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Abstract: Obstructive sleep apnea syndrome is a reduction of the airflow during sleep which not
only produces a reduction in sleep quality but also has major health consequences. The prevalence
in the obese pediatric population can surpass 50%, and polysomnography is the current gold
standard method for its diagnosis. Unfortunately, it is expensive, disturbing and time-consuming
for experienced professionals. The objective is to develop a patient-friendly screening tool for the
obese pediatric population to identify those children at higher risk of suffering from this syndrome.
Three supervised learning classifier algorithms (i.e., logistic regression, support vector machine and
AdaBoost) common in the field of machine learning were trained and tested on two very different
datasets where oxygen saturation raw signal was recorded. The first dataset was the Childhood
Adenotonsillectomy Trial (CHAT) consisting of 453 individuals, with ages between 5 and 9 years old
and one-third of the patients being obese. Cross-validation was performed on the second dataset
from an obesity assessment consult at the Pediatric Department of the Hospital General Universitario
of Valencia. A total of 27 patients were recruited between 5 and 17 years old; 42% were girls and 63%
were obese. The performance of each algorithm was evaluated based on key performance indicators
(e.g., area under the curve, accuracy, recall, specificity and positive predicted value). The logistic
regression algorithm outperformed (accuracy = 0.79, specificity = 0.96, area under the curve = 0.9,
recall = 0.62 and positive predictive value = 0.94) the support vector machine and the AdaBoost
algorithm when trained with the CHAT datasets. Cross-validation tests, using the Hospital General
de Valencia (HG) dataset, confirmed the higher performance of the logistic regression algorithm
in comparison with the others. In addition, only a minor loss of performance (accuracy = 0.75,
specificity = 0.88, area under the curve = 0.85, recall = 0.62 and positive predictive value = 0.83) was
observed despite the differences between the datasets. The proposed minimally invasive screening
tool has shown promising performance when it comes to identifying children at risk of suffering
obstructive sleep apnea syndrome. Moreover, it is ideal to be implemented in an outpatient consult
in primary and secondary care.
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1. Introduction

The obstructive sleep apnea syndrome (OSAS) is a health problem characterized by recurrent
episodes of reduction of airflow. These can be partial (hypopnea) or complete (apnea). According
to the American Academy of Sleep Medicine (AASM), apnea is defined as an airflow reduction
of at least 90% lasting for at least 10 s, while a hypopnea is a 30% reduction for at least 10 s or
at least a 3% reduction in oxygen saturation (SpO2) in comparison with the pre-event baseline or
associated with arousal [1,2]. The frequency of these events in a fixed time interval, 1 h, is called
the apnea/hypopnea index (AHI) and is used to classify the severity of the OSAS syndrome into
three levels: mild (5 ≤ AHI < 15), moderate (15 ≤ AHI < 30) and severe (30 ≤ AHI) [1,2]. OSAS can
cause a deterioration of the sleep quality as well as other major negative consequences (e.g., behavior
regulation, compliance, aggression, impulsivity, hyperactivity, anxiety, depressed mood, emotion
regulation and neurocognitive deficits) [3,4]. Its prevalence in children ranges between 0.2% and 4%,
increasing in the obese population up to over 50% [3].

Full night polysomnography (PSG) has been recognized by numerous professionals as the
gold standard procedure to diagnose OSAS in children and adults [5–8]. Generally speaking,
it consists of a minimum of 11 channels recording different signals like the electroencephalogram
(EEG), electrooculogram (EOG), electromyogram (EMG) and electrocardiogram (ECG). Unfortunately,
despite the accuracy of the results, it is very disturbing for the patient, particularly in the pediatric
population, and expensive because it requires special infrastructure and trained personnel. In an
attempt to overcome these limitations, other methods have been proposed (e.g., respiratory polygraphy
(RP), pediatric sleep questionnaire (PSQ), sleep clinical record (SCR), nocturnal oximetry studies
(NOS)) [9].

