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INTRODUCTION 
 

Locally recurrent rectal cancer (LRRC) is defined as 

the recurrence of rectal cancer (READ) only within  

the pelvis after radical resection [1]. LRRC is 

associated with symptoms of significant morbidity, 

such as rectal bleeding, bowel obstruction, chronic 

pain, fistulas, malodorous tumor discharge, tenesmus, 

and pelvic sepsis [2, 3]. LRRC generally occurs within 

2-3 years after the initial surgery [4]. Non-recurrent 

rectal cancer (NRRC) is defined as READ that has  

not recurred within 3 years after radical surgery. 

Historically, the introduction of total mesenteric 

excision (TME) has greatly reduced the local 

recurrence rate from 30% to 10% [3]. Combined with 

chemoradiotherapy, the local control (LC) rate for 

clinically localized READ ranges between 92% and 

96% [5, 6]. Up to 50% of recurrent READ patients 

have synchronously diagnosed distant metastases [7, 

8]. Meanwhile, nearly half of the patients with 

recurrence of READ are limited in the pelvis, which is 

defined as LRRC [8–10]. 
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ABSTRACT 
 

Locally recurrent rectal cancer (LRRC) leads to a poor prognosis and appears as a clinically predominant pattern 
of failure. In this research, whole-exome sequencing (WES) was performed on 21 samples from 8 patients to 
search for the molecular mechanisms of LRRC. The data was analyzed by bioinformatics. Gene Expression 
Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) were performed to validate the candidate 
genes. Immunohistochemistry was used to detect the protein expression of LEF1 and CyclinD1 in LRRC, primary 
rectal cancer (PRC), and non-recurrent rectal cancer (NRRC) specimens. The results showed that LRRC, PRC, and 
NRRC had 668, 794, and 190 specific genes, respectively. 
FGFR1 and MYC have copy number variants (CNVs) in PRC and LRRC, respectively. LRRC specific genes were 
mainly enriched in positive regulation of transcription from RNA polymerase II promoter, plasma membrane, 
and ATP binding. The specific signaling pathways of LRRC were Wnt signaling pathway, gap junction, and 
glucagon signaling pathway, etc. The transcriptional and translational expression levels of genes including 
NFATC1, PRICKLE1, SOX17, and WNT6 related to Wnt signaling pathway were higher in rectal cancer (READ) 
tissues than normal rectal tissues. The PRICKLE1 mutation (c.C875T) and WNT6 mutation (c.G629A) were 
predicted as “D (deleterious)”. Expression levels of LEF1 and cytokinin D1 proteins: LRRC > PRC > NRRC > 
normal rectal tissue. Gene variants in the Wnt signaling pathway may be critical for the development of 
LRRC. The present study may provide a basis for the prediction of LRRC and the development of new 
therapeutic drugs. 
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The causes and mechanism of LRRC have become a 

focus of current clinical medical research, highlighting 

the need for prevention of LRRC. Risk factors for 

LRRC occurrence include anastomotic leak, incomplete 

resection, intraoperative tumor perforation, high-grade 

pathology, and lack of adjuvant chemoradiotherapy 

[11]. LRRC is associated with short-term mortality, 

high reoperation rate, and additive healthcare costs 

[12]. Without treatment, the life expectancy of LRRC 

patients is limited and the quality of life is usually 

poor. Three major strategies for reducing the 

recurrence of READ are wider surgical coverage and 

neoadjuvant radiotherapy and neoadjuvant chemo-

therapy [13, 14]. However, neoadjuvant chemo-

radiation may significantly increase morbidity. Since 

LRRC portends a significantly worse oncologic 

outcome and quality of life, remarkable advances in 

surgical techniques and adjuvant chemoradiotherapy 

are improving the overall survival (OS) of LRRC. 

Although modern surgical techniques and multimodal 

therapies have proved to be effective, LRRC shows a 

significant treatment challenge. Some research showed 

a 5-year survival rate of 35% to 50% after surgery for 

LRRC [15, 16]. Chemotherapy alone can prolong OS 

to12 to 15 months, but it is not curable [8]. About 40% 

of LRRC patients have an opportunity for surgical 

treatment, but performing the operation can be a 

challenging option under such a situation [17]. 

Reoperation is very difficult and often needs to be 

combined with organ resection. The incidence of 

perioperative complications is specifically high, which 

is rare in domestic medical units. Therefore, how to 

prevent LRRC is the key to improve the survival and 

life quality of READ patients. 

 

The long-term outcome of surgical treatment mainly 

depends on the clear margin resection [16]. We 

speculated that the molecular mechanism of LRRC 

may also be related to the occurrence and prognosis of 

LRRC. The signal pathway related to distant 

metastasis of READ has been studied in detail as a hot 

spot. However, the molecular mechanism of LRRC has 

not been reported yet. Whole-exome sequencing 

(WES) can reveal mutations within exon coding 

regions. This study was based on WES to explore 

mutations associated with LRRC. 5 trios of LRRC  

and 3 pairs of NRRC samples were sequenced by 

WES. The data was analyzed systematically by 

bioinformatics. Gene Expression Profiling Interactive 

Analysis (GEPIA) and Human Protein Atlas (HPA) 

were performed to validate the candidate genes. 

Immunohistochemistry was used to detect the protein 

expression of candidate genes in LRRC, PRC, and 

NRRC specimens. Our findings provided a basis for 

predicting LRRC and developing new therapeutic 

agents. 

