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Introduction

Cell migration is a complex, dynamic process that involves 
continuous remodeling of the cellular architecture, which is 
needed in order for the cell to move and adapt to changes in 
the surrounding environment. It requires rapidly activated 
and spatiotemporally regulated signaling networks that enable 
cellular responses to external cues. Rho-family GTPases are key 
components of these signaling networks, most of them acting 
as molecular switches that cycle between a GTP-bound (active) 
and GDP-bound (inactive) form.1 The activity of Rho-family 
GTPases is tightly regulated by guanine nucleotide exchange 
factors (GEFs) that activate Rho-family GTPases by promoting 
the release of GDP, allowing the binding of GTP. GTPase-
activating proteins (GAPs) inactivate Rho-family GTPases by 
stimulating the hydrolysis of GTP.2 The inactive Rho GTPases 
are sequestered in the cytosol by the RHO-specific guanine 
nucleotide dissociation inhibitors (GDIs) which, upon binding 
the GTPases C-terminal prenyl group, prevent their membrane 
association.3 The molecular switch characteristic of the Rho 
GTPases enables them to regulate signals in a transient and 
localized fashion, and such dynamic regulation is crucial for 
effective cell migration. However, ten of the 20 members of the 

Rho-family GTPases are constitutively bound to GTP, and hence 
constitutively activated, and therefore regulated by alternative 
mechanisms. Recently, new insights into the regulation of 
constitutively active Rho family members have been generated 
through the finding that Rnd3/RhoE is phosphorylated by the 
kinases ROCK and PKC, with subsequent binding to 14-3-3 
proteins leading to its translocation from the plasma membrane 
to the cytosol.4

Over 80 GEFs and more than 70 GAPs have been reported,5 
suggesting that Rho-family GTPase regulation is complex and 
that activity and localization can be modulated by a multitude 
of signaling pathways depending on the spatiotemporal context. 
Regulation may integrate both the physical properties of the 
environment (rigidity, confinement, homogeneity, and shear 
stress) as well as its chemical characteristics (ligands, gradients, 
and redox status).

Interplay between Rho-Family GTPases  
during Cell Migration

Rac, Rho, and Cdc42 in 2-D environments
The concept of Rho GTPase involvement in the rearrangement 

of cellular architecture during cell migration in 2-D environments 
is built on landmark findings by Hall, Ridley, and Nobes, 
who showed that the Rho GTPase Rac promotes lamellopodia 
formation in response to PDGF stimulation,6 whereas RhoA 
stimulates the formation of contractile actomyosin fibers (i.e., 
stress fibers) downstream of LPA signaling.7 Cdc42 was later 
shown to promote filopodia and to activate Rac.8 Rac promotes 
lamellopodia formation through binding to the SCAR/Wave 
Regulatory Complex (WRC) components Sra1 and WAVE1 
which generates a conformational change that unmasks the VCA 
motif (verprolin homology, cofilin homology, and acidic region) 
in WAVE1 leading to the activation of the Arp2/3 complex 
and actin assembly,9,10 thereby promoting cell migration. RhoG 
(a Rho family GTPase closely related to Rac) has been shown 
to function upstream of Rac in some systems by recruiting its 
effector ELMO, bound to members of the DOCK family of Rac 
GEFs, to regulate Rac-driven actin remodeling and migration.11

In addition to Rac, activation of the Arp2/3 complex can 
be triggered by Cdc42 through binding to, and activation of, 
N-WASP.12 Interestingly, recent work from the Machesky group 
has shown that inhibition of SCAR/Wave-dependent Arp2/3 
activation, through knockdown of the SCAR/Wave Regulatory 
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Since their discovery in the late eighties, the role of 
rho GTPases in the regulation of cell migration has been 
extensively studied and has mainly focused on the hallmark 
family members rho, rac, and Cdc42. recent technological 
advances in cell biology, such as rho-family GTPase activity 
biosensors, studies in 3D, and unbiased rNai-based screens, 
have revealed an increasingly complex role for rho GTPases 
during cell migration, with many inter-connected functions 
and a strong dependency on the physical and chemical 
properties of the surrounding environment. This review aims 
to give an overview of recent studies on the role of rho-
family GTPase members in the modulation of cell migration in 
different environments, and discuss future directions.