Out of all the listed alternative methods, the authors are especially interested in those which can
be performed in an outpatient context. This is especially relevant for screening and follow-up strategies
in the obese pediatric population. The first of them is the RP, which reduces the invasiveness of the
procedure by reducing the number of signals being recorded. Usually, the oronasal flow, chest and
abdomen movements, heart rate and blood oxygen are the key parameters measured. Different tests
have demonstrated that RP and home-based RP (HRP) are suitable for diagnosing OSAS in children and
adolescents [10,11]. The second is the PSQ test. It consists of a set of questions related to 22 symptom
items that ask about snoring frequency, loud snoring, observed apneas, difficulty breathing during
sleep, daytime sleepiness, inattentive or hyperactive behavior and other pediatric OSAS features. It is
oriented to children aged between 2 and 18 years old, and the sleep-related breathing disorder (SRBD)
scale can predict the risk to an extent useful for research but not reliable enough for most individual
patients [12,13]. The third is the NOS procedure, which measures the arterial oxygen saturation by
the detection of pulsatile blood flow. The performance of continuous oximetry overnight can help to
identify desaturation patterns useful to identify OSAS in children. As pointed out by Singh et al. [14],
this method has been extensively used in the field of sleep medicine and has been classified as a type 4
monitoring device. It is cheap, available and easy to perform on an outpatient basis.

Despite the evident differences between all of these methods, they still require trained personnel
to interpret the results. In some cases, this can be time-consuming even if a signal processing software
is available with the hardware. Besides the increased physician workload that can be associated
with such testing, the results are strongly dependent on the experience of the operator, and strong
variabilities in the diagnosis might occur between experts.

In the past two decades, multiple solutions have been proposed to reduce or mitigate such
dependencies in adults and pediatric populations (see Table 1). Generally speaking, these are
characterized by a set of features extracted from one or several recorded biosignals and a classifier for
automatic diagnosis of OSAS severity (see Table 1). Mostafa et al. [15] recently reviewed the solutions
available for the adult population. Initially, univariate analyses were employed, and now machine
learning (ML) and deep learning (DL) algorithms are proliferating. These can either identify events
directly from a register or based on a global analysis of the data.
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For the pediatric population, there seem to coexist ML- and DL-based solutions with similar
performance between them. The threshold values used to classify severity have a greater impact on
performance in this cohort than in adults.

Table 1 presents a summary of the performance of each these tools, including the results regarding
sensitivity, specificity and accuracy of solutions focusing on the SpO2 signal. Even though the
differences in datasets, sample sizes and methods do not allow for direct comparison between them,
this information is useful to benchmark the performance of new tools. Accuracy is similar between
both populations, while greater specificity and sensitivity are observed in the adult population.

Table 1. Summary of the performance of oxygen saturation (SpO2)-based tools to diagnose obstructive
sleep apnea (OSA) syndrome.

Reference Cohort Type of Classifier Sample Size Sensitivity Specificity Accuracy Year Home-Based

[16] A Multivariate adaptive
regression splines 793 83 54 NA 1999 N

[17] A Linear regression 148 91 83 89 2009 N
[18] A Univariate 475 96 67 87 2012 Y
[19] A Baggin ReTree 25 78 84 83 2012 N
[20] A Artificial Neural Network 93 88 100 93 2012 N
[21] A Univariate 996 84 86 NA 2014 Y
[22] A Linear discriminant analysis 302 97 50 93 2017 Y
[23] A Deep belief networks 33 60 92 85 2017 N
[24] A Long-short term memory 8 93 NA 96 2017 N

[25] A Convolutional neural
networks 23 NA NA 80 2018 N

[26] A Recurrent and convolutional
neural network 15,804 NA NA 88 2018 N

[27] A Common Bayesian Network 32 NA NA 85 2017 N
[28] P Neural network 176 NA NA 84.7–85.8 2015 N
[29] P Logistic regression 298 79.1 84.1 81.9 2017 N
[30] P Neural network 4191 84.0–68.7 53–94 75.2–90 2017 N

[31] P Logistic regression, QDA,
LDA 176 NA NA 84.3–82.7 2018 N

[32] P Convolutional neural network 298 NA NA 81.3–85.3 2018 N
[33] P Convolutional neural network 779 40–54 98.6–99.6 74.8–95.1 2020 N
[34] P AdaBoost 974 91–41 22.7–98.1 78.2–85.9 2020 N

A, adult population; P, pediatric population; NA, not available; QDA, quadratic discriminant analysis; LDA, linear
discriminant analysis; Y, yes; N, no.

