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Abstract

Background

Obesity is often associated with inflammation in adipose tissue (AT) with release of media-

tors of atherogenesis. We postulated that it would be feasible to collect sufficient abdominal

AT to quantify changes in a broad array of adaptive and innate mononuclear white cells in

obese non-diabetic adults in response to a dipeptidyl protease inhibitor (DPP4i), known to

inhibit activation of immune white cells.

Methods

Adults 18–55 years-of-age were screened for abdominal obesity and insulin resistance or

impaired glucose tolerance but without known inflammatory conditions. Twenty-one eligible

participants consented for study and were randomized 3:1 to receive sitagliptin (DPP4i) at

100mg or matching placebo daily for 28 days. Abdominal AT collected by percutaneous

biopsy and peripheral blood mononuclear cell fractions were evaluated before and after

treatment; plasma was stored for batch testing.

Results

Highly sensitive C-reactive protein, a global marker of inflammation, was not elevated in the

study population. Innate lymphoid cells (ILC) type 3 (ILC-3) in abdominal AT decreased with

active treatment compared with placebo (p = 0.04). Other immune white cells in AT and
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peripheral blood mononuclear cell (PBMC) fractions did not change with treatment com-

pared to placebo (p>0.05); although ILC-2 declined in PBMCs (p = 0.007) in the sitagliptin

treatment group. Two circulating biomarkers of atherogenesis, interferon-inducible protein-

10 (IP-10) and sCD40L declined in plasma (p = 0.02 and p = 0.07, respectively) in the active

treatment group, providing indirect validation of a net reduction in inflammation.

Conclusions

In this pilot study, two cell types of the innate lymphoid system, ILC-3 in AT and ILC-2

PBMCs declined during treatment and as did circulating biomarkers of atherogenesis.

Changes in other immune cells were not demonstrable. The study showed that sufficient

abdominal AT could be obtained to quantify white cells of both innate and adaptive immunity

and to demonstrate changes during therapy with an immune inhibitor.

Trial registration

ClinicalTrials.gov identifier (NCT number): NCT02576

Background

Abdominal obesity is a central component of the metabolic or insulin resistance syndrome that is

associated with an increased risk for heart attack, stroke and peripheral vascular disease [1]. The

mechanisms as to how abdominal adipose tissue (AT) contributes to these complications in

humans is uncertain. In laboratory models of obesity, adipocytes progressively accumulate lipid.

As these cells increase in size and cause local tissue anoxia and cell death, AT converts from an

anti-inflammatory state with predominantly M2 macrophages to an inflammatory phenotype

with influx of M1 inflammatory monocytes that become resident tissue inflammatory macro-

phages (also designated M1) that secrete chemokines and pro-inflammatory cytokines [2–4].

Secretion of these mediators impairs insulin signaling and together with the efflux of pro-athero-

genic mediators to the systemic circulation induce events that presumably damage the vascular

endothelium and cause endothelial dysfunction, early manifestations of atherosclerosis.

In humans, abdominal obesity is associated with insulin resistance, circulation of inflam-

matory cytokines (e.g. IL-6, TNFα) [5, 6], other mediators such as chemokines and vascular

adhesion molecules that are together central to the pathogenesis of endothelial dysfunction

and eventually atherosclerotic plaque [7]. These clinical abnormalities become more apparent

with aging [5, 8]. It is unclear why many adults with abdominal obesity show this clinical phe-

notype of “unhealthy” obesity [3, 4] whereas other abdominally obese persons do not manifest

these abnormalities and have “healthy” obesity [8].

Traditional methods have examined AT for the presence of crown-like structures (CLS)

which represent dying adipocytes that are surrounded by inflammatory macrophages (M1), a

signature for AT inflammation. These structures are limited in numbers and minimally pres-

ent in non-inflamed AT where the resident macrophages are predominantly anti-inflamma-

tory (M2) cells. However, enumeration of M1 and M2 macrophages and their regulatory T cell

fractions (effector and regulatory cells) requires sizeable quantifies of AT.