e29710-2 Small GTPases volume 5 

Complex components Sra1 and Nap1, inhibits movement in 2-D 
but promotes 3-D invasion, indicating that different mechanisms 
drive cell movement in 2D vs. 3D. This study reported that, upon 
depletion of the WRC in a 3-D environment, enhanced FAK 
activation leads to the recruitment and activation of N-WASP at 
the invasive front, promoting Arp2/3-driven invasion. However, 
in 2-D WRC depletion slowed down migration and did not 
promote accumulation of N-WASP or Arp2/3 at the tip of cells.13

Concomitantly to WAVE/Arp2/3 activation, a new study 
has shown that Rac-dependent signaling recruits and activates 
the newly characterized protein Arpin (for Arp inhibitor) that 
binds to Arp2/3 but is unable to activate it, since Arpin lacks 
the VCA motifs, and therefore acts as a competitive inhibitor 
of the Arp2/3 complex. The study shows that Rac activation 
recruits Arpin to the tip of lamellipodia, where it inhibits Arp2/3, 
leading to a reduction in migration speed and a subsequent 
change in direction. The authors concluded that Rac-dependent 
recruitment of Arpin is needed for steering of migrating cells.14

During cell migration, the GTPase Rho is involved in both 
actin polymerization and force generation, through binding 
and activation of the formin mDia and the kinase ROCK, 
respectively.15 In the classic model of cell migration in 2D, it 
has been assumed that Rac and Cdc42 are active at the leading 
edge, in order to promote protrusion formation, whereas Rho 
would be active only in the cell body and at the rear, so as to 

provide the actomyosin-mediated force needed for rear retraction 
and forward movement (Fig. 1). The use of FRET-based Rho 
GTPase activity biosensors showed this model to be incomplete 
by demonstrating that Rho is also active at the leading edge,16 
and activated before Rac and Cdc42.17 These findings highlight 
the complexity and inter-connectivity of Rho GTPase-mediated 
signaling during cell migration. It is not clear whether Rho 
activation at the front and rear of the cell is mediated by two 
different GEFs, one targeting Rho to the leading edge to initiate 
actin polymerization at the onset of the protrusion-retraction 
cycle,17 and the second localizing it to the rear of the cell to 
increase tension-induced detachment of the rear.18 Interestingly, 
Vega et al. have shown that the closely related homologs RhoA 
and C have different roles during cell migration by acting through 
different downstream targets. The study shows that RhoA, 
through activation of the kinase ROCK, inhibits formation of 
multiple protrusions and promotes tail retraction, whereas RhoC 
inhibits lamellopodia broadening through activation of the 
formin FMNL3.19 However, other studies suggest that Rho A, 
B and C act redundantly to generate actomyosin contractility.20 
Early work on RhoB reported that it localizes to endocytic 
vesicles21 where, upon activation by Vav2,22 it signals through 
PRK1 to regulate the kinetics of intracellular EGF trafficking to 
the lysosome.23 Interestingly, work from Rodriguez et al. revealed 
that RhoB activates NFκB, independently from PRK1, in a 
ROCK-I dependent manner.24 More recent work from Ridley’s 
group has shown that the GTPase RhoB plays a key role in the 
uPA/uPAR-mediated migration and invasion of prostate cancer 
cells. The study shows that RhoB mediates the uPAR-induced 
upregulation of surface integrin levels as well as the uPAR-
dependent adhesion to vitronectin. Depletion of RhoB induces a 
decrease in the uPAR-induced phosphorylation of paxillin, Akt, 
and cofilin, and reduces the association of uPAR with integrins, 
leading to a decrease in migration and invasion of prostate cancer 
cells.25 Since uPAR is known to drive migration through a 
DOCK180-Rac pathway,26 these studies show how signaling via 
RhoB can link to Rac activity.