Unfortunately, the development of this type of solution is not accessible to everyone and in some
cases might require a continuous update. In this context, the main objective of this paper is to develop
a patient-friendly screening tool oriented to the pediatric population and feasible to be implemented
on an outpatient basis. Moreover, this solution should be easy to run, minimizing the interaction
of the physicians throughout the whole process and keeping them updated without the need for
domain-specific skills. This will allow the popularizing of this type of diagnostic test, which can be
especially relevant for specific pediatric cohorts like the obese population.

2. Materials and Methods

2.1. Datasets

Two datasets were used in this study. The first one was the Childhood Adenotonsillectomy Trial
(CHAT), obtained from National Sleep Research Resource (NSRR), [6,35–37] with 453 children with ages
ranging between 5 and 10 years old. Fifty-two percent of the registries corresponded to girls, one-third
of the population was obese (defined as BMI percentile at or above 95%) and the predominant race
was black (55%). All participants underwent polysomnography in the sleep laboratory of the hospital
in which the minimum period of lights off was 7 h. A total of 43% of them suffered severe OSAS.

Out of all the variables available from this dataset, only those related to oxygen saturation (SpO2)
were considered in the present study. The main reason is that apneas and hypopneas are both defined
by this parameter. This signal was recorded in the CHAT with a pulse-oximeter, Nonin Model 8000J or
comparable, at a sampling rate of 10 Hz or higher. The extracted features from the SpO2 signal are
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listed and defined in Table 2 [6,35–37]. It is worth noting that the oxygen desaturation index (ODI) has
been considered as the hourly average number of desaturation episodes, defined as at events lasting
>10 s with at least a 3% decrease in saturation from the average saturation in the preceding 120 s [18].
Based on the ODI, the desaturation periods were tagged as hypopnea or apneas. All subjects were
classified according to AHI (ahi_a0h3a). Patients with an AHI < 5 were labeled as healthy, whereas
patients with an AHI ≥ 5 were considered at risk of suffering OSAS syndrome.

The second dataset consisted of 27 subjects, between 5 and 17 years of age and recruited from
those attending an obesity assessment consult at the Pediatric Department of Hospital General of
Valencia. All were Caucasian, 42% were girls and 63% were obese (defined as BMI percentile at or
above 95%). All participants underwent an HRP using the Philips Alice Respironics device with a
minimum of 6 h of time in bed (TIB) and 3 h of sleep time [38]. The recorded signals were airflow,
thoracic and abdominal movement, SpO2, body position, ECG and snore. Only the SpO2 raw signal
was processed to extract features and calculate the variables of interest according to the definitions
shown in Table 2. To do so, MATLAB software was employed.

Finally, to allow direct comparison of the variables from both datasets, a standardization process
was performed. This consisted of calculating the Z-score value for each of them.

Table 2. Extracted features from the raw SpO2 signal used in the Childhood Adenotonsillectomy Trial
(CHAT) [6,35–37].

Variable Description

ahi_a0h3a Apnea/hypopnea index (AHI) ≥ 3% oxygen
desaturation per hour of sleep

odi3 Oxygen desaturation index ≥ 3% during sleep time
odi4 Oxygen desaturation index ≥ 4% during sleep time

ndes2ph Number of desaturations with ≥ 2% desaturation
ndes3ph Number of desaturations with ≥ 3% desaturation
ndes4ph Number of desaturations with ≥ 4% desaturation
ndes5ph Number of desaturations with ≥ 5% desaturation
pctle90 Percentage of time ≤ 90% oxygen saturation
pctle92 Percentage of time ≤ 92% oxygen saturation

2.2. Machine Learning Algorithms

Three popular ML algorithms specially oriented to supervised learning were used in this study.
The first of them is the logistic regression (LR) model, which uses a weighted least square algorithm to
predict the regression line that best fits the data points by minimizing the weighted sum of the square
distances to the fitted regression line. It is simple and easy to implement and can relate one dependent
variable with one or several independent variables. The second is the support vector machine (SVM),
which tries to model the input variables by finding the separating boundary (i.e., hyperplane) to
reach the classification of the input variables [39]. The third is the AdaBoost (AB) model, which is a
common ensemble method that combines in series multiple weak classifiers to generate a strong one.
These algorithms from the Scikit-learn library [40] were trained and afterward tested in terms of their
capability to classify the subjects. Each classification algorithm has its own set of parameters that can
be modified to obtain a better performance. SVM was implemented with an ‘rbg’ kernel, a penalty
parameter C from 0.01 to 100 and a gamma parameter from 0.001 to 100. LR classifier was run with L1
penalty and a C, inverse of regularization strength, from 0.01 to 100. AdaBoost was implemented with
Decision Tree as a base estimator, a learning rate parameter from 0.01 to 1 and several estimators from
50 to 1000 with an interval of 10. The machine learning algorithms were implemented in Python [41,42].
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The CHAT dataset was used to train and test each of the classifiers according to the extracted
features from the SpO2 raw signal. A 15 k-fold approach was used. Balanced datasets were used.
On the other hand, cross-validation was performed using the Hospital General de Valencia (HG) dataset,
which is only composed of an obese population ranging from 9 to 17 years of age. The same features as
those in the CHAT dataset were calculated from the raw SpO2 signal using MATLAB software.

