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ABSTRACT
Objective: Self-reported recall data are often used in
wireless phone epidemiological studies, which in turn
are used to indicate relative risk of health outcomes
from extended radiofrequency exposure. We sought to
explain features commonly observed in wireless phone
recall data and to improve analytical procedures.
Setting: Wellington Region, New Zealand.
Participants: Each of the 16 schools selected a year 7
and/or 8 class to participate, providing a representative
regional sample based on socioeconomic school ratings,
school type and urban/rural balance. There was an 85%
participation rate (N=373).
Main outcome measures: Planned: the distribution of
participants’ estimated extent of SMS-texting and
cordless phone calls, and the extent of rounding to a final
zero or five within the full set of recall data and within
each order of magnitude. Unplanned: the distribution of
the leading digits of these raw data, compared with that
of billed data in each order of magnitude.
Results: The nature and extent of number-rounding, and
the distribution of data across each order in recall data
indicated a logarithmic (ratio-based) mental process for
assigning values. Responses became less specific as the
leading-digit increased from 1 to 9, and 69% of
responses for weekly texts sent were rounded by
participants to a single non-zero digit (eg, 2, 20 and 200).
Conclusions: Adolescents’ estimation of their cellphone
use indicated that it was performed on a mental
logarithmic scale. This is the first time this phenomenon
has been observed in the estimation of recalled, as
opposed to observed, numerical quantities. Our findings
provide empirical justification for log-transforming data
for analysis. We recommend the use of the geometric
rather than arithmetic mean when a recalled numerical
range is provided. A point of calibration may improve
recall.

INTRODUCTION
Using recalled cellphone data is problematic
for case–control studies which are exploring a
possible relationship between wireless phone
radiation and health effects. This is because
studies that have used this approach1–5 have
routinely reported recall data as skewed and

having a large estimation error. Rather than
trying to explain this, there have been calls
for caution in interpretation4 and doubt
expressed about the usefulness of recall data.5

In 2009, we ran a survey of New Zealand ado-
lescents’ wireless phone use. We also found
recalled use to be positively skewed, with the
distribution of recalled texts sent being log
normal. We had asked participants to estimate
various aspects of their cordless phone and

ARTICLE SUMMARY

Article focus:
▪ Self-reported cellphone and cordless phone use is

skewed and has a very large estimation error. This
is important because estimated data are often all
that is available for epidemiological studies.

▪ We explored the logarithmic (ratio-based) mental
process evident in the distribution of partici-
pants’ estimated data.

Key messages
▪ We show for the first time that the mental process

in recalling the extent of recently sent text mes-
sages mirrors in most respects that used when
estimating a number of observed objects, as
described in the literature on estimation
magnitude.

▪ This mental process is not linear (except, perhaps,
for numbers <10), and indicates the use of a loga-
rithmic mental number-line to recall numbers of
events (in this case texts sent and cordless phone
calls made).

▪ We suggest the statistical methods to reduce mis-
classification and to improve estimation accuracy.

Strengths and limitations of this study
▪ There could have been an influence on estima-

tion by other participants, although they were
asked not to ‘compare notes’; frank estimation
was encouraged by assurance of confidentiality.

▪ The findings and suggested ways of addressing
them should be applicable to other medical studies
using recall data of numbers of recent events.

▪ The literature on estimation of numerosity of
observed objects provides well-researched
support for the current findings.
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cellphone use, including the number of SMS texts they
sent daily, or weekly or monthly. They could estimate a
range, if preferred. Many students chose to estimate the
extent of their texting for all three periods. This led, seren-
dipitously, to the analysis presented in this paper.
During data entry we noticed a common tendency for

individuals’ weekly and monthly estimates to be very low
in comparison with their daily texting estimates. For
instance, one participant estimated 10 daily, 35 weekly
and 150 monthly, and another recalled 20 daily, 50
weekly and 150 monthly. At first, we thought this might
reflect poor arithmetic skills, but one teacher informed
us that the class selected for participation was a top-
stream one: students’ science grades all exceeded 85%.
Despite this, they showed the same estimation tendency.
Consequently, we explored the literature on magnitude
estimation.
Magnitude estimation is a basic area of research, cur-

rently considered in the field of neuroscience. In 1834,
Weber observed what change in weight was needed for
the person lifting it to notice. He realised that ‘the
extent to which two stimuli can be discriminated is
determined by their ratio’.6 Fechner developed this
theory, ‘postulating that the external stimulus is scaled
into a logarithmic internal representation of sensation’.7

