel-32t (Figs. 6D and 6E) where the real execution is underperforming compared to
the emulation. As for the GDCA, the peaks of the emulation of the GDCAv2 concord with
the peaks of the real executions. GDCAvV2 provides the best performance on the Intel-24t,
for M between 15 and 20.

GDCA and GDCAV2 have the same peaks; therefore, for some cluster sizes the degree
of parallelism is much better and the filling of the workers more efficient. But GDCAv2
is always better on the Intel-32t, while on the Intel-24t both are very similar except that
GDCA is faster at the peaks. While the difference is not necessarily significant this means
that the choice between GDCA and GDCAV?2 is machine-dependent.

CONCLUSION

The management of the granularity is one of the main challenges to achieve high-
performance using the tasks and dependencies paradigm. GDCA allows controlling
the granularity of the tasks by grouping them to obtain a macro-DAG. In this paper, we
have presented GDCAv2 and GDCAws two modified version of GDCA. We evaluated
the benefit of GDCA and GDCAv2 on emulated executions. We have demonstrated that
our modifications allow obtaining significant speedup in several cases but that it remains
unknown which of the two methods will give the best results. We evaluated the three
algorithms on a real application and we have demonstrated that clustering the DAG
allowed to get a speedup of 7 compared to executions without clustering. We were able
to find the best granularity using emulated execution based on a model that incorporates
different overheads.

Asaperspective, we would like to plug our algorithm directly inside an existing task-based
runtime system to cluster the DAG on the fly during the execution. This would require a
significant programming effort but will open the study of more applications and certainly
lead to improving not only the selection of the parameters but also the estimation of the
costs and the overheads. In addition, we would like to adapt the aggregate-selection during
the clustering process in order to always use the best of GDCA and GDCAv2.

ACKNOWLEDGEMENTS

The experiments presented in this paper were carried out using the PlaFRIM experimental
testbed, supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux
INP and Conseil Régional d’Aquitaine (see https://www.plafrim.fr/).

APPENDIX

Figures Al and A2 are examples of graph clustering with our method. Figure A3 shows an
example of a graph clustering and an emulated execution.

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 19/26

https://peerj.com
https://www.plafrim.fr/
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

16012]

v

o>
>
xxr
Brorer

114

goptetedety
gSgtedatetety
pirteipiyiviyiyivialy
¢ O o dub dao dab o i b b
b a3 o b dab b i S b b
| o o dub S dao dab b b e o b b
Sr Ty s tptytetytytytytaty
Tirieitatetetytytgtytety
pirielyigtatptetelalytety
pirtelytatatytolptyivty
pistelytgtatatelytely
A SIS
gtetetetedadoly

146 [117)

204 (137) 189 [137)

-
3 o <
137[1/:‘1/ 7 \Z‘HW:UJ/ 7 \1;7“/‘71

NN

Figure A1 Clustering of a graph of 256 nodes generated by propagation of the dependencies on a 2D
grid from one corner to the opposite one. The cluster size is M = 6. There are 43 clusters.
Full-size & DOTI: 10.7717/peerjcs.247/fig-7

Bramas and Ketterlin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.247 20/26

https://peerj.com
https://doi.org/10.7717/peerjcs.247/fig-7
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

iyiyiriptateteteta i tatolgts
ptptptptetotetolobolo i tgiptodgtstoatetetoty
phetptptetetotolelyriviylpbatototalotatetety
SSSSS U ITTUIty
gtetetetelstetatetelilololsletotototototototototety
ststetetolatety . 253
g¥gtatetedy

3o

3 2 32 4 3% 3% 3% % 3
I e

b 3% 6 4 3 5 5 3o 3 3
€ ¢ S S K S 6 6 S S ot ot o o
%ﬁﬁﬁﬁﬁ?

SR egzzs‘:*:*:*:*
prevettaty
phetety
€ 3% 3% 3 St edetetodedeted
eyttt T phatatetet
ptebabaty bybed
SR
S edes. C I oo b 9mb 5 4
R

3 3 3 e

SSULn
Setetetebebebell
S e
3oatetetsts

$ rrdrieie
ptedetetedstatatete gtetededededy
S 35Tatatetetetotatatetetatotatoty:
uﬁﬁ%&ﬁ%ﬁ\f‘?ééﬁ**
;
.
gtetetetetedetet
€ 0% 3 Jub b Jub Jnb 0 b 6 3 9ok ¢ o
3‘:‘3 3 X 3 : : : : : S S S
S