Balanced datasets were used to evaluate the performance of each model based on the following
parameters: recall or sensitivity, precision or positive predictive value (PPV), specificity, negative
predictive value (NPV), accuracy, F1 score and area under the curve (AUC). The recall or sensitivity
and precision or PPV are two very important parameters for assessing the performance in identifying
unhealthy patients (i.e., denoted as positive subjects in the current manuscript). The former is the
portion of real positive cases that are correctly predicted positive, while the latter denotes the portion
of predicted positive cases that are really positive. Mathematically, they are defined according to
Equations (1) and (2), respectively.

Sensitivity = True Positive/(True Positive + False Negative) (1)

PPV = True Positive/(True Positive + False Positive) (2)

The specificity and the negative predictive value (NPV) are respectively homologous to the two
previously described parameters but assess the performance of the model regarding its capability to
identify the negative values or healthy subjects. They are mathematically defined by Equations (3)
and (4).

Specificity = True Negative/(True Negative + False Positive) (3)

NPV = True Negative/(True Negative + False Negative) (4)

Accuracy and F1 score are two parameters frequently used to assess overall performance. Accuracy
is the portion of correctly identified cases, independently of being positive or negative, from the total
number of samples (see Equation (5)). The F1 score is the harmonic mean between PPV and sensitivity.
Out of the three different types of averages that can be calculated (i.e., arithmetic, geometric and
harmonic), the harmonic average is the most conservative of them all; in other words, it is the one that
yields the lowest value. It is defined by Equation (6).

Accuracy = (True Positive + True Negative)/(Sample size) (5)

F1 score = 2 × True Positive/(2 × True Positive + False Positive + False Negative) (6)

Finally, the area under the curve (AUC) parameter was also considered. This value is calculated
after performing a receiver operating characteristic curve (ROC) analysis. It can also be assessed
graphically by plotting sensitivity against 1 – specificity and determining the area under the resulting
curve. A higher AUC indicates that the model has a better capability to distinguish between healthy
and unhealthy subjects. Figure 1 summarizes the methodology used in this manuscript.
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Figure 1. Schematic representation of the workflow followed to generate a screening tool based
exclusively on pulse oximetry measurements and machine learning algorithms. This tool is specially
oriented to screen asymptomatic obese pediatric population in search of subjects at risk of suffering
OSA syndrome. The manuscript only focuses on the generation of this new tool, emphasizing the
development of the classifier.

2.3. Statistical Analyses

Statistical analyses were performed on both datasets using Python [40,41,43,44]. Initially,
a histogram was plotted to visualize the frequency distribution regarding the AHI values of both
datasets. Afterward, a Shapiro–Wilk test was performed on the extracted features to determine if
they had a normal distribution. If not, the Mann–Whitney U test was performed to determine if
significant differences were present between healthy and unhealthy patients in each of the datasets.
Lastly, the ROC analysis was applied to evaluate the performance of the different models by calculating
the AUC parameter. A p-value ≤0.05 was considered to be significant.

To build the model based on the extracted features, the first step was to perform a cross-correlation
matrix to determine the relationship between each pair of features as well as with AHI. The authors
arbitrarily defined a strong correlation if values were greater than 0.9. In this case, dimensionality
reduction was applied. This is crucial for obtaining an effective algorithm by avoiding the incorporation
of repeated information into the model. This dimensionality reduction was achieved in LR using the
L1 penalty term and by the mutual information measure (MI) in the SVM and AdaBoost procedures.
In other words, features with lower MI were eliminated.