These concepts came to be called the Weber-Fechner
law whereby linear change in sensation (S) is propor-
tional to the logarithm of the stimulus magnitude (m):
S=k×log(m), where k is a constant. It has been shown to
apply generally to the way our senses perceive environ-
mental stimuli (eg, light intensity, volume and length).
Over the last few decades, research has suggested that a
logarithmic mental number line is also consistent with
the estimation of observed numerical quantity (referred
to as the numerosity).8 9

Here, we explore our data for indicators of the mental
process behind estimating a number of past events—spe-
cifically, the extent of cellphone texting and cordless
calls made weekly. We checked whether the consistent,
but unexpected, tendencies we had observed in partici-
pants’ texting estimates were explained by the
Weber-Fechner law. We sought to find explanations for
commonly observed features of recall and use these to
improve analytical procedure in epidemiological risk
analyses which use numerical recall data. Results based
on such data provide indications of public health risk
from environmental exposures or medical interventions,
therefore it is important to minimise bias in the analyt-
ical methods and resulting inferences.

METHODS
The methodology evolved during examination of the
data. The analysis was undertaken using data from our
cross-sectional survey of New Zealand adolescents’ wire-
less phone habits. The study population has been
described previously.10 Briefly, it was representative of
the region for school type and decile (socioeconomic

ranking of schools by their area), and included the
capital city through to rural areas. Years 7 and 8 students
(N=373; 207 male, 165 female and 1 transgender) from
around the region participated. The median age was
12.3 years. There was an 85% participation rate. Ethical
approval was given by the Victoria University of
Wellington Human Ethics Committee. Informed
consent was obtained from principals of participating
schools and parents of participating students. Students
could choose to opt out.

Primary-independent variables
We examined the following variables: recalled and billed
weekly texts sent, pairs of recalled and billed weekly
texts sent from those on 500 and 2000/month plans,
and the estimated number of cordless phone calls made
weekly.
Participants retrieved their remaining text balance on

their prepaid monthly plan from their provider. This
allowed us to calculate their daily actual use (‘billed’)
pro rata by dividing the used portion by the number of
days since billing, and multiplying this by 7 for the
weekly rate.

Statistical analyses
Distribution of the estimation data
We considered two aspects of the distribution of the esti-
mation data. First, that of the estimates themselves,
overall and within each order of magnitude, which
could reasonably be expected to reflect the distribution
of actual use. Second, that of the leading digits, which
we would expect to be randomly and uniformly distribu-
ted if the mental processes involved in recollection were
linear. Analyses were undertaken using the statistical pro-
grammes SPSS V.17.0.1, Chicago, Illinois, 2008, and
Microsoft Excel, 2010.
The distribution of estimated and billed weekly texts

sent was examined with cumulative distribution plots
using raw and log-transformed data. These raw text data
were plotted on three-dimensional column graphs (for
the orders 1–9, 10–99 and 100–999; second order of
each at figure 1). This was to enable us to examine the
nature and extent of rounding within each order of
magnitude, and the distribution of data across each
order. We calculated the extent of rounding to fives/tens
and fifties/hundreds in the second and third orders of
magnitude, respectively. The percentage of datapoints in
the lower 31.6% of each order of magnitude was calcu-
lated, 31.6% being the half-way point on a logarithmic
scale for 10 (base 10; geometric mean (1,10)=√10=3.16).
Regression plots were used to assess ‘daily’ versus ‘weekly’
and ‘billed’ versus ‘estimated’ texts sent. We checked
whether there was a tendency towards overestimation or
underestimation with increasing numerosity (in the
texting data) by regressing the difference of the log-
recalled and log-billed against the log-billed. The explan-
ation for this variation to the Bland and Altman
approach11 is given elsewhere.12
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We assigned the geometric mean to responses given as
a range (explanation below); these were included in
overall distribution reporting but excluded from digit
analysis in this paper as we focused on specific estimates
when exploring the mental process of estimation.
Valid zeros were included in reporting the overall dis-

tributions, but not in the calculations of mean and SD
of the log-transformed data.