:fg
Satebedy:
3 / \:m;‘/ \‘ :
T stavatatetabetaty
S
ptetetetatatebetototatatetatatatet
Pedaty

Tedetoledetptololodstets
srptstetetetolotatety
ptstatedotatetety
Sedatededetedetedotedobedety:

g3gtptetptetatatatetetetedy
ghedetedetedy
e

Figure A2 Clustering of a graph of 1202 nodes generated by the transport equation on a disk. The clus-
ter size is M = 16. There are 76 clusters.
Full-size G DOI: 10.7717/peerjcs.247/fig-8

Bramas and Ketterlin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.247 21/26

https://peerj.com
https://doi.org/10.7717/peerjcs.247/fig-8
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

T T

(c)

Figure A3 Example of the Polybench Jacobi 2D clustering and execution. The graph was generated with
parameter iter = 10 and N = 10. The execution time obtained with granularity, (C), is slower than without
granularity, (B), because the overhead is limited and the dependencies makes it difficult to find a meta-
graph where the parallelism is not constraint. (A) Clustered graph with M = 4. Original graph has 1,280
nodes and estimated degree of parallelism of 56, clustered one has 320 nodes and estimated degree of par-
allelism of 4.2. (B) Emulation of the execution of the original graph with 8 threads in 391 units of time.
Each original task has a cost of 1, the overhead are 0 per task, 0.1 per push and 0.2 per pop. (C) Emulation
of the execution of the clustered graph with 8 threads in 351.3 units of time. Each original task has a cost
of 1, the overhead are 0 per task, 0.1 per push and 0.2 per pop.

Full-size Gl DOI: 10.7717/peerjcs.247/fig-9

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Bramas and Ketterlin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.247 22/26

https://peerj.com
https://doi.org/10.7717/peerjcs.247/fig-9
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Bérenger Bramas conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, performed the computation work, authored or reviewed drafts of the paper,
approved the final draft.

e Alain Ketterlin analyzed the data, authored or reviewed drafts of the paper, approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

An implementation of our method is publicly available at https://gitlab.inria.fr/bramas/
dagpar. The graphs used in this project are available at https://figshare.com/projects/
Dagpar/71198.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.247#supplemental-information.

REFERENCES

Agullo E, Aumage O, Bramas B, Coulaud O, Pitoiset S. 2017. Bridging the gap
between OpenMP and task-based runtime systems for the fast multipole method.
IEEE Transactions on Parallel and Distributed Systems 28(10):2794-2807
DOI 10.1109/TPDS.2017.2697857.

Agullo E, Bramas B, Coulaud O, Darve E, Messner M, Takahashi T. 2016. Task-based
FMM for heterogeneous architectures. Concurrency and Computation: Practice and
Experience 28(9):2608-2629 DOI 10.1002/cpe.3723.

Agullo E, Buttari A, Guermouche A, Lopez F. 2015. Task-based multifrontal QR solver
for GPU-accelerated multicore architectures. In: 2015 IEEE 22nd international
conference on high performance computing (HiPC). Piscataway: IEEE, 54-63
DOI 10.1109/HiPC.2015.27.

Augonnet C, Thibault S, Namyst R, Wacrenier P-A. 2011. StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience 23(2):187-198 DOI 10.1002/cpe.1631.

Bauer M, Treichler S, Slaughter E, Aiken A. 2012. Legion: expressing locality and
independence with logical regions. In: International conference on high performance
computing, networking, storage and analysis. Piscataway: IEEE, 66.

Bramas B. 2016. Optimization and parallelization of the boundary element method for
the wave equation in time domain. PhD thesis, Bordeaux University.

Bramas B. 2019a. Impact study of data locality on task-based applications through the
Heteroprio scheduler. Peer] Computer Science 5:190 DOI 10.7717/peerj-cs.190.

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 23/26

https://peerj.com
https://gitlab.inria.fr/bramas/dagpar
https://gitlab.inria.fr/bramas/dagpar
https://figshare.com/projects/Dagpar/71198
https://figshare.com/projects/Dagpar/71198
http://dx.doi.org/10.7717/peerj-cs.247#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.247#supplemental-information
http://dx.doi.org/10.1109/TPDS.2017.2697857
http://dx.doi.org/10.1002/cpe.3723
http://dx.doi.org/10.1109/HiPC.2015.27
http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.7717/peerj-cs.190
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

Bramas B. 2019b. Increasing the degree of parallelism using speculative execution in
task-based runtime systems. Peer] Computer Science 5:¢183 DOI 10.7717/peerj-cs.183.