Innate lymphoid cells (ILCs) are integral in maintaining tissue microstructure and may also

be important in the regulation of obesity and metabolism [9–11]. These cells are characterized

by their cytokine production such that ILC-1 and ILC-3 are primarily inflammatory and ILC-

2 anti-inflammatory [12, 13] and thus may interact with monocytes/macrophage and T-
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lymphocytes. Early evidence suggests that ILCs may have a role in the pathogenesis of obesity

and dysmetabolism. For instance, ILC-1 may foster insulin resistance even without affecting

total body weight in mouse models [14, 15]. Whereas, ILC-2 isolated from murine and human

white adipose tissue (WAT) when activated can promote beiging of WAT [9] and induction of

uncoupling protein 1 (UCP1) to limit the development of obesity [9–11]. The role of ILC-3 in

obesity is less clear. Cytokines produced by ILC-3 including the lymphotoxin/IL-23/IL-22

pathway may promote induction of obesity [16]; however, IL-22 may be protective against the

development of obesity [17, 18]. To study these potentially important immune white cells in

obesity, substantial amounts of tissue are needed to quantify the ILCs and their functional

importance since they are present in much lower numbers than other immune white cells.

To date, obtaining sufficient amounts of intact abdominal adipose tissue (AT) to study his-

tology and quantify a broad array of immune white blood cells has not been possible. Liposuc-

tion can provide a large slurry of adiposity but the liquid collection cannot be used to study AT

histology or to enumerate CLS signifying an inflammatory phenotype [5, 6] or for special his-

tochemical staining. More traditional biopsies of subcutaneous AT can yield intact tissue but

quantifies are often limited to 1-to-2g or less, which is insufficient for both histologic examina-

tion and comprehensive quantification of different immune cells. We reported that much

more sizeable quantities of intra-abdominal AT can be obtained using a novel methodology

[19]. We have since refined the method to consistently acquire up to 10g of abdominal AT,

which should be sufficient for comprehensive immune cell phenotyping using fluorescence

activated cell sorting (FACS).

In this study, we determined whether sufficient amounts of abdominal AT could be

obtained with our methodology to quantify changes in numbers of M1 and M2 monocytes/

macrophages, Teffector and Tregulatory cells and innate lymphoid cells (ILC-1, ILC-2 and

ILC-3) by FACS in response to a short course of therapy with a dipeptidyl dipeptidase 4

(DDP4) inhibitor, sitagliptin. Sitagliptin is a weak oral hypoglycemic agent that increases

incretin levels to lower blood glucose levels [20, 21]. The drug is of immunological interest

since it suppresses monocyte/macrophage signal transduction and activation [22–24], cells

which may be further regulated and counter regulated by T-lymphocytes. There are no

reported clinical data on the effects of DPP4 inhibition of white cells of the innate immune

response, which we postulated could also be important in regulation of abdominal adipose tis-

sue inflammation [25–27]. We elected to use sitagliptin as a probe to assess whether we could

detect change in numbers of different white cell phenotypes of adaptive and innate immunity

in obese humans. We report herein that our approach for AT acquisition and FACS can be

used to quantify changes in white cells of both arms of immunity in abdominal obesity. Sec-

ondarily, we also determined whether any change in AT cellular immune cell counts could be

related to changes in several important plasma mediators and biomarkers that reflect increased

risk for cardiovascular disease.

Methods

The study reported in this manuscript was approved by the Institutional Review Board of the

University of Southern California (approval #HS-13-00345). All study participants including

those screened for enrollment signed written informed consent before any measurements or

interventions in the protocol were initiated.

Hypothesis and study design

We postulated that it would be feasible to collect sufficient abdominal AT to quantify changes

in a broad array of adaptive and innate mononuclear white cells in obese non-diabetic adults
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in response to treatment with a dipeptidyl protease inhibitor (DPP4i), known to inhibit

immune white cell activation. We secondarily sought to determine whether this treatment

could be related to reductions in plasma biomarkers of atherogenesis.

This pilot study included a placebo-treated control group to qualitatively assess whether

there may be sizable changes over time without treatment (including possibly regression to the

mean), although the sample size was generally underpowered to demonstrate statistical signifi-

cance between the groups. Eligible participants were randomized 3:1 by computer generated

blocks of four to receive treatment with sitagliptin as a single 100mg tablet versus matching

placebo taken once daily for 28 consecutive days.

To be eligible, participants had to be 18–55 years of age and have abdominal obesity based

on minimum waist circumference (minimum visual waist between lower rib margins and

upper iliac crest) of at least 95cm for men and 94cm for women when measured in triplicate.

These break points for obesity have been validated with increases in visceral adipose tissue [28]

related to cardiometabolic risks [29, 30]. Participants also had to have evidence of impaired

glucose tolerance or insulin resistance based on fasting blood glucose of 100–125 mg/dL

(5.55–6.94 mmol/L), Hgb A1C of 5.7 to 6.4% or HOMA-IR of�3.0 with no history of or cur-

rent treatment for diabetes. Potential participants were excluded if they were pregnant or lac-

tating; had clinical evidence of cardiovascular disease, an active inflammatory condition,

hepatic or renal disease; or regularly used anti-inflammatory or statin drugs.