Distribution of the first digits in estimation data
We assessed first-digit distribution in estimates of weekly
texts sent and cordless phone calls made. For compari-
son, we did the same for a set of random numbers
drawn from the same distribution. We began by

removing all data given as a range, and all estimates of
zero. We sorted those remaining into nine groups, one
for each digit from 1 to 9. Each was then allocated into
two groups: those with only a single non-zero leading
digit (eg, 2, 20 and 200) and the remaining estimates
starting with that digit (in the example case 2). These
were displayed as stacked columns, with each two-part
column representing the percentage of estimates start-
ing with that digit (figure 2).

RESULTS
Descriptive statistics
At least one cellphone was owned by 285 (76%) of parti-
cipants, while 331 (89%) currently used one. Most

Figure 1 (A) Distribution of weekly texting estimation data

(second order): 61% of estimates fell in the lower 35% of the

order, and there was a strong rounding effect. There were

only three unrounded estimates in the upper 65% of all orders

(1 in the second order). (B) Distribution of weekly billed texts

(second order) shows a homogeneous distribution despite the

overall data being log normally distributed; 36% of estimates

fell in the lower 35% of the order. All specific (ie, non-range)

estimates are shown, with columns representing the number

of participants who gave each estimate. Read from the

back-left across each row, working forward in rows.

Figure 2 (A) Marks the distribution of ‘tenths’ from 0 to 1 on

a log scale (equivalent of 1–10 on a linear scale). (B)

Distribution of leading digits of participants’ estimated number

of texts sent weekly, n = 181, range 1–1800, and (C) cordless

calls made weekly, n = 183, range 1–150. The columns add

up to 100% of specific estimates made. All columns are split

into participants’ estimates with single non-zero digits (eg, 2,

20 and 200) and the remaining ones for each leading digit

(eg, 23, 25 and 270).
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participants had a cordless phone at home which they
used (341, 91%). We retrieved paired estimated and
billed texting data from 108 participants (38% of cell-
phone owners). Other relevant descriptive statistics can
be seen in table 1.

Overall distribution of estimation data
Recalled estimates of recent texts sent were right skewed.
The variance of estimates increased by a fixed ratio with

increasing estimated numerosity. Once the data were log
transformed, the regression of estimated daily-to-weekly
texts became linear (Pearson’s r 0.91 p<0.01; figure 3),
showing a systematic tendency to underestimate use over
a week compared to that estimated for a day. The log esti-
mated to billed texts (Pearson’s r 0.78 p<0.01) revealed a
large, but homogeneous, variance of the residuals of
log-to-log regression (random error).
Log-transformed data from all those who sent texts fol-

lowed a normal distribution (not shown), while the influ-
ence of a plan with a known prepaid quantity of texts
monthly (500 or 2000) appeared to have a calibrating
effect on daily and weekly estimates. This was evident in
each plan’s data, which had a distribution closer to expo-
nential, that is, f ðbÞffi ð1=mÞ expð�b=mÞ where μ was the
population mean use, estimated by the sample mean. The
mean of estimated texts sent weekly for the 2000/month
plan fell within the 95% CI of four times that of those
with the 500/month plan.
Two types of systematic error existed in recall. The first

resulted in a trend significantly different from zero,
moving from overestimation by those who sent few texts
towards underestimation by those who sent many
(figure 4). The second systematic error was apparent
when comparing recalled texts sent over different
periods (figure 3). The ratios of individual recall (daily:
weekly and daily:monthly) were both only a little over
half that expected (0.58 and 0.54), while that of weekly:
monthly was 0.90. This applied, both between
and within participants, in data which ranged from 0
to >1000.