MATERIALS AND METHODS 
 

Patients and specimens 

 

The present study was reviewed and approved by the 

Ethics Committee of Huashan Hospital affiliated to 

Fudan University. We collected 21 samples, including 

15 tissue samples from five LRRC patients (PRC, 

adjacent normal rectal tissue, and LRRC) and three 

NRRC patients (NRRC and adjacent normal rectal 

tissue) from May 2019 to November 2019 at Huashan 

Hospital, Fudan University. HE-stained sections from 

each sample were subjected to an independent 

pathology review to confirm that the tumor specimens 

were histologically consistent with LRRC and that the 

adjacent tissue specimens contained no tumor cells. All 

participants provided written informed consent for 

genetic analysis. 
 

Whole-exome sequencing 
 

For every individual, the genomic DNA of cells from 

one or two regions of the PRC, LRRC, and matched 

normal rectal tissue samples were sequenced. DNA 

was extracted from formalin-fixed and paraffin-

embedded (FFPE) tissue blocks using MagPure FFPE 

DNA/RNA LQ Kit (Magen, Guangzhou, China).  

The DNA was then subjected to an additional quality 

and quantity evaluation step by utilizing NanoDrop 

ultra-micro spectrophotometer (Thermo Fisher 

Scientific, Wilmington, DE, USA) and Qubit 1X 

dsDNA HS Assay Kit (Thermo Fisher Scientific, 

Wilmington, DE, USA). Exome-coding DNA was 

captured with Agilent SSEL XTHS Human All Exon 

V6 (Agilent Technologies, Santa Clara, CA, USA), 

and the libraries were sequenced on an Illumina 

NovaSeq Platform (Illumina, San Diego, CA, USA), 

which produced 350-bp paired-end reads. 
 

Sequencing data analysis 
 

Raw sequencing data were filtered using the Trim 

Galore program to remove low quality reads at both 

ends of the sequencing [18]. The FastQC package 

(http://www.bioinformatics.babraham.ac.uk/projects/fas

tqc) was used to assess the quality score distribution of 

the sequencing reads. Read sequences were mapped to 

the human reference genome (GRCH37/hg19) using 

Burrows-Wheeler Aligner (BWA, v.0.7.15) with the 

default parameters, and duplicates were marked and 

discarded using Picard (http://broadinstitute.github.io/ 

picard). After alignment by BWA, the reads were 

subjected to local realignment and recalibration using 
the Genome Analysis Toolkit (GATK). Variants and 

genotypes calling were also performed using Genome 

Analysis Toolkit (GATK, v3.7). 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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Point substitutions in all tumor samples were counted 

and the proportion of each point substitution (C> A, C> 

G, C> T, T> A, T> C, and T> G) was calculated for 

both PRC and LRRC samples. The results were 

visualized by GraphPad Prism 8. 

 

ANNOVAR was utilized to annotate all called variants. 

The SNVs of the adjacent normal rectal tissue in PRC, 

LRRC, and NRRC samples were removed for further 

analysis. Mutations were screened before being subjected 

to pathway enrichment analysis. The minor allele 

frequency (MAF) of variants was evaluated in the 1000 

Genome Project (http://www.ncbi.nlm.nih.gov/variation/ 

tools/1000genomes/), ExAC (http://exac.broadinstitute. 

org/), variants of MAF<1% and annotated “.” (No 

annotation information in the database) were retained. 

Subsequently, the pathogenicity of variants was predicted 

according to SIFT (http://sift.jcvi.org), Polyphen2 

(http://genetics.bwh.harvard.edu/pph2) and FATHMM 

(http://fathmm.biocompute.org.uk/). Variants predicted 

by the three tools as “D (damaging)” were retained. 

 

CNVs were identified using open source software called 

CNVkit (v0.9.7), a tool kit to infer and visualize the copy 

numbers from targeted DNA sequencing data. Genes of 

copy number over “3” were selected, the copy number of 

“2” meant no CNV, the copy number over “2” meant a 

copy gain in some paired chromosomes. The CNVs of 

the adjacent normal rectal tissue in PRC, LRRC, and 

NRRC samples were removed for further analysis. 

 

Enrichment analyses of gene ontology (GO) and the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

 

The specific genes of PRC, LRRC, and NRRC samples 

were used to perform GO and KEGG enrichment 

analysis by DAVID 6.8 (https://david.ncifcrf.gov/). The 

results were considered as statistically significant if P 

value< 0.05. The top 15 enriched GO terms were 

visualized by BMKCloud (http://www.biocloud.net/), a 

free online platform for data analysis. The top 15 

KEGG pathways were visualized by R ggplot2 package. 

GO functional analysis was divided into three parts: 

biological process (BP), cellular component (CC), and 

molecular function (MF). 

 

Mutations of driver genes 

 

To look for potential LRRC drivers, mutations in 155 

TCGA rectal adenocarcinoma (https://www.cbioportal. 

org/) and 339 MSK READ patients were included in the 

analysis for comparison. Forty-eight genes with a high 

frequency of occurrence in both cases (TCGA Freq ≥ 
10%; MSK Freq ≥ 5%) were selected. The mutation 

patterns of these genes in PRC and LRRC tissues were 

then compared. 

mRNA and protein expression levels of hub genes 

 

To validate the expression of the key DEGs, the  

Gene Expression Profiling Interactive Analysis 

(GEPIA) website (http://gepia2.cancer-pku.cn/#index) 

was applied to analyze the data of RNA sequencing 

expression based on thousands of samples from the 

GTEx project and TCGA [19]. The association between 

overall survival (OS) and the genes expressed in GC 

patients was determined using GEPIA. The lower and 

upper 50% of gene expression were set as the standard 

for analysis. Log-rank test results with P<0.05 were 

regarded as statistically significant. Besides, the GEPIA 

was employed to visualize the mRNA expression of hub 

genes in tumors and normal samples. 