Abdominal fat biopsies

Participants were instructed to fast after 10PM and were admitted the following morning to

the inpatient USC Clinical Trials Unit (CTU). Biopsies were performed as previously described

[19]). In brief, the abdominal skin was prepared with three betadine scrubs at the biopsy site in

the right anterior axillary line at the level of the umbilicus. After infiltration of the dermis and

very superficial subcutaneous tissue with 1% lidocaine, a 6–7 mm incision was made in the

skin with #11 Bard Parker scalpel. A 6-mm Bergström side-cutting needle (Micrins Surgical,

Lake Forest, IL, USA) was introduced approximately 1–1.5 inches through the incision into

the subcutaneous abdominal AT. Suction was then applied from a 60-cc syringe attached by

irrigation tubing to the Bergström needle. Four cuts were made with the cutting trochar as the

needle was further advanced and rotated 90 degrees prior to each cut. The procedure consis-

tently yielded 1.5-8g of adipose tissue. Manual compression was applied to the wound and the

incision was closed with 3.0 silk suture using a figure-of-8 tie. The participant was discharged

from the CTU with instructions for post procedure wound care.

Flow cytometry: Adipose tissue and blood

Inflammatory and anti-inflammatory cells were measured in AT and peripheral blood mono-

nuclear cells (PBMCs) by flow cytometry. The immune cell populations quantified and isolated

included M1 and M2 macrophages and monocytes, T regulatory and T effector lymphocytes

and the three innate lymphoid cell subsets (ILC-1, ILC-2 and ILC-3). PBMCs were first iso-

lated from whole blood by diluting the blood 1:1 in PBS and adding to SepMateTM-50 separa-

tion tubes (STEMCELL Technologies Inc, Vancouver, Canada) prefilled with 15mL

LymphoprepTM each (Axis-Shield, Oslo, Norway) and centrifugated at 1200g for 15 minutes.

Subcutaneous adipose tissue samples were weighed and digested in collagenase IV (200U/mL,

Worthington Biochemical Corporation) at 37˚C for one hour and then processed on a 70μm

nylon cell strainer (Falcon1) into a single cell suspension. The stromal vascular fraction from

the subcutaneous adipose tissue and the blood mononuclear cells were stained with the follow-

ing surface marker antibodies: CD4, CD45, CD25, CD163, CD127, CD14, Lineage (CD3,
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CD14, CD16, CD19, CD20, CD56) CD235a, FCεRIα, CD1a, CD123, CD161, CRTH2, CD117;

ThermoFisher scientific). The following established gating strategies based on previous publi-

cations [31–35] were used to quantify the different immune cell sub-populations using the

eight-color BD FACSCANTO analyzer and data were acquired using BD FACSDiva software

(BD Bioscience, San Jose, CA): CD45+, CD14+, CD163- for M1 macrophages, CD45+, CD14+,

CD163+ for M2 macrophages, CD45+, CD4+, CD25+, CD127low for regulatory T cells, CD45+,

CD4+, CD25+, CD127high for T effector cells. CD45+, Lineage-, CD127+, CRTH2-, CD117- for

ILC1s, CD45+, Lineage-, CD127+, CRTH2+ for ILC2s, CD45+, Lineage-, CD127+, CRTH2-,

CD117+ for ILC3s [35]. The total number of M1, M2, Tregs, Teff, ILC-1, ILC-2, and ILC-3

subsets were quantified using FlowJo version 10 software (TreeStar Ashland OR) and were

normalized to grams of AT collected or per milliliter of blood collected, respectively, as previ-

ously described [25, 33, 36, 37]. Gating strategy and flow cytometry of a representative sample

are shown in Fig 1.

Participant recruitment and follow up dates

Potential study participants were screened for study eligibility after signing a University of

Southern California Institutional Review Board approved informed consent beginning Febru-

ary 15, 2016; the final subject was screened on February 27, 2016. The last participant had final

clinical and laboratory measurements on April 28, 2017.

Clinical outcomes

Plasma glucose and soluble biomarkers. Blood was collected in EDTA phlebotomy tubes

for plasma glucose levels and batch testing for biomarkers. One tube was placed immediately

in an ice bath and within 15–20 minutes plasma was separated after spinning at 1500g for

15min in a 4C refrigerated centrifuge. Samples were immediately tested in triplicate on a glu-

cose analyzer (Yellow Springs Instruments, Model 2300; coefficient of variation <2%) cali-

brated with glucose standards in the prior 1 hour. The average of the three sample runs was

used for eligibility screening. The remainder of the plasma was processed in a similar manner

and stored at -80C.