Distribution of estimated and billed texts within each
order
About half or more of participants’ estimates fell in the
lower 31.6% of each order of magnitude (table 1). This
represents the half-way point on a logarithmic scale. The
billed data was homogeneously spread (illustrated for

Table 1 Texting rates and percentage of texting

estimations in the lower 31.6%* of each order

Daily Weekly Monthly

Estimated number of texts sent over different periods†

Total N 248 240 247

n (%) who

provided a

range

66 (27) 51 (21) 55 (22)

Mean of

estimated texts

sent

37.04 146.90 643.44‡

Percentage of estimated and billed weekly texts in lower

31.6%* of each order of magnitude

n Estimated

(%)

n Billed

(%)

First order (0–9) 40 50 18 72

Second order

(10–99)

71 48 55 33

Third order

(100–999)

74 58 75 64

The second order of magnitude is most relevant as there are no
outside influences on the distribution. It is not clear whether
first-order values are estimated on a mental linear or logarithmic
scale, and the third order is influenced by the group who had only
500 texts available monthly: their weekly estimates will fall in the
lower half of the order, and are more likely to be less than about
150.
*This represents the half-way point on a logarithmic scale.
†Includes data given as a range with the geometric mean applied.
‡617.60 with top outlier excluded.

Figure 3 Regression of

participants’ weekly-to-daily text

estimates (log-transformed data).

The best-fit line indicates that on

average weekly use is

underestimated compared to

estimates of daily use. For

instance, on average, estimates

of 10 or 100 daily were allotted 40

or 340 weekly, respectively (blue

gridlines).
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the second order of each at figure 1). The second order
of magnitude (10–99) is most relevant for comparison as
there were no outside influences on its distribution.

Distribution of digits and rounding effect
The leading digits of texting and cordless phone-call
estimation data were distributed very unevenly, with pro-
portions of each digit from 1 to 9 resembling those of
the intervals on a log scale (figure 2A).
There were several rounding effects. Responses

became less specific as numerosity increased within each
order of magnitude, and as the leading digit increased
from 1 to 9 (figure 2B,C). Distribution of leading digits
showed that 123 (68%) of weekly texting responses were
rounded by participants to a single non-zero digit, as
were 158 (86%) of cordless call responses.
There was an additional rounding effect to final digits

of 5 and 50 in the upper 68.5% of the second and third
orders, respectively; these are visible as bright blue
columns in figure 1. Only three texting responses (5%)
greater than 35 or 350 in the second and third orders,
respectively, were not rounded thus, being 68, 525 and
839; for cordless phone calls, only 2 (15%) were not
rounded (being 53 and 59).
We can only hypothesise about the spike in estimates

starting with five and seven (figure 2B). An excess of
leading fives is probably related to the rounding effect
and is shown in fewer leading fours. (The same applies to
almost no nines in preference for rounding to a final
zero.) However, the excess of leading sevens may reflect a
more linear approach from a quarter of those estimating
1, 10 or 100 texts daily, whose weekly estimates were seven

times greater. This explanation is supported by there
being no excess of leading sevens for the estimated
number of cordless phone calls weekly (figure 2C).
Although 50% of first-order texting estimates fell in

the lower 31.6% (table 1), we could not resolve whether
the mental process for estimating very low numerosity is
better described as linear or logarithmic, but speculate
that the first order of magnitude is transitional towards
the latter.