The selection of the best predictive model was done using a nested cross-validation method for
adjusting the model parameters and estimating the error.
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3. Results

3.1. Preprocessing

Initially, the distribution of AHI for each dataset was plotted (see Figure 2). As expected, the CHAT
dataset has patients with AHI ranging between 1 and 27 approximately. In contrast, the HG dataset is
predominantly composed of subjects under the established threshold of 5 or with high AHI values, ≥15.
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Figure 2. Histogram of apnea/hypopnea index of the CHAT (blue) and the Hospital General de Valencia
(HG) (orange) datasets. The discontinuous red line depicts the threshold value used in the present
paper, AHI = 5. Individuals with AHI ≤ 5 were considered as healthy.

Afterward, Shapiro–Wilk analysis was applied to the CHAT dataset to determine if all variables
had a normal distribution. As expected, this test confirmed that all variables were not normally
distributed. Their p-values were lower than 0.05 (see Table 3). Accordingly, Mann–Whitney U analysis
was performed to determine if significant differences were present between the healthy (AHI ≤ 5) and
unhealthy groups (AHI > 5). Correlation analyses were performed to check the relationship between
each pair of features (see Figure 3). The results reveal that strong correlations are present between
odi3 and odi4 as well as ndes2ph, ndes3ph, ndes4ph and ndes5ph. Consequently, a dimensionality
reduction procedure was applied to these variables before testing the three algorithms. The variables
odi4 and odi3 were found to correlate the most with AHI.

Table 3. Result of applying inferential statistics test on extracted features from the SpO2 raw signal.

Feature Healthy, n = 197
(Mean ± std)

At Risk, n = 256
(Mean ± std)

Shapiro–Wilk Mann Whitney U

p-Value p-Value

ndes2ph 82.91 ± 58.31 189.94 ± 107.56 < 1 × 10−15 < 1 × 10−30

ndes3ph 28.13 ± 20.45 91.67 ± 63.06 < 1 × 10−20 < 1 × 10−40

ndes4ph 10.08 ± 8.44 47.17 ± 40.32 < 1 × 10−20 < 1 × 10−40

ndes5ph 4.41 ± 4.49 26.51 ± 26.97 < 1 × 10−25 < 1 × 10−40

odi3 2.79 ± 2.08 10.53 ± 7.38 < 1 × 10−20 < 1 × 10−45

odi4 0.98 ± 0.83 5.53 ± 4.81 < 1 × 10−25 < 1 × 10−45

pctle90 0.06 ± 0.69 0.29 ± 0.51 < 1 × 10−35 < 1 × 10−25

pctle92 0.38 ± 3.49 0.81 ± 1.37 < 1 × 10−35 <1 × 10−25

ndes2ph, number of desaturations ≥ 2% per hour; ndes3ph, number of desaturations ≥ 3% per hour; ndes4ph,
number of desaturations ≥ 4% per hour; ndes5ph, number of desaturations ≥ 5% per hour; odi3, oxygen desaturation
index ≥ 3% during sleep time; odi4, oxygen desaturation index ≥ 4% during sleep time; pctle90, percentage of time
desaturation was ≤ 90%; pctle92, percentage of time desaturation was ≤ 92%.
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Finally, the authors calculated the number of samples required to minimize the overfitting of the
model. From Figure 4 it is deduced that the overfitting problems are negligible beyond 120 samples.
The training (blue) and the testing (green) datasets yield the same or similar accuracy as the number
of samples increases. Considering that the CHAT has more than 400 registries, the overfitting of the
model was mitigated during the training phase.
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3.2. Evaluating the Performance of the Tested Models

The performance of the three supervised learning classifiers was evaluated according to AUC,
accuracy, recall, specificity and PPV. The results of the 15-fold process are summarized in Table 4.
Focusing on the CHAT dataset, all three supervised methods yield similar AUC and accuracy. However,
LR outperforms the other two regarding specificity and PPV. When applying them to the HG dataset,
LR confirms its higher performance as well as higher replicability. The mean values of the different
performance indicators are within the range of those yielded by more complex solutions (i.e., more than
one biosignal being fed into the model and/or the use of DL algorithms to build the classifier, with the
latter especially requiring domain-specific skills to design the architecture of the neural networks and
to employ specific software packages) even though the accuracy is slightly lower. The fact that only a
minor loss of performance is observed is very promising, especially considering the differences in age,
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race and SpO2 measuring devices. It is worth noting that the std value is equal to zero due to the small
sample size of the HG dataset.