Frozen samples of stored plasma were thawed once and batched tested for circulating bio-

marker levels including plasma C-Reactive Protein ([CRP] with coefficient of variation (CV) =

3.8–8.3%, sensitivity = 0.022ng/ml), hsIL-6 (CV = 6.9–7.8%, sensitivity = 0.11pg/mL), hsTFNα
(CV = 3.1–7.7%, sensitivity = 0.106pg/mL), sCD26 (CV = 4.0–7.3%, sensitivity = 0.072pg/mL),

sCD40L (CV = 4.5–5.4%, sensitivity = 10.0pg/mL) and IP-10 (CV = 3.0–4.6%,

sensitivity = 4.46pg/mL) before and after 28 days of treatment with sitagliptin using reagents

from R&D Systems Inc.

Other outcomes. Complete blood counts and comprehensive chemistries were obtained

on study participants before, during and at completion of study therapy to monitor for safety.

Methods for vascular imaging (brachial artery flow mediated dilation and carotid artery intima

media thickness) are described in the complete study protocol (S1 File).

Statistical analyses

Differences in baseline characteristics and measurements by randomized treatment group

were analyzed by Fisher’s exact test or exact Wilcoxon rank-sum test, as appropriate. Results

are reported as proportions for categorical variables and both means and standard deviations

and medians and interquartile ranges (IQRs) are reported for continuous variables. Differ-

ences in change (day 28 minus baseline) in assay measurements between treatment groups

were compared by ANCOVA, using a rank transformation, controlling for baseline of the
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measurement. Results are reported as mean (95% confidence interval) and median (interquar-

tile range). Within-group changes from baseline were assessed by Wilcoxon signed-rank test.

All statistical analyses were performed using SAS version 9.4.

Pass Software [38] was used to determine the minimum detectable change in an outcome

with the planned sample size of 20 subjects randomized 3:1 to receive sitagliptin versus match-

ing placebo. Assuming up to 10% attrition (i.e. 18 participants completing the study),

alpha = 0.05(two-sided) and 80% power, we would be able to statistically detect a large between

Fig 1. Leukocyte gating strategies in human blood and adipose tissue. Gating strategy of IL-1, ILC-2 and ILC-3 cells

in blood (A) and in adipose tissue (B). Total ILCs were identified as CD45+ cells negative for lineage markers and

positive for CD127. ILC-2s are CRTH2, whereas ILC-1s and ILC-3s are defined as CRTH2- CD117- and CRTH2-

CD117+ cells, respectively. Gating strategy of Tregs, Teffs, M1 and M2 cells in blood (C) and in adipose tissue (D).

Tregs and Teffs are both positive for CD45, CD4 and CD25. Additionally, while Tregs are CD127-, Teffs are CD127+.

M1 and M2 cells are gated as positive for CD45 and CD14. M1 cells are identified as CD163- whereas M2 cells are

CD163+.

https://doi.org/10.1371/journal.pone.0237496.g001
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group differences in pre-post changes (Cohen’s d = 1.7), assuming a moderate within partici-

pant correlation in pre-posttest measurements (r = 0.5). For the group receiving sitagliptin, we

would be able to detect a within group effect size on change of at least d = 0.81.

Results

Study flow and participant characteristics

Fifty-one potential study participants signed informed consistent approved by the USC institu-

tional Review Board and were screened for eligibility. Lack of impaired glucose tolerance or

insulin resistance (n = 10), lack of abdominal obesity defined for eligibility (n = 3) and pres-

ence of diabetes (n = 3) were the most common reasons for exclusion. Four were excluded for

individual reasons, and after initial screening four other potential participants elected not to

undergo further testing. Twenty-seven participants were fully eligible; of these six decided not

to participate generally because of scheduling conflicts. Twenty-one eligible participants were

randomly assigned to receive blinded treatment with sitagliptin (n = 15) or matching placebo

(n = 6; Fig 2).

The two groups were quite comparable (Table 1). Of note, plasma C-reactive protein (CRP)

was well below the upper limit of normal of 3 mg/dL for the cohort of 21 participants. One par-

ticipant assigned to placebo moved away midway during treatment and did not return for fol-

low up. Twenty participants completed all aspects of the study including end of treatment

abdominal fat biopsies and serve as the basis for these analyses.