 

The Human Protein atlas (HPA) database 

(https://www.proteinatlas.org/) is a free online database 

that provides abundant transcriptome and proteome 

data on human normal or pathological tissues through 

RNA-sequence analysis and immunohistochemical 

analysis. In the present study, the protein expression 

and distribution of hub genes were investigated in  

GC tissues and compared with normal tissues in  

HPA [18]. 
 

Immunohistochemistry 
 

The Formalin-Fixed and Paraffin-Embedded (FFPE) 

samples were used in this study. 3-mm tumor sections 

were incubated with commercial rabbit polyclonal 

antibodies against LEF1 (ab137872, abcam) and cyclin 

D1 (ab16663, abcam) at 1/100 dilution overnight at 4° C. 

Then, the sections were conjugated with HRP-Sheep 

Anti-Rabbit IgG-HRP-Sheep Anti-Mouse IgG antibody 

(BOSTER BA1056, 1:500 dilution;) at room temperature 

for 2 h, then covered by 3, 3-diaminobenzidine (DAB) 

(Vector Laboratories, Burlingame, CA). Elivision plus kit 

for immunohistochemistry (IHC) (KIT-990, MXB) was 

used in this study. 
 

Statistical analyses 
 

Fisher’s exact test was used to assess differences in the 

count data. Top 15 significant GO terms of BP, MF, 

and CC were listed according to the p-value. Top 15 

significant KEGG pathways were listed according  

to the p-value. P<0.05 was considered statistically 

significant. 

 

RESULTS 
 

WES data 

 

The clinical characteristics of the eight patients are 

listed in Supplementary Table 1. Age range is 45-71 

http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
http://exac.broadinstitute.org/
http://exac.broadinstitute.org/
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2
http://fathmm.biocompute.org.uk/
https://david.ncifcrf.gov/
http://www.biocloud.net/
https://www.cbioportal.org/
https://www.cbioportal.org/
http://gepia2.cancer-pku.cn/#index
https://www.proteinatlas.org/
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years. The gender included 8 males. The tumor size 

included 4 patients (2cm), 3 patients (3cm), and 1 

patient (4cm), and 1 patient (5cm). The pathologic 4 

stage I, 3 stage II, and 1 stage III. The sequencing 

quality of the WES was analyzed and the raw data, Q30 

(proportion of mapped reads) and mean depth of each 

sample are shown. As shown in Supplementary Table 2, 

all samples had Q30 ratio >90%, good sequencing 

quality, >90% of mapped reads, and an average 

sequencing depth > 200 x, which was sufficient to 

identify mutations. 

 

Mutational signatures of LRRC and PRC tumors 

 

All point substitutions were divided into six groups 

(C>A, C>G, C>T, T>A, T>C and T>G) according to 

the direction of the mutation. In total, 97862 and 47292 

somatic substitutions were identified in all PRC and 

LRRC tissues by comparing them with the matched 

adjacent normal samples. The proportion of each group 

was different, but the proportion of all six mutant 

groups did not differ significantly between LRRC and 

matched PRC tissues (Figure 1). 

 

The common variations in LRRC and PRC tumors 

 

After removing the control SNVs from PRC and LRRC 

samples, the focus was on common variations. In PRC, 

four genes, including MYCN, SCRIB, SNAPC4, and 
MED15, were identified with eight mutations (Table 1). 

Notably, the SCRIB mutation (c.T233G) was predicted 

as “D (deleterious)” by SIFT and Polyphen2 software. 

In the LRRC, two genes, including SCRIB and RUSC2 

(Table 2), were found to have three mutations. 

Interestingly, LRRC had the same SCRIB mutation as  

 

 
 

Figure 1. Divergent mutational features in LRRC and PRC 
samples of LRRC patients. Six mutational subtypes in LRRC 

and PRC tissues. LRRC tissues are presented in orange, and the 
PRC tissues are presented in cyan. 

PRC. In addition, two frame shift mutations were found 

in the RUSC2 gene (c.831_833del, c.3465_3467del). 

 

The biological process and pathways related to PRC, 

LRRC, and NRRC 

 

In the PRC samples, there were 110,198 variants after 

removing the control mutations, 2388 variants after 

screening, and 1479 genes after further deduplication. 

In the LRRC samples, there were 100061 variants after 

removing the control variants, 2076 variants after 

screening, and 1360 genes after further deduplication. 

In the NRRC samples, there were 23067 variants after 

removing the control variants, 573 variants after 

screening, and 481 genes after further deduplication. 

The PRC, LRRC, and NRRC had 794, 668, and 190 

specific genes, respectively (Figure 2). There were 472 

likely pathogenic genes shared by the PRC and LRRC 

samples. The genes including 668 genes and 472 genes 

were important for the development of LRRC. 

 

In PRC samples, GO functional analysis showed that the 

specific genes were mainly enriched in the biological 

process of positive regulation of negative regulation of 

apoptotic process and apoptotic cell clearance (Figure 3A 

and Supplementary Table 3). The genes were mainly 

enriched in signaling pathways such as proteoglycans in 

cancer, ECM-receptor interaction, ErbB signaling 

pathway, and protein digestion and absorption (Figure 3B 

and Supplementary Table 4). In LRRC samples, specific 

genes were mainly enriched in the biological process 

including angiogenesis and regulation of transcription 

from RNA polymerase II promoter (Figure 4A and 

Supplementary Table 5). The genes were mainly 

enriched in the signaling pathways such as glucagon 

signaling pathway, gap junction, axon guidance, and 

metabolic pathways (Figure 4B and Supplementary Table 

6). In NRRC samples, specific genes were mainly 

enriched in the biological process including regulation of 

cell proliferation and positive regulation of extrinsic 

apoptotic signaling pathway in the absence of ligand 

(Figure 5A and Supplementary Table 7). The genes  

were mainly enriched in the signaling pathways such  

as peroxisome, metabolic pathways, and butanoate 

metabolism (Figure 5B and Supplementary Table 8). 