Table 4. Performance results for each algorithm in the CHAT and the HG datasets.

Dataset Algorithm AUC
(Mean ± std)

Accuracy
(Mean ± std)

Sensitivity
(Mean ± std)

Specificity
(Mean ± std)

PPV
(Mean ± std)

CHAT
SVM 89.2 ± 7.7 82.9 ± 9.9 78.3 ± 13.5 87.4± 13.5 87.7± 12.2
LR 90.2 ± 6.9 79.0 ± 7.2 62.0 ± 13.2 96.0 ± 5.4 94.3 ± 7.2
AB 89.0 ± 6.7 82.1 ± 6.7 73.2 ± 11.8 90.9 ± 9.3 90.2 ± 9.8

HG
SVM 68.3 ± 4.3 66.7 ± 4.9 80.8 ± 13.6 52.5 ± 6.8 62.8 ± 4.2
LR 85.2 ± 0.0 75.0 ± 0.0 62.5 ± 0.0 87.5 ± 0.0 83.3 ± 0.0
AB 79.9 ± 1.3 74.6 ± 2.8 86.7 ± 3.1 62.5 ± 4.6 69.9 ± 2.7

STD, standard deviation; CHAT, Childhood Adenotonsillectomy Trial; HG, Hospital General de Valencia; SVM,
support vector machine; LR, logistic regression; AB, AdaBoost; AUC, area under the curve; PPV, positive
predictive value.

4. Discussion

The main objective of this study was to develop a screening tool, composed of a commercially
available measuring device and an ML-based classifier, capable of identifying children at risk of
suffering OSAS and feasible to be applied on an outpatient basis in the asymptomatic obese pediatric
population. The results reveal that the proposed solution based on exclusively measuring the SpO2
signal, calculating the ODI and the NDES features and applying an LR-based classifier outperforms
SVM and AdaBoost-based solutions. The performance is within the range of results achieved by
methods recently developed in symptomatic adult and pediatric population and where DL-based
solutions are predominant (see Table 1). Interestingly, only a minor loss of performance is observed
when the LR-based classifier is applied to a second independent dataset where the participants
underwent unattended NOS at home.

The prevalence of OSAS in the general pediatric population can range between 0.2–4%, but it
can reach more than 50% in the obese pediatric population. Regrettably, this syndrome is not limited
to a deterioration of the sleep quality of an individual, as it can cause severe health consequences
(e.g., behavior regulation, compliance, aggression, impulsivity, hyperactivity, anxiety, depressed
mood, emotion regulation and neurocognitive deficits) [3,4]. The current methods for diagnosing
this syndrome are complex and disturbing, especially for the pediatric population, compromising
the quality and reproducibility of the results. Out of all of them, full-night PSG remains the gold
standard method. Besides being a very disturbing procedure, it is expensive because it requires special
equipment and trained personnel to correctly detect, identify and evaluate the events from the recorded
signals. Even if specialized software is available with the hardware, experts are still required to validate
the results.

Alternative methods have been proposed to make these tests more patient-friendly and to reduce
the workload and the diagnostic discrepancies between experts. One of the most promising due to its
ease of use and low cost is the NOS, which mainly focuses on measuring the SpO2 signal, coupled
with an ML- or DL-based classifier. Table 1 presents a summary of a number of these tools recently
developed for symptomatic adults [16–27] and the pediatric population [28–34].

One major limitation of developing automated interpreting systems is choosing the most clinically
meaningful biosignal. Multiple studies have tested different signal combinations to improve the
performance of the classifier in detecting the OSAS severity [17,19,24–26,34]. Even the ECG signal,
which is a commonly used parameter, has recently been questioned in terms of its continuous superior
performance when compared with others [15,24]. In this context, an interesting study performed
by Pathinarupothi et al. [24] showed that SpO2 outperformed ECG when a DL-based classifier was
applied to each of them. The second major limitation is extracting the most distinguishable features.
For example, despite the clinical relevance of ODI and of cumulative time of desaturation index (CT),
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not all the studies employ them [16,18,20,22,28,30,32,34]. Even when performing similar calculations,
the extracted features are different or are used differently. For example, several papers used time,
frequency and nonlinear domain calculations, but few or even none of them match [22,29–31,34].
There is also disparity when performing spectral calculations. Two recently published studies,
one in adults and the other in the pediatric population, have developed tools based on images
(i.e., spectrogram) [26] or based on the resulting statistic parameters [28], respectively.