Fluorescent activated cell sorting

All 20 participants provided sufficient AT samples at both baseline (median [range]: 3.8 [1.9–

5.5] g) and follow-up (median [range]: 3.6 [1.6–4.6] g) for the predetermined testing. Use of

FACS was, therefore, able to accurately discriminate change and lack of changes in ILC sub-

groups for individual patients as exemplified for a participant as shown in Fig 2. Moreover, the

changes of different ILC subgroups with treatment in adipose tissue was not the same -as in

PBMCs (Table 2) and exemplified by a patient in Fig 3. At 6 biopsy sessions, 8-to-10g of AT

was obtained with more biopsy passes and cuts and would have been sufficient if resources

had been available for histologic characterization and other immune markers (Fig 4).

Between group comparisons

After adjusting for baseline levels of ILC-3, ILC-3 in AT decreased by 4.0 (95% CI: -43.6, 35.5)

cells/g of tissue after treatment with sitagliptin compared to an average increase of 85.2 (95%

CI: 18.9, 151.4) cells/g of tissue observed in the placebo group (ANOVA on ranks, p = 0.04).

The median change was -3.3 (IQR -27.7, -16.9) cells/g for the sitagliptin group and 74.5 (IQR

-1.1, -116.7) cells/g for the placebo group, without accounting for differences in baseline.

There were no other significant changes in absolute numbers of immune cells between treat-

ment groups. S1 and S2 Figs show representative dot plots of CD45+ cells, Tregs, Teff, M1 and

M2 in the stromal fraction of AT and PBMCs immediately before and after 28 days of study

treatment, which is consistent with a lack of change in distribution of immune cells as well as

their absolute numbers.

Within sitagliptin-group change

For participants who received sitagliptin, ILC-1 cells decreased in AT by 206 cells/g (IQR of

decrease 810 to -83, p = 0.06); in PBMCs, ILC-1 cells decreased by 116 cells/ml (IQR of

decrease 162 to 71, p = 0.08) and circulating ILC-2 cells declined by 31 cells/ml (IQR of
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decrease 91 to 8.5, p = 0.007 (Table 2 For the other immune cells (Tregs, Teffs, M1, and M2)

along with total CD45+ cells in AT stromal fractions and PBMCs, there were no differences in

absolute cell counts or their relative percentages immediately before or after 28 days of treat-

ment with sitagliptin (S1 Table). This data further validates that the distribution of different

immune white cells was not affected by active treatment with sitagliptin.

Fasting plasma insulin and HOMA-IR did not change significantly (Table 2). On average,

fasting glucose levels declined by 6.0mg/dL (IQR of decline 8.8 to -1.8) (p<0.001) and

HgbA1C levels declined by 0.10% (IQR of decline 0.20% to– 0%, p = 0.02) after 28 days of sita-

gliptin treatment. Change in measures of glycemia (fasting glucose, insulin, HOMA-IR and

HgbA1C) and change in ILCs in AT and PBMCs were not related (p>0.15) with one excep-

tion. Reductions in HgbA1C was positively related to reduction of ILC-2 (Spearman r = 0.50)

in circulating PBMCs but the relationship did not reach significance (p = 0.07, S2 Table), The

relationship between these two parameters in AT was less pronounced (Spearman r = 0.39,

p = 0.19).

Fig 2. Study flow chart.

https://doi.org/10.1371/journal.pone.0237496.g002
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Two plasma biomarkers declined: IP-10 declined by 30.5 units/ml (IQR decline of 59.9 to

14.29, p = 0.02) and sCD40L declined by 285 unit/ml (IQR decline of 1231 to 149.5, p = 0.07;

Fig 5). However, CRP, hsIL-6 and hsTNFγ did not change (data not shown). The change in

sCD26, which is released from activated immune white cells was directly correlated with

change in numbers of ILC-2 cells in AT but the change did not reach significance (rho = 0.49,

p = 0.09; data not shown).

Other outcomes

There were no serious clinical or laboratory adverse events associated with study therapy or

the biopsy procedure. There were no significant pre to post changes between or within groups

(p>0.10) for the vascular imaging outcomes (data not shown).

Discussion

We postulated that it would be possible to collect sufficient abdominal AT to quantify changes

in a broad array of adaptive and innate mononuclear white cells in obese patients in response

to treatment with an immune modulator known to inhibit activation of immune white cells.

This hypothesis was supported as we demonstrated changes in various ILCs in AT and

Table 1. Patient characteristics prior to treatment.