DISCUSSION
We report for the first time that the way numerosity of
recent events (specifically cellphone use) is recalled
conforms to the Weber-Fechner law. In other words,
there appears to be a mental logarithmic scale consist-
ent with that found in the estimation of observed
numerosity. This provides a new direction for under-
standing human magnitude estimation, as, rather than
a mental representation of an environmental stimulus,
it is the outcome of an internally generated (ie,
recalled) stimulus.
Let us examine the evidence for this. Texting estima-

tion data were very unevenly distributed, but with strong
similarities in each order. First, the majority of estimates
fell in the lower 31.6% of each order, possibly related to
a mental logarithmic scale, as well as consistent with the
estimations accurately representing the log normal or
exponential distribution of the billed data. Second,
there was a strong rounding effect; data were almost
exclusively rounded in the upper 68.5% of each order,
reflecting a logarithmic mental estimation scale. This is
clearly visible in figures 1 and 2. Further, the pattern of
leading digits in the estimation data did not match that
of the leading digits of random numbers drawn from
this distribution. This only occurred (in the first digit
after the decimal) after log transformation.
If estimation were carried out linearly for data which,

overall, formed a log normal distribution, then we might
expect more than half of all estimates to be evenly distributed
through the lower 31.6% of the full range 1–1000, with the
balance being evenly distributed through the remainder.
This is what we saw in the billed data (figure 1).
The neuroscience literature describes a numerical

magnitude effect: ‘discrimination of two numerosities of
a given numerical distance becomes more difficult as the
absolute values of the two sets get higher’ (ref.13, p.4).
Our data show that this applies within each order. There
needed to be an appreciable-imagined difference (stimu-
lus) in numerosity on a log scale for it to be acknowl-
edged in the resulting estimate. This is evidenced in the
rounding effect within orders. Testing of visual estimation
of numerosity has generally been limited to the first two
orders of magnitude (1–9 and 10–99) so rounding
appears only to have been commented upon by
Krueger14 who reported 89% of estimates being rounded
to a last digit of 5 or 0 when participants were shown
arrays of Xs numbering 25–300.

Figure 4 Bland and Altman plot displaying the difference of

the logged estimation and billed weekly texting data against

the log-billed. Accurate estimates would all fall on the dotted

line. There is a clear and significant trend from overestimation

of little use to underestimation of extensive use. All lowest and

highest estimates to the left and right of the red lines were too

high/too low, respectively.
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If the mental estimation process were linear we would
expect all leading digits to be equally represented, but
their distribution closely resembled the intervals of a
logarithmic scale. This also applied to the distribution of
leading digits in recalled cordless call data. Integers with
single non-zero digits were vastly over-represented
(figure 2). Looking to the remaining digits in estima-
tions, these were also far from being evenly distributed.
The rounding effect was so strong that estimates in the
top 65% of the second order were almost exclusively
rounded to tens or fives (figure 1), and in the third
order to hundreds or fifties. These effects are all consist-
ent with estimation on a logarithmic mental scale.
Most of the phenomena we have reported are consist-

ent with the estimation of observed numerosity, but esti-
mation of recalled numbers of events over recent months
has not previously been reported in the cognitive
science literature. Estimation of observed numerosity is
one of the several foci of magnitude estimation. When
these ratio-based estimations are log-transformed they
become linear.14 This mental process reflects logarith-
mically compressed number-neurons operating like a
slide-rule by ensuring accuracy proportional to the size
of the numbers being processed,7 thus maximising neur-
onal efficiency. In humans, this neuronal activity has
been traced to the horizontal segment of the intraparie-
tal sulcus.15 It has been suggested that this logarithmic
method of weighing the comparative value to ascribe
to a large numerosity may be ‘deeply embedded’ as the
default method in humans,8 a prelinguistic in-born
approach to number.16

The logarithmic mental process has been shown to
result in increasing numerosity progressively being
assigned proportionally lower comparative values, with
high numbers commonly underestimated.6 This applied
to our data, that of Inyang et al4 and to the CEFALO
study.17

Hollingsworth et al9 reported the same tendency in a
psychological test resulting in mean overestimation of
an array of <130 dots and underestimation of large
arrays up to 650 dots. Several cellphone studies have
found the opposite tendency, with high values overesti-
mated. Since much of the literature on magnitude esti-
mation has adult participants, we doubt that this
‘reverse’ trend is a feature of age, but suggest that it
may result from the elapsed period since that being
recalled, as cellphone studies often ask participants to
recall their phone use over periods up to 10 years. The
Interphone study reported greater over-reporting in this
situation.2

Psychological studies of observed numerosity-estimation
have resulted in the hypothesis of a consistent variance of
the residuals once the data are log-transformed6 thus pro-
viding a common probabilistic range at any given point on
the line. We found this applied to recalled numerosity, as
has been reported in other cellphone studies.1 18 However,
recalled estimation has an important difference from the
visual estimation process as the variance of the residuals in

recall estimation reported in this and other cellphone
studies is routinely much wider than when numerosity is
observed. It appears that this is a function of recall, intro-
ducing greater random error.