Unfortunately, it is very common that these tools present a strong dataset dependency reflected by
a drastic reduction of their performance when applied to a second independent dataset. Consequently,
this makes it complex to compare the performance between tools and to widely implement them.
DL-based solutions can overcome these limitations to an extent by using unsupervised learning
algorithms to perform pattern recognition and data interpretation. However, the need for big datasets
as well as domain-specific skills and software to develop and maintain these classifiers makes this
approach more expensive, which limits its implementation outside clinical research where the budget
of healthcare providers is already tight. In this context, the authors have focused on the development
of an affordable screening tool that can be easily implementable in an obesity assessment outpatient
consult to identify those asymptomatic children and adolescents who are at higher risk of suffering
OSA. This is especially relevant not only for prescribing personalized physical activity strategies to
fight against obesity but also for following up. This tool is composed of a commercially available
device for measuring transcutaneous oxygen levels in the blood (SpO2) and an ML-based classifier for
data interpretation based on the extracted features. Out of the three tested ML algorithms (i.e., LR,
SVM and AB) the LR has shown better performance on the CHAT test set and after cross-validation in a
second independent dataset (i.e., HG dataset). The LR outperforms the other two regarding specificity
and PPV and underperforms regarding sensitivity, while all three have similar accuracy and AUC
(see Table 4). This performance is promising, especially when considering that they are within the range
of similar tools developed in symptomatic adults and pediatric population and using DL algorithms
(e.g., neural networks). For those where an LR classifier was used [29,31], the accuracy levels are
similar. However, the proposed tool has substantially higher specificity in contrast with a significantly
lower sensitivity. In other words, the proposed tool is very reliable in identifying healthy patients
in contrast with the others [29,31], which are better in identifying subjects at risk of suffering OSA.
The findings were expected according to the purpose with which each tool was built. While [29,31]
focus on determining the OSA severity of symptomatic pediatric patients, the proposed tool is reliable
in identifying the healthy subjects which can immediately be prescribed with personalized physical
activity-based strategies. Those which might be at risk can be confirmed or finally discarded during
follow up.

Cross-validation of this tool was performed with a second independent dataset (i.e., HG).
Interestingly, only a minor loss of performance was observed in the LR-based solution despite the
significant differences between both datasets (e.g., age, race, the prevalence of obesity and the SpO2
measuring device). It is also relevant to point out that while the readings in CHAT were hospital-based,
those in HG were home-based. Even though this loss is observed in all five indicators, specificity and
PPV are the indicators that present greater reductions; this is in contrast with accuracy, recall and
AUC, which only suffer a slight decrease (see Table 4). It is worth noting that the small sample size
causes the prediction of all the models derived from the 15-fold process to yield identical results and
therefore explains why the standard deviation is equal to 0. Out of those listed in Table 1, only the
study performed by Vaquerizo-Villar et al. [32] performed cross-validation on an independent dataset.
The accuracy level was 76% despite using a DL-based algorithm that was trained using power spectrum
density, odi3, age and sex and targeted symptomatic children and adolescents.

Despite the need to increase the sample size of the HG dataset, these results are promising and
indicate that it is worth continuing the development and optimization of the developed tool, which is
expected to benefit clinicians as well as the pediatric population and their families. The former will
benefit by having a tool that does not increase their workload; is easy to use and maintain; is cheap,
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robust and reliable; and reduces diagnosis variability between experts. The latter will benefit from a
minimally disturbing tool capable of being utilized at home in an unattended manner.

5. Conclusions

In the recent past, alternative methods based on SpO2 measurements have been proposed to
diagnose OSAS in symptomatic adults and the pediatric population. However, none of them have
targeted the asymptomatic obese population even though OSAS prevalence can reach up to over 50%.

The proposed tool has shown promising results even when applied to a second independent
dataset where the tests were performed on a very distinct cohort and in a home-based setting instead of
a hospital-based one. Additionally, major differences were also present regarding the SpO2 measuring
device. The performance yield suggests that the methodology employed can be implementable abroad.
Clinicians and, in particular, the pediatric population will benefit from a tool like the one developed in
this manuscript.
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