Sitagliptin Placebo P-value

n = 15 n = 6

Female 10 (66.7%) 2 (33.3%)

Male 5 (33.3%) 4 (66.7%) 0.33

African American 2 (13.3%) 0

Caucasian 1 (6.7%) 1 (16.7%) 1.00

Other (Latino) 12 (80.0%) 5 (83.3%)

Hispanic ethnicity 12 (80.0%) 5 (83.3%) 1.00

Age, years 38.8 ± 9.3 #a 38.8 ± 9.1 0.89

38 (32–47) #b 36 (32–49)

Weight, kg 101.1 ± 16.9 114.3 ± 21.5 0.21

100.9 (84.8–109.2) 109.8 (99.0–137.3)

Min waist circumference, in 43.0 ± 6.1 46.6 ± 4.8 0.18

41.0 (39.7–46.5) 46.5 (42.7–50.8)

Iliac waist circumference, in 46.6 ± 5.3 48.9 ± 6.2 0.65

46.3 (42.2–48.2) 49.8 (43.0–54.8)

Glucose, mg/dL#c 100.9 ± 10.6 103.3 ± 9.9 0.51

98.5 (94.0–103) 106 (93.5–109)

HOMA-IR 5.3 ± 2.1 5.0 ± 3.2 0.40

5.1 (3.9–6.1) 3.7 (3.5–5.3)

HgbA1C, % 5.6 ± 0.5 5.9 ± 0.2 0.06

5.5 (5.3–5.8) 5.9 (5.8–6.0)

C-reactive protein, mg/dL#d 1.067 ± 0.930 0.558 ± 0.569 0.24

0.757 (0.318–1.9442) 0.435 (0.195–0.663)

a# Geometric mean and one standard deviation
#b Median (interquartile range)
#c mmol/L glucose is equal to mg/dL glucose X 0.0555
d# nmol/L C-reactive protein is equal to mg/dL C-reactive protein X 9.524

https://doi.org/10.1371/journal.pone.0237496.t001
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Table 2. Changes in metabolism and innate lymphoid cells after 28 days of treatment with sitagliptin.

Variable Baseline Day 28 Change P-value#b

In plasma
ALT, units/L 28 (14–34) #a 23 (16–45) -3 (-9–0) 0.08

Fasting glucose mg/dL #c 98.3 (93.8–103) 89.0 (86.0–97.0) -6.00 (-8.80 –-1.80) <0.001

HgbA1C % 5.5 (5.3–5.8) 5.5 (5.4–5.7) -0.1 (-0.2–0) 0.02

Insulin, μIU/ml 13.7 (8.20–20.1) 15.4 (8.49–22.34) -0.17 (-3.18–2.76) 0.76

HOMA-IR 3.46 (2.03–6.31) 3.51 (1.74–5.98) -0.34 (-0.71–0.39) 0.36

Innate lymphoid cells (absolute counts)
In adipose tissue cells/g

ILC-1 cells 320 (102–820) 194 (59–386) -206 (-810 –-83) 0.06

ILC-2 cells 264 (28–338) 98 (11–176) -19 (-268–5) 0.31

ILC-3 cells 42 (10–48) 25 (14–37) -3 (-28–17) 1.00

In blood cells/ml

ILC-1 cells 303 (104–644) 189 (90–539) -116 (-162–70) 0.08

ILC-2 cells 139 (79–210) 78 (39–140) -31 (-91– -8) 0.007

ILC-3 cells 63 (32–108) 30 (14–154) -9 (-57–13) 0.58

#a Values are expressed as median (interquartile range) for baseline, day 28, and change (day 28—baseline) for all variables.
#b P-values were obtained by Wilcoxon signed rank test on change.
#c Mmo/L glucose is equal to mg/dL glucose X 0.0555.

https://doi.org/10.1371/journal.pone.0237496.t002

Fig 3. ILC3s decrease in adipose tissue but ILC2s remain the same. ILC-3 numbers/gram of adipose tissue decreased

significantly in participants treated with sitagliptin compared to placebo (p = 0.03). Panel A -shows an example of the

decrease in ILC-3 in a participant before and after treatment with sitagliptin, respectively. In the same participant,

panel B shows no difference in ILC-2 before and after treatment, respectively.

https://doi.org/10.1371/journal.pone.0237496.g003
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PBMCs. However, there was no change in M1 and M2 macrophages and monocytes or T-reg-

ulatory and T-effector lymphocytes. The discordant findings between the change in ILCs of

the innate immune response and lack of change in the more traditional white cells of the adap-

tive immune response is unclear. However, the fact that unexpectedly our population lacked

evidence of systemic inflammation based on normal CRP prior to treatment may explain the

lack of change in the traditional immune white cells. Reductions in circulating IP-10 and

sCD40Lvalidate that alterations in ILCs in AT were occurring in response to treatment.