Rac, Rho, and Cdc42 in 3-D environments
Studies in 3D environments show that Rho GTPases can 

coordinate different modes of movement, where cells move 
through collagen-rich connective tissue with variable physical 
and chemical properties. In such environments single cancer cells 
can either adopt a round, highly contractile, Rho-driven mode of 
movement, or an elongated, lower contractility Rac-dependent 
mode of migration.27,28 These two modes are inter-convertible 
since, in a permissive environment, inhibition of components of 
the signaling pathway that promotes a given mode of movement 
switches cells to the other mode of migration.29 Importantly 
both types of movement rely on actomyosin contractility to 
generate the force needed for migration, but differ in the levels 
of contractility required. Actomyosin contractility is driven by 
canonical Rho/ROCK signaling, where Rho activates ROCK, 
which phosphorylates (and thus inactivates) the myosin light 
chain phosphatase (MYPT) leading to the activation of the 
myosin-II.30 Phosphorylation and inactivation of MYPT can 
also be triggered by MRCK (myotonic dystrophy kinase-related 

Figure 1. Crosstalk between classical rho-family GTPases regulates actin 
remodeling during cell migration. rho promotes actomyosin contractility 
through rOCK-dependent phosphorylation, and subsequent inhibition, 
of MLC phosphatase MyPT. rOCK also phosphorylates LiMK, leading 
to inhibition of cofilin activity. another effector of rho is the formin 
mDia, which promotes actin polymerization during cell migration. 
rho antagonizes rac-mediated signaling through rOCK/contractility-
dependent activation of the racGaP arHGaP22. rac promotes actin 
polymerization and lamellopodia formation through activation of wave 
and PaK and controls directionality through recruitment of arpin, which 
inhibits wave-dependent activation of arp2/3. rac also antagonizes 
rho-mediated signaling through a wave-dependent mechanism, and 
through activation of Nox-depednent rOS production, which promotes 
activation of p190rhoGaP, leading to inhibition of rho. Cdc42 connects 
with both rac and rho, promoting actomyosin contractility through 
activation of MrCK, which phosphorylates MTPT and induces filopodia 
formation via waSP-mediated activation of arp2/3.
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Cdc42-binding kinase) downstream of Cdc42. Wilkinson et al. 
showed that Rho and Cdc42 cooperate in order to generate the 
actomyosin contractility needed for elongated movement. The 
study shows that either of the Rho/ROCK- or Cdc42/MRCK-
dependent pathways could phosphorylate and subsequently 
inhibit MYPT. Interestingly, most of the actomyosin contractility 
needed for rounded movement is generated downstream of 
the canonical Rho/ROCK pathway.31 Alternatively, activation 
of Cdc42 downstream of DOCK10 can promote actomyosin 
contractility through activation of the kinase Pak2, which 
directly phosphorylates the Myosin Light Chain (MLC) at 
Ser19, leading to activation of myosin-II.32 In a co-culture system 
of collective migration of squamous cell carcinoma (SCC) 
and stromal fibroblasts, Gaggioli et al. showed that cancer-
associated fibroblasts remodel the extracellular matrix, through 
actomyosin-driven traction force that generates tracks which are 
followed by the carcinoma cells. This study highlighted a new 
aspect of the cooperation between Rho and Cdc42 for the control 
of actomyosin contractility, as it showed that the carcinoma cells 
used Cdc42 and MRCK-driven actomyosin contractility to 
follow the tracks that have been generated by the Rho/ROCK 
dependent-actomyosin contractility in fibroblasts.33

Atypical and other Rho-family GTPases
Work on less well characterized members of the Rho-family 

has revealed new levels of complexity and inter-connectivity 
in Rho-family GTPase signaling during cell migration. This 
subfamily includes RhoF, RhoD, RhoQ, RhoJ, and the non-
cycling family members Rnd 1–3, RhoH, RhoV, RhoU, and 
RhoBTB (Fig. 2). However, recent work from the Ahmadian 
group has shown that the Rho GTPases RhoD and RhoF are to 
be considered atypical as they exhibit a high intrinsic exchange 