Implications for epidemiology
Our findings have implications for other cellphone studies
and other epidemiological studies involving recalled
numbers of events. A high proportion of rounded esti-
mates could affect categorisation. Specifically, if quantile-
cuts occur at round numbers (particularly those starting
with 1 and 5), there may be many same-value digits.
Forming cut-points before or after these would form
irregularly sized quantiles. Arbitrarily allotting same
values to different quantiles is not viable as it would return
different results when analysed against other variables
depending on how the dataset was ordered prior to
categorisation. This would be true independent of
sample size.
The mental process of estimation affects how given

ranges of data should be averaged. The geometric rather
than arithmetic mean is likely to align better with single
value estimates as this is equivalent to averaging the loga-
rithms of the values and back transforming. It would thus
avoid introducing bias which would occur by mixing spe-
cific estimates made on a logarithmic scale with the arith-
metic mean of a range, which is appropriate for a linear
process. The geometric mean would also be better when
imputing missing central data between two provided esti-
mates. Typically in cellphone research, these situations
have been allocated the arithmetic mean or median.19–21

An example from our study of the possible outcome
being strongly affected is when the range is wide and
starts at a low number, for instance, 1–70. Here the arith-
metic mean is 35.5, while the geometric mean is 8.37.
A quarter of all weekly text estimates were provided as a
range. Recording their geometric means instead of arith-
metic means resulted in the mean of all the data being
10% lower.
There is some evidence from the cognitive neurosci-

ence literature that it may be possible to reduce recall
inaccuracy by providing a calibration point.6 Variability
in our study was smaller where participants knew the
monthly maximum available on their account com-
pared to those with no account. This is also applied to
two Interphone studies1 22 where location questions
may have acted as contextual prompts.18 Variability was
considerably broader in the MoRPhEUS study4 where
no prompts were given, and in the UK Interphone val-
idation study3 that was conducted by postal question-
naire. The possible beneficial influence of a calibration
point suggests that supplying participants in case–
control studies with an accurate record of their recent
cellphone use may allow them to better judge their
earlier levels of use. This could be tested in further
research.
In summary, recalled numerosity of recent events appears

to be processed in the brain in a very similar way as is
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observed numerosity. This finding extends the cognitive
science literature on estimation of numerical quantity, and
lends some predictability to epidemiological studies involv-
ing recalled numerosity: Numerical recall estimated on a
logarithmic mental scale means that as numerosity
increases, estimations reduce comparatively. This trend
from overestimation to better estimation or underestima-
tion in recall of the extent of recent events is of great
importance for epidemiology, as is the large variance in
the residuals of recalled data. If these aspects are not
allowed for during analysis, it may introduce error or bias,
leading to overestimation or underestimation of relative
risk for those with extremes of cellphone use. Bias or error
may also be introduced as the high incidence of rounding
could affect categorisation.
We offer some solutions. First, the rounding effect and

a logarithmic mental process imply that recalled
numbers should be log-transformed prior to analysis.
This is usual, but our study provides empirical justifica-
tion. Second, recalled number ranges and imputed
missed data between given estimates are better repre-
sented by the geometric rather than arithmetic mean.
Third, informing study participants of their correct
current level of use over a short period may improve esti-
mation of use over somewhat longer periods. These
steps should help reduce random and systematic bias in
cellphone studies, but we anticipate that they will also be
applicable to other research which relies on recalled
estimations of recent numbers of events.
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