 

Wnt signaling pathway is one of the specific pathways 

in LRRC 

 

Venn analysis of the enriched KEGG pathway was 

performed on five sets of samples. As shown in  

Figure 6, there are 7 specific pathways in LRRC, 

including Wnt signaling pathway, Gap junction, 
Glucagon signaling pathway, Axon guidance, Thyroid 

hormone synthesis, Morphine addiction and Glycine, 

serine and threonine metabolism. 
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Table 1. Common variations in PRC samples. 

Gene Mutation type Variants 1000g2015_eas ExAC eas SIFT Polyphen2 

MYCN Frame shift insertion c.87dupC - - - - 

SCRIB Nonsynonymous c.233T>G - - D D 

SNAPC4 Nonsynonymous c.3158T>A - - D B 

MED15 Synonymous 

c.1035G>C - - - - 

c.1197G>C 

- - - - 
c.1170G>C 

c.1248G>C 

c.1368G>C 

 

Table 2. Common variations in LRRC samples. 

Gene Mutation type Variants 1000g2015_eas ExAC eas SIFT Polyphen2 

SCRIB Nonsynonymous c.233T>G - - D D 

RUSC2 Non-frameshift deletion 
c.831_833del 

c.3465_3467del 
- - - - 

 

 
 

Figure 2. Venn diagram of likely pathogenic genes associated with PRC, LRRC, and NRRC. PRC, primary rectal cancer; NRRC, non-
recurrent rectal cancer; LRRC, local recurrent rectal cancer. 
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The variations of genes related to Wnt signaling 

pathway in LRRC 

 

In the present study, 24 genes were enriched in Wnt 

signaling pathway of LRRC samples (Table 3). And  

12 genes were enriched only in Wnt signaling pathway 

of LRRC samples (Supplementary Table 6). The 

variations of the 12 genes were listed in Table 4. 15 

variations of the 12 genes were predicted as “D 

(deleterious)” by SIFT, Polyphen2, and FATHMM 

software, which were critical to the development of 

LRRC. 

 

 
 

Figure 3. GO and KEGG enrichment analysis of PRC samples. (A) The top 15 enriched GO terms. (B) The top 15 significant KEGG 

pathways. Fold enrichment represents the degree of enrichment. The size of the bubble indicates the number of genes. The depth of bubble 
color indicates the level of significance. 
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Analysis of the genes related to Wnt signaling 

pathway via GEPIA and HPA databases 

 

As shown in Figure 7, the expression levels of 

NFATC1, PRICKLE1, SOX17, and WNT6 in CRC 

tissues were significantly lower than in normal tissues. 

The protein expression levels of the genes in CRC were 

explored using the HPA database (Figure 8). The 

protein levels of NFATC1 were not expressed in CRC 

tissues and normal tissues. The protein level of 

PRICKLE1 was not expressed in CRC tissues, whereas 

the low protein expression level of PRICKLE1 was 

 

 
 

Figure 4. GO and KEGG enrichment analysis of LRRC samples. (A) The top 15 enriched GO terms. (B) The top 15 significant KEGG 
pathways. Fold enrichment represents the degree of enrichment. The size of the bubble indicates the number of genes. The depth of bubble 
color indicates the level of significance. 
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observed in normal tissues. The protein levels of 

SOX17 and WNT6 were not expressed in CRC tissues, 

whereas the low protein expression levels of SOX17 

and WNT6 were observed in normal tissues. In 

summary, the present results indicated that the 

transcriptional and translational expression levels of the 

hub genes were overexpressed in patients with CRC. 

LEF1 and cyclin D1 are key genes in the Wnt signaling 

pathway. IHC was performed to test LEF1 and cyclin 

D1 protein expression in adjacent normal rectal  

tissue, PRC and LRRC FFPE samples. As shown in 

Figures 9, 10, the expression of LEF1 and cyclin D1 

 

 
 

Figure 5. GO and KEGG enrichment analysis of NRRC samples. (A) The top 15 enriched GO terms. (B) The top 15 significant KEGG 
pathways. Fold enrichment represents the degree of enrichment. The size of the bubble indicates the number of genes. The depth of bubble 
color indicates the level of significance. 



 

www.aging-us.com 23270 AGING 

proteins was higher in PRC compared to adjacent 

normal rectal tissue; the expression of LEF1 and cyclin 

D1 proteins was higher in LRRC compared to PRC; and 

the expression of LEF1 and cyclin D1 proteins was 

higher in PRC compared to NRRC. The above results 

suggest that the Wnt signaling pathway may play an 

important role in the development of LRRC. 

 

Analysis of driver genes in LRRC 

 

Based on the database, 48 possible driver genes were 

selected. As shown in Figure 11, Mutations in the 

genes, including MUC17, TTN, SYNE1, MUC16, FAT4, 

FLG, CSMD1, FAT3, RYR1, COL6A3, NEB, OBSCN, 
ZFHX4, TCF7L2, ERN3, NOTCH3, KMT2C, and 

PTRRT, were detected in both LRRC and PRC samples 

from five LRRC patients. Mutations in PEG3, NRAS, 

and BRAF did not occur in the PRC samples of the five 

patients. In LRRC samples, PEG3 mutations were 

present in 4 samples, NRAS in 1 sample, and BRAF in 

1 sample. The other 27 mutations were present in some 

of the LRRC or PRC samples. 

The CNVs in PRC and LRRC 

 

After removing the control CNVs from PRC and LRRC 

samples, the focus was on specific CNVs. As shown in 

Table 5, FGFR1 and MYC were found to be genes 

specific for CNVs in PRC and LRRC, respectively. 