Carpaye JMC, Roman J, Brenner P. 2018. Design and analysis of a task-based
parallelization over a runtime system of an explicit finite-volume CFD code
with adaptive time stepping. Journal of Computational Science 28:439-454
DOI10.1016/j.jocs.2017.03.008.

CongJ, Li Z, Bagrodia R. 1994. Acyclic multi-way partitioning of boolean networks. In:
31st design automation conference. 670675 DOI 10.1145/196244.196609.

Coulette D, Franck E, Helluy P, Mehrenberger M, Navoret L. 2019. High-order implicit
palindromic discontinuous Galerkin method for kinetic-relaxation approximation.
Comput. & Fluids 190:485-502 DOI 10.1016/j.compfluid.2019.06.007.

Danalis A, Bosilca G, Bouteiller A, Herault T, Dongarra J. 2014. PTG: an abstraction
for unhindered parallelism. In: Proceedings of the fourth international workshop on
domain-specific languages and high-level frameworks for high performance computing,
(WOLFHPC), IEEE. Piscataway: IEEE, 21-30.

Fiduccia CM, Mattheyses RM. 1982. A linear-time heuristic for improving network par-
titions. In: 19th design automation conference. 175-181 DOI 10.1109/DAC.1982.1585498.

Gautier T, Lima JVF, Maillard N, Raffin B. 2013. XKaapi: a runtime system for data-flow
task programming on heterogeneous architectures. In: 2013 IEEE 27th international
symposium on parallel & distributed processing (IPDPS). IEEE, 1299-1308.

Grauer-Gray S, Xu L, Searles R, Ayalasomayajula S, Cavazos J. 2012. Auto-tuning a
high-level language targeted to GPU codes. In: 2012 innovative parallel computing
(InPar). 1-10 DOT 10.1109/InPar.2012.6339595.

Hendrickson B, Kolda TG. 2000. Graph partitioning models for parallel computing.
Parallel Computing 26(12):1519-1534 DOI 10.1016/50167-8191(00)00048-X.

Hendrickson B, Leland R. 1995. A multi-level algorithm for partitioning graphs. In:
Supercomputing *95:proceedings of the 1995 ACM/IEEE conference on supercomputing.
Piscataway: IEEE, 28-28 DOI 10.1109/SUPERC.1995.242799.

Herrmann J, Kho J, U¢ar B, Kaya K, Catalyurek U. 2017. Acyclic partitioning of
large directed acyclic graphs. In: 2017 17th IEEE/ACM international symposium
on cluster, cloud and grid computing (CCGRID). Piscataway: IEEE, 371-380
DOI 10.1109/CCGRID.2017.101.

Johnson DS, Garey MR. 1979. Computers and intractability: a guide to the theory of NP-
completeness. New York: WH Freeman.

Karypis G, Aggarwa R, Kumar V, Shekhar S. 1999. Multilevel hypergraph partitioning:
applications in VLSI domain. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 7(1):69-79 DOI 10.1109/92.748202.

Karypis G, Kumar V. 1998. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on Scientific Computing 20(1):359-392
DOI10.1137/51064827595287997.

Kernighan B, Lin S. 1970. An efficient heuristic procedure for partitioning graphs. The
Bell System Technical Journal 49(2):291-307 DOI 10.1002/j.1538-7305.1970.tb01770.x.

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 24/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.183
http://dx.doi.org/10.1016/j.jocs.2017.03.008
http://dx.doi.org/10.1145/196244.196609
http://dx.doi.org/10.1016/j.compfluid.2019.06.007
http://dx.doi.org/10.1109/DAC.1982.1585498
http://dx.doi.org/10.1109/InPar.2012.6339595
http://dx.doi.org/10.1016/S0167-8191(00)00048-X
http://dx.doi.org/10.1109/SUPERC.1995.242799
http://dx.doi.org/10.1109/CCGRID.2017.101
http://dx.doi.org/10.1109/92.748202
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

Kernighan BW. 1971. Optimal sequential partitions of graphs. Journal of the ACM
18(1):34—40 DOIT 10.1145/321623.321627.

Kestor G, Gioiosa R, Chavarra-Miranda D. 2015. Prometheus: scalable and accurate em-
ulation of task-based applications on many-core systems. In: 2015 IEEE international
symposium on performance analysis of systems and software (ISPASS). Piscataway:
IEEE, 308-317 DOI 10.1109/ISPASS.2015.7095816.