Further, the moderately strong positive correlation of change in plasma sCD26 with change

in AT tissue ILC-2 (r = 0.49, that did not reach significance, p = 0.09) supports the expected

effects of sitagliptin on the DPP4 enzyme activity that resides in the cellular receptor CD26

present on ILC-2 cells [39]. Thus, DPP4i may also have directly attenuated anti-inflammatory

activity of ILC-2s, possibly as counter regulation from suppression of inflammatory ILC-1 and

ILC-3. Together these results suggest that DPP4 inhibition with sitagliptin may have globally

attenuated immune activation in AT. Finally, the observation that improvement in glycemic

control (reductions in HgbA1C) was positively correlated with reductions of ILC-2 in PBMC

(not AT, r = 0.50, p = 0.07) is also consistent with an unobserved global reduction in inflam-

mation, which impairs insulin signaling, and that ILC-2 counts declined secondarily. Regard-

less, the fact that changes in PBMC cell types were not concordant with changes in AT

(namely ILC-1 and ILC-3 declined in AT and ILC-2 fell in PBMCs) emphasizes the impor-

tance of tissue sampling to assess effects of treatment interventions on these cell types.

Fig 4. ILC2s decrease in blood but remain the same in adipose tissue. In the sitagliptin-treated participants, changes

in the ILCs in peripheral blood mononuclear cell (PBMC) fractions often were not congruent with the change or lack

of change in the same cell lines in abdominal adipose tissue (data not shown). Panel A exemplifies a decrease in ILC-2

in PBMCs from a participant before and after 28 days of treatment with sitagliptin, respectively. Panels B shows no

difference in ILC-2 from adipose tissue in the same participant before and after treatment, respectively.

https://doi.org/10.1371/journal.pone.0237496.g004
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Decline of two soluble proatherogenic mediators and markers of atherogenesis, IP-10 and

sCD40L during treatment with sitagliptin suggests that there was a net down regulation in

inflammation. Interferon inducible protein 10 (IP-10) is a chemokine secreted by monocytes,

macrophages and endothelial cells in response to IFNγ [40], which is secreted by ILC-1 cells

[25]. Further, IP-10 secreted by these immune cells binds to the G-receptor of endothelial

cells, which contribute to the pathogenesis of arterial plaque [41–44]. Levels of plasma IP-10

and/or its receptor (CXCR3) are increased in a number of cardiovascular disorders [41, 42,

45–47]. Similarly, sCD40L also declined during treatment, although the change did not reach

traditional significance (p = 0.07), the decrease supports the effects of sitagliptin on IP-10.

Fig 5. Change in plasma biomarkers of cardiovascular disease after 28-days of treatment with sitagliptin. Data

represent median values with whiskers up to the 3rd quartile for soluble interferon gamma inducible protein (IP-10)

and soluble CD40 ligand (sCD40L) at baseline (day 0) and after 28 days of treatment with sitagliptin. For IP-10,

differences after 28 days were significant at p = 0.02 (�) and for sCD40L the change did not reach significance p = 0.07

(†) by Wilcoxon signed-rank test.

https://doi.org/10.1371/journal.pone.0237496.g005
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Soluble CD40 ligand is shed from activated M1 monocytes and macrophages and binds the

Type I CD40 transmembrane receptors of endothelial and smooth muscle cells [48, 49] as well

as macrophages and monocytes in the vasculature and arterial plaque [50, 51]. This ligation

promotes secretion of a broad range of chemokines, inflammatory cytokines and vascular

adhesion molecules that are central to the pathogenesis of atherosclerosis. Plasma levels of

sCD40L are increased in persons with fat inflammation, at risk for type 2 diabetes, with arterial

plaque instability, and acute myocardial infarction [47, 52–55]. Change in these systemic bio-

markers of atherogenesis that occurred concordant with changes in ILCs emphasizes the

importance of quantifying all immune cells in understanding pathogenesis of obesity-related

risk for cardiovascular disease.