Besides, FGFR3 CNVS were occurred in both PRC and 

LRRC. The copy numbers of FGFR3 in PRC and 

LRRC tumors were 3.542 and 3.548, respectively. Due 

to the sample size, after removing control CNVs, no 

CNVs was found in NRRC. There were no significant 

CNVs related to Wnt pathway. 

 

DISCUSSION 
 

WES has a high sensitivity to common, rare, and low-

frequency mutations. It could find the most disease-

related mutations in the exon region, and only needs to 

sequence about 1% of the genome [20]. WES had been 

widely used in CRC to detect the mutational landscape 

of CRC populations and provided novel insights into the 

treatment and prognosis of CRC in the clinic [21]. 

 

 
 

Figure 6. Venn diagram of specific pathways in PRC, LRRC, NRRC, 472, and LRRC+472. 472, 472 common genes; LRRC+472, LRRC+ 

472 common genes. 
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Table 3. The specific pathways in LRRC samples. 

Term Count % P-Value 

hsa04310: Wnt signaling pathway 24 0.013840352 0.000623 

hsa04540: Gap junction 23 0.01326367 0.000001 

hsa04922: Glucagon signaling pathway 22 0.012686989 0.000032 

hsa04360: Axon guidance 22 0.012686989 0.001176 

hsa04918: Thyroid hormone synthesis 16 0.009226901 0.000375 

hsa05032: Morphine addiction 15 0.00865022 0.013851 

hsa00260: Glycine, serine and threonine metabolism 9 0.005190132 0.011322 

 

Table 4. Variations of genes related to Wnt signaling pathway in LRRC Samples. 

Gene Mutation type AAChange SIFT FATHMM Frequency 

CHD8 nonsynonymous  NM_001170629: exon30: c.G5564T: p.R1855L D D 0.012788 

CHD8 nonsynonymous  NM_001170629: exon17: c.G3542A: p.G1181E D D 0.051282 

FZD5 nonsynonymous  NM_003468: exon2: c.C728T: p.S243L D D 0.019231 

FZD5 nonsynonymous  NM_003468: exon2: c.C155T: p.P52L D D 0.042857 

NFATC1 nonsynonymous  NM_001278673: exon4: c.C236T: p.T79M D D 0.015842 

PLCB3 nonsynonymous  NM_001184883: exon15: c.G1736A: p.R579H D D 0.018927 

PRICKLE1 nonsynonymous  NM_001144881: exon7: c.C875T: p.P292L D D 0.051471 

PRICKLE2 nonsynonymous  NM_198859: exon7: c.A908C: p.Q303P D D 0.023973 

PRICKLE2 nonsynonymous  NM_198859: exon8: c.G2081A: p.R694H D D 0.010539 

PRKACA nonsynonymous  NM_001304349: exon6: c.G727A: p.D243N D D 0.036364 

SMAD4 nonsynonymous  NM_005359: exon11: c.C1373T: p.A458V D D 0.035088 

SOX17 nonsynonymous  NM_022454: exon2: c.G1075A: p.D359N D D 0.034483 

TCF7L1 nonsynonymous  NM_031283: exon8: c.A920C: p.H307P D D 0.05291 

VANGL2 nonsynonymous  NM_020335: exon2: c.C23T: p.S8L D D 0.023729 

WNT6 nonsynonymous  NM_006522: exon3: c.G629A: p.G210D D D 0.055046 

 

 

Figure 7. Validation of the mRNA expression levels of NFATC1, PRICKLE1, SOX17, and WNT6 in READ tissues and normal 
rectal tissues using GEPIA. The red box represents READ samples (92), and the gray box represents normal samples (318). READ, rectal 

adenocarcinoma. Significance markers: ***, p<0.001. 
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Figure 8. Representative immunohistochemistry images of (A) NFATC1; (B) PRICKLE1; (C) SOX7; (D) WNT6 in CRC and colorectal tissues 

derived from the HPA database. HPA, Human Protein Atlas. 
 

 
 

Figure 9. The expression of LEF1 in FFPE samples. (A) DST-LRRC; (B) DST-PRC; (C) DST-rectal tissue; (D) LZQ-LRRC; (E) LZQ-PRC; (F) LZQ-
rectal tissue; (G) LHC-NRRC; (H) LHC-rectal tissue; (I) SCC-NRRC; (J) SCC-rectal tissue. Scale bar=50μm. 
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Figure 10. The expression of cyclin D1 in FFPE samples. (A) DST-LRRC; (B) DST-PRC; (C) DST-rectal tissue; (D) LZQ-LRRC; (E) LZQ-PRC;  
(F) LZQ-rectal tissue; (G) LHC-NRRC; (H) LHC-rectal tissue; (I) SCC-NRRC; (J) SCC-rectal tissue. Scale bar=50μm. 
 

 
 

Figure 11. Potential driver genes related to LRRC. Forty-eight genes included (1) genes reported as significantly mutated genes in the 

previous study in CRC; (2) genes with a higher mutation rate in the cohort (TCGA Freq≥10%; MSK Freq≥5%). 
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Table 5. The CNVs of PRC and LRRC samples. 