Moustafa S, Kirschenmann W, Dupros F, Aochi H. 2018. Task-based programming on
emerging parallel architectures for finite-differences seismic numerical kernel. In:
Aldinucci M, Padovani L, Torquati M, eds. Euro-Par 2018: parallel processing. Cham:
Springer International Publishing, 764-777.

Myllykoski M, Mikkelsen CCK. 2019. Introduction to StarNEig—a task-based library for
solving nonsymmetric eigenvalue problems. ArXiv preprint. arXiv:1905.04975.

OpenMP Architecture Review Board. 2013. OpenMP application program interface
version 4.0. Available at http:// www.openmp.org/ wp-content/ uploads/ OpenMP4.0.
0.pdf .

Perez JM, Badia RM, Labarta J. 2008. A dependency-aware task-based programming
environment for multi-core architectures. In: 2008 IEEE international conference on
cluster computing. TEEE, 142—-151.

Pothen A, Alvarado LF. 1992. A fast reordering algorithm for parallel sparse triangular
solution. SIAM Journal on Scientific and Statistical Computing 13(2):645-653
DOI10.1137/0913036.

Purna KMG, Bhatia D. 1999. Temporal partitioning and scheduling data flow graphs
for reconfigurable computers. IEEE Transactions on Computers 48(6):579-590
DOI10.1109/12.773795.

Rossignon C. 2015. Un modéle de programmation 4 grain fin pour la parallélisation de
solveurs linéaires creux. PhD thesis, Bordeaux University.

Rossignon C, Pascal H, Aumage O, Thibault S. 2013. A numa-aware fine grain par-
allelization framework for multi-core architecture. In: 2013 IEEE international
symposium on parallel distributed processing, workshops and Phd forum. Piscataway:
IEEE, 1381-1390 DOI 10.1109/IPDPSW.2013.204.

Sarkar V. 1989. Partitioning and scheduling parallel programs for multiprocessors. Cam-
bridge: MIT Press.

Sarkar V, Hennessy J. 1986. Partitioning parallel programs for macro-dataflow.
Technical report. Stanford Univ CA Computer Systems Lab.

Schaeffer SE. 2007. Survey: graph clustering. Computer Science Review 1(1):27-64
DOI 10.1016/j.cosrev.2007.05.001.

Shun J, Roosta-Khorasani F, Fountoulakis K, Mahoney MW. 2016. Parallel local graph
clustering. ArXiv preprint. arXiv:1604.07515.

Sukkari D, Ltaief H, Faverge M, Keyes D. 2018. Asynchronous task-based polar decom-
position on single node manycore architectures. I[EEE Transactions on Parallel and
Distributed Systems 29(2):312—323 DOI 10.1109/TPDS.2017.2755655.

Suter F. 2013. DAGGEN: a synthethic task graph generator. Available at https:// github.
com/ frs69wq/ daggen (accessed on January 2019).

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 25/26

https://peerj.com
http://dx.doi.org/10.1145/321623.321627
http://dx.doi.org/10.1109/ISPASS.2015.7095816
http://arXiv.org/abs/1905.04975
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://dx.doi.org/10.1137/0913036
http://dx.doi.org/10.1109/12.773795
http://dx.doi.org/10.1109/IPDPSW.2013.204
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://arXiv.org/abs/1604.07515
http://dx.doi.org/10.1109/TPDS.2017.2755655
https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen
http://dx.doi.org/10.7717/peerj-cs.247

PeerJ Computer Science

Tagliavini G, Cesarini D, Marongiu A. 2018. Unleashing fine-grained paral-
lelism on embedded many-core accelerators with lightweight OpenMP task-
ing. IEEE Transactions on Parallel and Distributed Systems 29(9):2150-2163
DOI 10.1109/TPDS.2018.2814602.

Tillenius M. 2015. Superglue: a shared memory framework using data versioning for
dependency-aware task-based parallelization. SIAM Journal on Scientific Computing
37(6):C617—-C642 DOI 10.1137/140989716.

XuD, Tian Y. 2015. A comprehensive survey of clustering algorithms. Annals of Data
Science 2(2):165-193 DOI 10.1007/s40745-015-0040-1.

Bramas and Ketterlin (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.247 26/26

https://peerj.com
http://dx.doi.org/10.1109/TPDS.2018.2814602
http://dx.doi.org/10.1137/140989716
http://dx.doi.org/10.1007/s40745-015-0040-1
http://dx.doi.org/10.7717/peerj-cs.247