activity and hence bound GTP under equilibrium and quiescent 
conditions.34 RhoF plays an important role in the organization of 
cell shape and cell migration. An overexpression approach showed 
that RhoF stimulates the formation of Cdc42-independent 
filopodia, through activation of the formin mDia-2.35 Recent 
work extended this finding and showed that RhoF interacts with 
mDia-1 to promote filopodia formation independently from 
the canonical Cdc42/WASP/Arp2/3 pathway.36 RhoF can also 
trigger the formation of actin stress fibers in epithelial cells in a 
ROCK-dependent fashion. The study shows that, in the absence 
of its effector mDia1, RhoF regulates the distribution of active 
ROCK at the cell cortex without affecting the overall activity 
of the kinase or the phosphorylation status of its effectors MLC 
and MYPT.37 RhoD localizes to the plasma membrane and the 
early endocytic compartment.38 It has been shown to promote 
the alignment of early endosomes along the actin fibers39 and 
to induce disassembly of focal adhesions and loss of the actin 
stress fibers by antagonizing RhoA, leading to impairment of cell 
migration.40 Recent work reported that expression of active RhoD 
induces the formation of filopodia and promotes the assembly of 
actin filament bundles and that knock down of RhoD decreases 
cell migration.41 This work showed that RhoD impacts on cell 
migration and adhesion by coordinating the Arp2/3-dependent 
and Filamin A (FLNa)-driven regulation of actin dynamics. 
RhoD regulates Arp2/3-mediated actin organization, through 
binding to the actin nucleation factor WASP homolog associated 
with actin Golgi membranes and microtubules (WHAMM), 
and regulates FLNa-dependent mechanisms through interaction 
with the FLNa-interacting protein FILIP.41 Recent work reported 
that RhoD also interacts with Zipper-Interacting Protein 
Kinase (ZIPK), in a GTP-dependent manner, to modulate the 

Figure  2. interplay between atypical and classical rho-family GTPases during cell migration. rhoD, rnd1, rnd3, and rhoJ antagonize the rho-
mediated actin remodelling during cell migration. in endothelial cells rnd2 and rnd3 promote rhoB-induced stress fiber formation. rhoD regulates 
the reorganization of actin through the activation of arp2/3 and ZiPK. rhoG activates rac by recruiting the eLMO/DOCK complex. rhoU promotes cell 
migration through activation of rac, whereas rhoH antaintergonizes rac-mediated actin reorganization and cell migration. rhov also antagonizes cell 
migration by promoting PaK degradation. rhoF activates mDia and is involved in the targeting of active rOCK to the cell cortex.
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reorganization of actin and focal adhesions.42 RhoQ (TC10) 
and RhoJ (RhoT/TCL) belong to the Cdc42 subfamily of Rho 
GTPases and, like Cdc42, RhoQ and RhoJ bind to N-WASP and 
induce Arp2/3-mediated actin polymerization. Overexpression 
of RhoQ and RhoJ induce the formation of long filopodial 
protrusions in fibroblasts and promote neurite outgrowth in 
PC12 cells.43 In endothelial cells, RhoJ is activated by vascular 
endothelial growth factor, and is required for endothelial cell 
migration and tube formation through modulation of actomyosin 
contractility and focal adhesion numbers.44 Similarly, in human 
corneal epithelial cells, RhoJ regulates polarization and migration 
speed in a wound healing assay45

The three Rnd proteins Rnd1, Rnd2, and Rnd3/RhoE lack the 
ability to hydrolyze GTP and so are constitutively bound to GTP. 
They have been implicated in the regulation of cell migration. 
Rnd1 and 3 have been shown to induce loss of stress fibers and 
cell rounding in several cell types,46 potentially by antagonizing 
Rho/ROCK-driven actomyosin contractility. It has been shown 
that both Rnd1 and Rnd3 interact with p190RhoGAP, which 
increases the GAP activity of p190RhoGAP toward active 
RhoA, leading to reduced cellular levels of active RhoA and a 
decrease in actomyosin contractility.47 Work from the Sahai 
group showed that Rnd3, through binding to a DDR-Par3-Par6 
complex, is targeted to cell-cell contact regions during collective 
migration, antagonizing the Rho-driven actomyosin contractility 
that induces disruption of cell-cell cohesion.48 However, Rnd3 
function appears to be cell type- and context-dependent, since 
recent work in endothelial cells revealed that Rnd3 stimulates 
stress fiber formation by inducing an increase in the level of 
RhoB expression, leading to activation of RhoB/ROCK-driven 
actomyosin contractility.49 Rnd2-driven stimulation of cell 
contraction, through activation of a Rho/ROCK-dependent 
signaling pathway, has been reported by the work of Tanaka et 
al., who showed that Rnd2 interacts with its effector pragmin to 
augment the levels of RhoA activity.50 Moreover, the cytoplasmic 
localization of Rnd2 makes it unable to affect the activity of 
RhoA through binding to p190RhoGAP, as recent work reported 
that targeting of Rnd1 and Rnd3 to lipid rafts is required for 
the activation of p190RhoGAP. This work showed that Rnd2 
lacks the N-terminal KERRA (Lys-Glu-Arg-Arg-Ala) sequence 
of amino acids needed for the targeting to lipid rafts.51