The changes in immune ILCs occurred in the absence of any statistically significant effects

on traditional biomarkers of inflammation (e.g. soluble IL6 and TNFα) or the marker of global

inflammation, CRP. This was not surprising since prior to treatment with sitagliptin, plasma

CRP levels were well within the normal range for the study participants. The normal CRP was

unexpected since a substantial portion of abdominally obese persons demonstrate systemic

inflammation [6, 7]. However, the fact that DPR4i attenuated inflammatory ILC-3 cells in AT

in the between group analysis (p = 0.04) and AT inflammatory ILC-1 in the within sitagliptin

group analysis (p = 0.06) and reduced circulating IP-10 and sCD40L in the absence of clinical

evidence of systemic inflammation (normal CRP) is even more remarkable since abdominal

fat is believed to be a major source of proatherogenic mediators [5, 7]. Thus, it is possible that

a strategy of DPP4 inhibition could have beneficial effects on reducing CVD risks via modifi-

cation of AT inflammation in abdominally obese adults regardless of the presence of systemic

markers of inflammation. Randomized clinical trials would be necessary in non-diabetic indi-

viduals to test this hypothesis, since results from studies with DPP4 inhibitors in diabetics may

not be relevant because that population often already has well established atherosclerosis.

Another clinical trial showed somewhat similar findings to ours [56]. In HIV-positive glu-

cose intolerant patients, who almost universally have systemic inflammation, sitagliptin signifi-

cantly decreased plasma IP-10 and sCD14 (a marker of monocyte activation) and AT

monocyte chemotactic protein-1 (important in facilitating inflammation) compared to pla-

cebo. Although sitagliptin decreased biomarkers of inflammation, changes in immune cell

phenotypes in AT were not measured in that study.

This pilot study had a number of limitations. The number of participants receiving placebo

was quite small and thus the study was underpowered to determine whether more robust

effects of DPP4i on immune cells (beyond the changes in ILC-3 and ILC-1) truly occurred,

However the significant declines in plasma IP-10 and near significant reductions in sCD40L

suggest that the few demonstrable cellular changes in innate lymphocytes are possibly real and

attenuation in AT inflammation may have occurred. Yet, we cannot exclude the possibility

that the changes were the result of regression to the mean despite the internal consistency that

each marker suggested reductions in inflammation. Unexpectedly, the normal plasma CRP

suggested that there was little systemic inflammation despite insulin resistance and abdominal

obesity.

In this small study, contamination of cell types could have obscured differences. Our gating

strategies were based on established gating methodologies [31–33]. For example, Tregs were

gated as CD45+ CD4+ CD127- CD25Hi and Teffs were gated as CD45+ CD4+ CD127+ CD25+.

This gating strategy yielded respectively more than 75% and 78% purity respectively for Tregs

and Teffs as reported by others, suggesting minor contaminations in these populations [31,

32]. If indeed AT is a primary source of adverse cardiometabolic mediators, this tissue should

also be evaluated for makers of histologic inflammation, namely for crown-like structures or

cellular expression of pro-inflammatory proteins before and after treatment with immune
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modulators. Finally, our study did not investigate the functional interactions of the changes in

the various types of white blood cells. In understanding pathogenesis of AT inflammation, stud-

ies should examine whether and how innate and adaptive lymphocytes interact to regulate

inflammatory M1 and anti-inflammatory M2 macrophages and monocytes and possibly other

immune cells (e.g. NK lymphocytes and stromal cells) and mediators released from adipocytes.

Regardless, a major strength of this study is the demonstration that sufficient quantities of

abdominal AT can be obtained that are necessary for innate lymphoid cell typing, unlike lesser

quantities needed for quantification of traditional cells of the adaptive immune system because

of their greater numbers of the latter cells in tissue. Further, the sizeable amounts of intact tis-

sues that can be obtained with our biopsy procedure maintains histologic integrity so that

crown-like structures may also be quantified, and adipocyte size measured with the amount of

tissue obtained. Finally, the within group effect sizes generated in this pilot study will be valu-

able in determining sample sizes for larger, more definitive studies of these biomarkers.

In summary, we have shown that DPP4 inhibition attenuated two cell lines of the innate

immune system, one in adipose tissue and one in PBMCs. Reductions in circulating IP-10 and

sCD40L suggests that global anti-inflammatory effects may have occurred. Further, in

response to our primary study goal, we were able to obtain sufficient abdominal AT with our

new biopsy methods to quantify changes in different mononuclear white cells of the innate

and adaptive immune systems. Finally, we believe this is the first clinical investigation of the

effects of DPP4 inhibition on immune lymphoid cells of innate immunity, namely ILC-1, ILC-

2 and ILC-3 cells in AT and blood in obese persons without diabetes. Studies are needed to

examine the functional interaction of these different immune cells and their regulatory roles in

AT inflammation in individuals with abdominal obesity.
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