Sample Chromosome Start End Gene Depth Copy_number 

P1-primary Chr4 1803536 1803776 FGFR3 677.633 3.12 

P2-primary Chr4 1803536 1803776 FGFR3 493.65 3.04 

P3-primary Chr4 1803536 1803776 FGFR3 699.067 3.27 

P3-primary Chr11 69588723 69588963 FGF4 655.746 3.24 

P3-primary Chr8 38282001 38282241 FGFR1 886.567 3.79 

P4-primary Chr4 1803284 1803510 FGFR3 414.624 4.15 

P5-primary Chr4 1803536 1803776 FGFR3 986.671 4.13 

P5-primary Chr11 69588723 69588963 FGF4 580.725 3.04 

P1-recurrent Chr4 1803284 1803510 FGFR3 273.934 3.71 

P2-recurrent Chr4 1803536 1803776 FGFR3 543.558 3.37 

P3-recurrent Chr4 1803284 1803510 FGFR3 200.765 3.38 

P4-recurrent Chr4 1803536 1803776 FGFR3 772.854 3.92 

P4-recurrent Chr11 69588723 69588963 FGF4 494.054 3.08 

P5-recurrent Chr4 1803536 1803776 FGFR3 472.738 3.36 

P5-recurrent Chr8 128750764 128751028 MYC 2600.53 12.58 

 

LRRC refers to the recurrence of READ after radical 

resection. In addition to negative distal and circum-

ferential margins, radical resection also requires no 

lateral or distant lymph node metastasis. Attention 

should also be paid to tumor-free operations, including 

irrigation before anastomosis. However, the evolution 

of LRRC at the genome level remains unknown. In the 

present study, WES was performed on PRC, LRRC, and 

NRRC samples to detect the mutational characteristics 

of LRRC and discover the specific genes and related 

pathways. The results of the study showed that LRRC 

tissues exhibit different mutation profiles. 

 

Many studies have explored the relationship between 

mutations in key driver genes and CRC metastasis [22]. 

The specific genes of PRC were found, including MYCN, 

SCRIB, SNAPC4, and MED15. MYCN is a member of the 

MYC family. The amplification of MYCN is related to 

many tumors, most notably neuroblastoma [23]. A frame 

shift mutation (c.87dupC) was found in the MYCN gene 

in 5 PRC samples, which was a clinically unknown 

mutation. SCRIB is a membrane protein that is involved 

in the maintenance of the apical basal cell polarity of 

epithelial tissues. It plays a tumor-suppressive role in the 

progression of skin and liver cancer [24]. Notably, a 

pathogenic mutation of SCRIB (c.T233G) was found in 

both PRC and LRRC samples. SCRIB affects tumor 

development by negatively modulating the Wnt/β-catenin 

signaling pathway [25]. It is suggested that SCRIB may 

affect the occurrence and development of READ through 

the Wnt/β-catenin signaling pathway. SNAPC4 gene 
encodes the largest subunit of the small nuclear RNA-

activating protein (SNAP) complex, and its role in cancer 

is unknown. A nonsynonymous mutation was found in 

the SNAPC4 gene (c.T3158A) was damaged (SIFT). 

MED15 is part of the multiprotein mediator complex, 

which plays a cancer-promoting role in urothelial bladder 

cancer (BCa) and renal cell carcinoma (RCa). 

 

Two specific genes of LRRC samples were found, 

including SCRIB and RUSC2. Non-frameshift mutations 

of the RUSC2 (c.831_833del, c.3465_3467del) were 

found in LRRC samples. RUSC2 interacts with the SHD 

domain of GIT2 and reduces GIT2 degradation, which 

regulates lung cancer progression through EGFR 

signaling [26]. Whether RUSC2 affects the progression 

of LRRC through EGFR signaling needs further 

research. 

 
FGFR1 and MYC were the specific genes of CNVs for 

PRC and LRRC, respectively. Genetic aberrations in 

FGFRs have been reported in a variety of cancers, 

including gastric, lung, and breast cancers [27]. FGFR1 

amplification was previously shown to be associated 

with resistance to endocrine therapy, shorter time to 

distant metastasis, and shorter overall survival in HR+ 

breast cancer [28]. MYC amplification plays an 

important role in the progression of CRC [29]. 

 

The pathways involved in PRC and LRRC are different. 

The specific pathways enriched in the PRC were the 

pentose phosphate pathway, fructose and mannose 

metabolism, proteoglycans in cancer, ECM-receptor 

interaction, and protein digestion and absorption. They 

were involved in the occurrence, development, and 
metastasis of CRC [30–33]. The pathogenic genes of 

NRRC were mainly enriched in peroxisome and 

butanoate metabolism. In CRC tissues, the peroxisome 
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proliferator-activated receptor (PPAR) signaling 

pathway was down-regulated [34]. Several studies have 

shown that PPARγ activation promotes cell cycle arrest, 

apoptosis, and differentiation in many human tumors, 

and selective synthetic ligands have been shown to act 

as potential antitumor drugs [35]. It is suggested that the 

peroxisome limits the LRRC through the PPAR 

signaling pathway. 

 

In this study, the specific signaling pathways of LRRC 

were Wnt signaling pathway, gap junction, glucagon 

signaling pathway, axon guidance, thyroid hormone 

synthesis, morphine addiction, glycine, serine and 

threonine metabolism. The present study focused on the 

Wnt signaling pathway. The PRICKLE1 mutation 

(c.C875T) and WNT6 mutation (c.G629A) were 

predicted as “D (deleterious)” by SIFT, Polyphen2 and 

FATHMM software, which were critical to the 

occurrence of LRRC (Table 4). The expression of LEF1 

and cyclin D1 proteins of Wnt signaling pathway was 

higher in PRC compared to NRRC. Carbonic anhydrase 

IV (CA4) inhibits the Wnt signaling pathway by 

targeting the WTAP-WT1-TBL1 axis and is a novel 

tumor suppressor in CRC [36]. Agrin (AGRN) may act 

as an oncogenic indicator of READ through activation 

of the WNT pathway, which could help in the 

development of optimal treatments for READ [37]. 

Activation of Wnt signaling as a mechanism of 

chemoresistance in recurrent small cell lung cancer 

(SCLC) [38]. PRC1, a novel Wnt target, functions in a 

positive feedback loop that reinforces Wnt signaling to 

promote early Hepatocellular carcinoma (HCC) 

recurrence [39]. AKIP1 is a novel regulator of Wnt/β-

catenin signaling and early relapse of HCC [40]. These 

findings suggest that the development of small molecule 

drugs that target the Wnt pathway may be important for 

LRRC. 