RhoH is an atypical Rho GTPase widely expressed in 
hematopoietic cells, where it has little effect by itself on actin 
reorganization and cell52migration. The general consensus is that 
RhoH antagonizes the classical Rho GTPase-mediated signaling, 
since it has been shown to inhibit the activation of NFκB and 
p38 induced by overexpression of constitutively   active Cdc42, 
Rac1, and RhoA-,53 and to antagonize Rac activation, Rac-
mediated actin reorganization and cell migration.54 Genetic 
deletion of RhoH in hematopoietic cells is associated with an 
increased Rac activity and Rac-mediated migration, chemotaxis, 
and cortical F-actin assembly.55 Although it has been suggested 
that RhoH regulates membrane targeting of Rac,55 little is known 
about the mechanism by which RhoH represses the activation 
of Rac and signaling mediated by other Rho GTPases. Wnt-1-
regulated Cdc42 homolog-1 (Wrch-1), also known as RhoU, and 

Cdc42-homologous protein Chp and Wrch2 (RhoV), are other 
examples of atypical Rho family GTPases. They both have an 
N-terminal proline-rich domain, allowing them to interact with 
proteins harboring SH3 domains such as Nck and Grb2.56,57 
Unlike the atypical Rho GTPases Rnd, RhoH, and RhoBTB, 
which have amino acid substitutions that prevent GTP hydrolysis 
and are therefore constitutively active, RhoU has a normal 
GTP hydrolysis activity, but exhibits a high intrinsic exchange 
activity and therefore has high levels of bound GTP58. RhoU 
has been shown to localize to podosomes in osteoclasts and 
c-Src-expressing cells, and to focal adhesions in HeLa cells and 
fibroblasts.59,60 Overexpression of RhoU disrupts focal adhesions, 
reduces stress fibers and induces multiple filopodial protrusions,56 
whereas its depletion by RNAi increases focal adhesion formation 
and inhibits cell migration.60 Interestingly, In addition to the 
well described Wnt-1 pathway, RhoU has been shown to be 
regulated by the gp130/STAT3 pathway, and its expression 
could be induced in several cell lines by stimulation with the 
cytokines OSM or IL6. In the context of melanoma and cancer-
associated fibroblasts, it has been shown that cytokine-dependent 
activation of the gp130/STAT3 pathway stimulates actomyosin 
contractility and promotes round “amoeboid-like” movement,61 
suggesting that RhoU might play a role in the regulation of 
different modes of cell migration in 3-D. Recent work in Xenopus 
further strengthened the role of RhoU in the regulation cell 
migration, as it showed that RhoU is expressed in, and required 
for the migration of, cranial neural crest (CNC) cells, and that 
RhoU knockdown impaired CNC migration both in vitro and in 
vivo. Interestingly, this study shows that overexpression of RhoU 
also impairs CNC cell migration, confirming that the level of 
RhoU is critical to this process. Mechanistically, RhoU regulates 
CNC cell migration by activation of the Rac/PAK pathway, 
since expression of dominant negative PAK could rescue the 
impairment of migration induced by overexpression of RhoU, 
and overexpression of Rac could rescue the decrease in migration 
upon RhoU inhibition.62 Few studies support a role for Chp2/
RhoV in the regulation of cell migration, perhaps explained by 
its weak expression across tissues.63 However, when overexpressed 
in Jurkat T-cells, RhoV reduced SDF1-stimulated migration by 
promoting ubiquitin-dependent degradation of Pak1.64 RhoBTBs 
(1 and 2) are the most distantly related Rho-family GTPases, 
as they are much larger than the classical GTPases and contain 
additional domains.65 RhoBTBs are believed to act as tumor 
suppressors through regulating ubiquitinylation,66 and have no 
reported direct effect on cell migration.