 

Neoplastic transformation is frequently associated with 

a loss of gap junction intercellular communication and a 

reduction in the expression of connexins in various 

tumor types [41]. Furthermore, gap junctions may have 

distinct functional roles in cell growth and cell invasion, 

as a gap junction inhibitor decreases the invasion of 

prostate cancer cells [42]. Studies have found that 

glucagon signaling pathway may be involved in the 

progression of CRC [43]. Synthesis and growth of 

tumor proteins can be stimulated by glucagon in situ 

[44]. Several lines of evidence indicate that axon 

guidance genes are involved not only in neural 

development but also in cancer development. ROBO1 

and ROBO2, crucial regulators of axon guidance, are 

considered potential tumor suppressor genes [45]. 
Multiple studies have shown a significant connection 

between hypothyroidism and pancreatic, gastric, and 

breast cancer [46]. Deregulation of Thyroid Hormones 

(THs) system in Colorectal Cancer (CRC) suggests that 

these hormones may play roles in CRC pathogenesis 

[47]. Morphine promotes tumorigenesis and cetuximab 

resistance via EGFR signaling activation in human 

colorectal cancer [48]. Glycolysis and glycine, serine 

and threonine were activated in CRC, and these 

alterations may promote cell proliferation [49]. 
 

Besides, this study found two KEGG pathways shared 

by PRC and LRRC, including signaling pathways 

regulating pluripotency of stem cells and estrogen 

signaling pathway. Cancer stem cells (CSCs) are 

involved in the occurrence and recurrence of CRC and 

have been identified [50]. Estrogen signaling pathway 

may be involved in the occurrence of CRC, but the 

specific mechanism is not yet clear [51]. These two 

pathways may be involved in the progression from PRC 

to LRRC. 
 

There are certain limitations in the present study. The 

number of patients used for this study was too small. 

Although this study can’t yield a definitive conclusion, 

Wnt signaling pathway may play a critical role in 

LRRC. Although we used some tractable methods to 

validate the possible biological significance of Wnt 

signaling pathway mutations in LRRC, the specific 

functions and molecular mechanisms of the Wnt 

signaling pathway in LRRC need to be further explored. 

 

CONCLUSIONS 
 

We described the mutation characteristics of LRRC, 

PRC, and NRRC in the present study. Our results 

showed that LRRC, PRC, and NRRC had different 

genomic characteristics and involved different 

pathways. The signaling pathway of Wnt signaling 

pathway, Gap junction, Glucagon signaling pathway, 

Axon guidance, Thyroid hormone synthesis, Morphine 

addiction, and Serine and threonine metabolism may be 

related to the occurrence of LRRC. The genes including 

NFATC1, PRICKLE1, SOX17, and WNT6, related to 

Wnt signaling pathway, may play a critical role in 

LRRC. Further translational and clinical research is 

imperative to investigate new therapeutic strategies for 

LRRC. 
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Supplementary Tables 

 

 

 

Supplementary Table 1. Characteristics of the patients in this study. 

Number Age Gender Tumor size, cm Tumor stage Pathological description 

LRRC (first operation)      

1-LJ 45 male 3 T2N0M0 I adenocarcinoma 

2-LZC 62 male 2 T2N0M0 I adenocarcinoma 

3-SYJ 69 male 2 T4aN0M0 IIB adenocarcinoma 

4-WLJ 57 male 4 T4aN2M0 IIIC adenocarcinoma 

5-WGR 71 male 2 T1N0M0 I adenocarcinoma 

NRRC      

1-SL 49 male 3 T4aN0M0 IIB adenocarcinoma 

2-SCC 61 male 2 T1N0M0 I adenocarcinoma 

3-LHC 70 male 5 T4aN0M0 IIB adenocarcinoma 

 

Supplementary Table 2. Quality of whole-exome sequencing. 

Patient ID Raw data (Mb) Q30 [Total] fraction of mapped reads (%) [Target] average depth 

P1-N 17918.2 92.18% 95.58 243.04 

P1-P 38812.2 93.14% 92.92 527.11 

P1-R 12741.7 93.38% 97.00 187.55 

P2-N 17989.6 92.32% 99.23 251.08 

P2-P 20155.4 92.78% 98.32 250.19 

P2-R 22565.7 92.70% 99.30 319.95 

P3-N 18089.1 92.31% 99.10 241.69 

P3-P 23193.9 92.85% 98.99 334.37 

P3-R 26373.1 92.99% 96.58 370.91 

P4-N 17481.1 92.58% 99.20 243.31 

P4-P 15413.3 94.65% 96.44 224.44 

P4-R 16435.2 95.02% 99.38 232.93 

P5-N 16383.6 92.07% 98.67 214.39 

P5-P 23762.6 92.84% 98.65 337.59 

P5-R 18689.8 93.13% 99.34 247.94 

P6-N 26541.1 93.68% 93.56 332.02 

P6-NR 29528.5 94.17% 95.81 398.69 

P7-N 15592.5 96.32% 93.19 217.23 

P7-NR 15828.1 96.18% 93.51 224.44 

P8-N 15890.8 95.41% 91.16 181.46 

P8-NR 16316.7 96.16% 93.82 196.02 

N, Normal rectal cancer; P, Primary rectal cancer; R, Local-recurrent rectal cancer; NR, Non-recurrent rectal cancer. 
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Supplementary Table 3. Top 15 significant GO terms of BP, MF and CC in PRC samples. 

Category Term Count P-Value 

BP positive regulation of transcription from RNA polymerase II promoter 73 9.28E-06 

BP negative regulation of apoptotic process 40 4.49E-05 

BP positive regulation of transcription, DNA-templated 43 7.15E-05 

BP in utero embryonic development 21 1.97E-04 

BP apoptotic cell clearance 6 3.24E-04 

CC integral component of plasma membrane 93 1.35E-05 

CC membrane raft 24 1.82E-05 

CC plasma membrane 217 9.55E-05 

CC endoplasmic reticulum lumen 20 4.54E-04 

CC transcription factor complex 20 4.85E-04 

MF sequence-specific DNA binding 51 1.88E-07 

MF structural molecule activity 28 1.43E-05 

MF ATP binding 98 7.53E-05 

MF steroid hormone receptor activity 10 7.25E-04 

MF protein homodimerization activity 52 8.40E-04 

 

Supplementary Table 4. The KEGG pathways in PRC samples. 

Term Count % P-Value 

Chronic myeloid leukemia 11 0.009228652 0.003544157 

Melanogenesis 13 0.010906589 0.005012796 

Signaling pathways regulating pluripotency of stem cells 16 0.013423494 0.005374073 

Glioma 10 0.008389684 0.005678579 

Platelet activation 15 0.012584526 0.006738809 

Acute myeloid leukemia 9 0.007550716 0.00739768 

Hepatitis C 15 0.012584526 0.008209968 

Oxytocin signaling pathway 16 0.013423494 0.010028696 

Estrogen signaling pathway 12 0.010067621 0.012404787 

Leukocyte transendothelial migration 13 0.010906589 0.014795069 

Pentose phosphate pathway 6 0.00503381 0.015005993 

Fructose and mannose metabolism 6 0.00503381 0.022446568 

Dilated cardiomyopathy 10 0.008389684 0.027945534 

Proteoglycans in cancer 18 0.015101431 0.028185022 

Prolactin signaling pathway 9 0.007550716 0.028536839 

ECM-receptor interaction 10 0.008389684 0.034080997 

ErbB signaling pathway 10 0.008389684 0.034080997 

Prostate cancer 10 0.008389684 0.036317726 

Protein digestion and absorption 10 0.008389684 0.036317726 

HTLV-I infection 21 0.017618336 0.037392779 

Rap1 signaling pathway 18 0.015101431 0.042070079 

Hypertrophic cardiomyopathy (HCM) 9 0.007550716 0.046279642 
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Supplementary Table 5. Top 15 significant GO terms of BP, MF and CC in LRRC samples. 

Category Term Count P-Value 

BP positive regulation of transcription from RNA polymerase II promoter 65 1.42E-05 

BP retina development in camera-type eye 11 5.71E-05 

BP nervous system development 26 9.90E-05 

BP angiogenesis 22 1.19E-04 

BP negative regulation of transcription from RNA polymerase II promoter 48 2.01E-04 

CC plasma membrane 191 2.91E-05 

CC integral component of plasma membrane 79 6.36E-05 

CC cell-cell junction 17 4.27E-04 

CC mitochondrion 71 5.91E-04 

CC stress fiber 9 5.94E-04 

MF ATP binding 100 3.86E-08 

MF protein tyrosine kinase activity 16 1.75E-04 

MF sequence-specific DNA binding 37 4.22E-04 

MF serine-type endopeptidase activity 21 0.001976808 

MF transmembrane-ephrin receptor activity 4 0.003941594 

 

Supplementary Table 6. Significant pathways in LRRC samples. 

Term Count % P-Value 

Glucagon signaling pathway 15 0.0149  0.0001  

Gap junction 14 0.0139  0.0001  

Signaling pathways regulating pluripotency of stem cells 15 0.0149  0.0036  

Axon guidance 13 0.0129  0.0106  

Metabolic pathways 70 0.0695  0.0163  

Neuroactive ligand-receptor interaction 21 0.0209  0.0218  

Circadian entrainment 10 0.0099  0.0249  

Calcium signaling pathway 15 0.0149  0.0280  

Glycine, serine and threonine metabolism 6 0.0060  0.0281  

Estrogen signaling pathway 10 0.0099  0.0315  

Thyroid hormone synthesis 8 0.0079  0.0351  

Wnt signaling pathway 12 0.0119  0.0430  

Pathways in cancer 26 0.0258  0.0439  

Morphine addiction 9 0.0089  0.0488  
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Supplementary Table 7. Top 15 significant GO terms of BP, MF, and CC in NRRC samples. 

Category Term Count P-Value 

BP GO:0006810~transport 12 0.001550891 

BP GO:0001937~negative regulation of endothelial cell proliferation 4 0.003777034 

BP GO:0042127~regulation of cell proliferation 8 0.004251828 

BP GO:0010628~positive regulation of gene expression 9 0.008125803 

BP 
GO:2001241~positive regulation of extrinsic apoptotic signaling pathway in absence 

of ligand 
3 0.009862223 

CC GO:0005777~peroxisome 6 0.004372107 

CC GO:0005759~mitochondrial matrix 10 0.006789772 

CC GO:0005887~integral component of plasma membrane 25 0.010268471 

CC GO:0005576~extracellular region 27 0.013785056 

CC GO:0016020~membrane 34 0.015904909 

MF GO:0005179~hormone activity 6 0.003657841 

MF GO:0050662~coenzyme binding 3 0.007258267 

MF GO:0001105~RNA polymerase II transcription coactivator activity 4 0.007540464 

MF GO:0005524~ATP binding 27 0.011626528 

MF GO:0016887~ATPase activity 7 0.015231878 

 

Supplementary Table 8. Significant pathways in NRRC samples. 

Term Count % P-Value 

Peroxisome 5 0.017031133 0.021363124 

Metabolic pathways 24 0.081749438 0.030427677 

Butanoate metabolism 3 0.01021868 0.046182301 

 