RhoGTPases Sensors of Physical Environment

In vivo, migratory cells have to adapt to variations in the 
physical properties of the surrounding environment, be it a change 
in rigidity, density, or organization of the surrounding matrix. 
Variations in the physical properties of the environment activate 
cellular mechano-sensors, which can generate transcriptional 
responses in the cell through activation of transcriptional 
regulators like YAP1, in the hippo pathway,67 as well as 
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components of the SRF pathway,68 impacting on cell fate,69,70 cell 
shape, and migration.71 Rho-family GTPases play a key role in 
integrating intracellular signals downstream of mechano-sensors, 
promoting re-organization of the actin cytoskeleton that is 
needed for the change in cell shape and, eventually, the mode of 
migration in a given environment. In endothelial cells subjected to 
shear stress, the formation of an integrin β1/Caveolin mechano-
signaling complex induces the inactivation of p190RhoGAP 
and the subsequent induction of RhoA activity, leading to an 
increase in the formation of actin stress fibers which will increase 
the resistance of endothelial cells to hemodynamic stress, as in 
the case of hypertension.72 Recent work from the Sahai group 
demonstrated that Rho/ROCK-driven actomyosin contractility, 
and activation of Src, are required for the activation of YAP in 
response to increased matrix stiffness. Activation of Yap and its 
downstream signaling, including the stabilization of MLC levels, 
is required for the generation and maintenance of the highly 
contractile cancer-associated fibroblast phenotype.73 During 
melanoma migration on a deformable substrate, increasing Rho/
ROCK-driven actomyosin contractility switches the cells from 
an elongated to a round mode of movement through actomyosin 
contractility-mediated activation of ARHGAP22, which 
specifically inactivates the Rho-family GTPase Rac.29 In order 
to understand how strain on the actin cytoskeleton generates 
intracellular signals that determine cell behavior, recent work has 
identified FLNA as a central mechano-transduction element of 
the cytoskeleton.74 This work showed in vitro that the application 
of either external shear or myosin-induced contraction of FLNA-
bound actin filaments, in the presence of two FLNA-binding 
partners, the cytoplasmic tail of β-integrin, and FilGAP (an 
ARHGAP22 family member), results in increased integrin 
binding to FLNA and dissociation of FilGAP.74 In cells, 
dissociated FilGAP relocates to the plasma membrane where it 
inactivates Rac.75 This work provides the molecular basis for the 
observation made by Shifrin et al., who reported that Rac activity 
is force-regulated by a FilGAP-FLNA interaction.76

In vivo, migratory cells experience varying degrees of physical 
confinement as they have to go through pores and channels 
with cross-sectional areas ranging from 3 to >400 µm.2,77 
How the physical dimensions of the ECM, such as pore size, 
influence cell migration is of great interest. Recent work on 
cells migrating through micro-channel devices with varying 
diameters ranging from 3 microns, a constricted physical 

environment, to 50 microns (an unconfined environment), 
reported that Rac activation downstream of α4β1 integrin is 
compulsory for migration in unconfined 3D environments, 
whereas migration in constricted environments requires myosin-
II-driven contractility that is further increased by the inhibition 
of Rac activity, suggesting a switch from Rac-driven protrusive 
movement in an unconfined environment to Rho-ROCK-
dependent, high actomyosin contractility-driven movement 
in constricted environments.78 Interestingly, computational 
modeling of cell migration in different matrix geometries and 
confinements predicted that confined environment modifies the 
contractility-velocity relationship for optimal migration. The 
model shows that—in contrast to migration on an unconfined 
surface, where increasing actomyosin contractility slows down 
movement through cell detachment—migration in confined 
environments favors high levels of actomyosin contractility. This 
is because, in such physical environments, the decrease in velocity 
due to actomyosin contractility-mediated cell detachment is 
reduced, and high actomyosin contractility promotes hydrostatic 
pressure-driven bleb formation, which enables high actomyosin 
contractility to drive fast, bleb-driven migration.79

Concluding Remarks and Future Directions

The field of Rho-family GTPases, and their role in cell 
migration, is evolving rapidly. This is in part due to the interest 
in different modes of migration, and in part to studies being 
expanded beyond the canonical family members. It is likely 
that studies of how Rho-family GTPase signaling interprets the 
physical environment, in addition to the chemical environment, 
will be of particular interest. Crucial to our understanding of 
Rho-family GTPases will be continued expansion of studies to 
in vivo models, and the capacity to image the activation of Rho-
family GTPases and their signaling pathways in such models.
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