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Abstract. Numerous renal diseases are 
characterized by complement activation with-
in the kidney, and several lines of evidence 
implicate complement activation as an impor-
tant part of the pathogenesis of these diseas-
es. Investigators have long anticipated that 
complement inhibitors would be important 
and effective therapies for renal diseases. 
Eculizumab is a monoclonal antibody to the 
complement protein C5 that has now been 
administered to patients with several types of 
renal disease. The apparent efficacy of this 
agent may herald a new era in the treatment 
of renal disease, but many questions about 
the optimal use of therapeutic complement 
inhibitors remain. Herein we review the ra-
tionale for using complement inhibitors in 
patients with renal disease and discuss sev-
eral drugs and approaches that are currently 
under development.

Introduction

It has long been appreciated that the com-
plement system is activated in a many types 
of renal disease. More than 30 y ago biopsy 
studies of patients with immune-complex 
glomerulonephritis demonstrated comple-
ment activation in the glomeruli [1]. Biopsy 
tissue is now routinely examined for deposits 
of complement components by immunofluo-
rescence microscopy. More recently it has 
become clear that the complement system 
can be activated in the kidney by many dif-
ferent mechanisms, and in several intra-renal 
locations. The complement system is an im-
portant part of the innate immune system. 
It plays a critical role in the elimination of 
pathogens, and complement activation frag-
ments may help tissue recovery in some set-
tings [2]. Uncontrolled complement activa-
tion can cause severe injury to self-tissue, 

however, and several lines of evidence im-
plicate complement activation as a cause of 
injury in kidney disease.

Given the strong evidence that comple-
ment activation is pathogenic in a variety of 
renal diseases, investigators have long antici-
pated that complement inhibitors would be 
important and effective therapies for these 
diseases [3]. Eculizumab is a monoclonal 
antibody to the complement protein C5. It 
was initially approved for the treatment of 
paroxysmal nocturnal hemoglobinuria [4, 5], 
but this drug has now been administered to 
patients with several types of renal disease 
[6, 7, 8, 9, 10, 11, 12]. The apparent efficacy 
of this agent may herald a new era in the 
treatment of renal disease, but many ques-
tions about the optimal use of therapeutic 
complement inhibitors remain. Which dis-
eases are most likely to benefit from such 
agents? Should the complement cascades be 
blocked at different levels in different dis-
eases? Many of the diseases in question are 
chronic, and the optimal duration of comple-
ment inhibition in these diseases has also not 
been established. Along the same lines, good 
non-invasive biomarkers of complement ac-
tivation have not yet been developed. There 
is reason to think, therefore, that our ability 
to identify appropriate patients and monitor 
their response to complement inhibition will 
improve in the years ahead.

The complement system

The complement system is an ancient part 
of the innate immune system and provides an 
important line of defense against bacterial, vi-
ral, and fungal pathogens [13]. It is a cascade 
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of proteins, analogous to the clotting cascade, 
that can be activated very rapidly. The comple-
ment system has three distinct pathways by 
which it can be activated (Figure 1): the clas-
sical, mannose-binding lectin, and alternative 
pathways. Although activated by distinct mo-
lecular interactions, all three pathways have 
the potential to generate the same downstream 
effector molecules. The inflammatory effects 
of the complement system are primarily medi-
ated by C3a, C5a, C3b, and C5b-9 (sometimes 
called the membrane attack complex (MAC) 
or the terminal complement complex (TCC)). 
Biologic effects of fragments generated from 
other components of the system have also been 
reported. C3a and C5a are soluble molecules 
that serve as ligands for receptors. C3b can be 
covalently bound to cell and tissue surfaces and 
is also a ligand for cognate receptors. C5b-9 is 
a multimeric complex that can form membrane 
pores. The size of the pores is variable, but they 
are often ~ 10 nm in diameter. The pores can 
cause cell lysis, or in sublytic quantities C5b-9 
can cause cell activation [14].

Like all components of the immune 
system, a key function of the complement 
system is to discriminate self from non-self. 
This function is achieved in several ways. 
The classical pathway of complement is 
activated by immunoglobulin when bound 
to a target antigen. This activation is, there-
fore, as specific as that of the antibody in 
question. Mannose binding lectins can bind 
to sugar moieties expressed on the surface 
of bacteria [15]. Like the toll-like receptors, 
this arm of the complement system is ac-

tivated in response to conserved molecular 
patterns on common pathogens. The classi-
cal and MBL pathways secondarily engage 
the alternative pathway. Consequently, the 
alternative pathway can substantially con-
tribute to tissue injury, even when activa-
tion initially occurs through the classical or 
MBL pathways [16].

The alternative pathway is continually ac-
tivated in serum, and can cause spontaneous 
injury on cells when it is not adequately con-
trolled on the cell surface. Impaired control 
of this pathway permits it to self-activate, and 
uncontrolled alternative pathway activation 
contributes to tissue inflammation in many 
diseases [17]. A large number of mutations 
and polymorphisms in the complement control 
proteins are associated with defective comple-
ment regulation. Complement regulation can 
also be disrupted by autoantibodies to comple-
ment system proteins. Intriguingly, the kidney 
is particularly susceptible to injury in patients 
who carry systemic abnormalities in alternative 
pathway regulation. Defects in the function of 
the circulating alternative pathway regulator 
factor H, for example, are causally associ-
ated with atypical hemolytic uremic syndrome 
(aHUS), dense deposit disease (DDD), and se-
vere cases of other renal diseases [18].

Mechanisms of complement 
activation in the kidney

Analysis of human samples and animal 
models indicates that all three activation 
pathways are involved in various renal dis-
eases.

Classical pathway

Antibodies and immune-complexes can 
activate the classical pathway of complement. 
This system is, therefore, frequently activated 
in immune-complex and antibody mediated 
diseases. The protein C4 is a component of 
this system, and tissue deposits of the C4 
fragment C4d are detected in the biopsies of 
patients with antibody-mediated diseases. 
Indeed, the detection of C4d has now been 
integrated into the diagnostic criteria for hu-
moral allograft rejection [19]. In patients with 
antibody-mediated rejection, the staining of 

Figure 1. Simplified overview of the complement 
cascade. The complement cascade is comprised 
of more than 30 proteins. The cascade can be acti-
vated through three distinct pathways. C3 and C4 
are routinely measured in patients suspected of 
having glomerular disease. C3 is the central com-
ponent of the cascade, and activation of all three 
pathways can lead to C3 cleavage. Activation of 
the classical and mannose binding lectin pathway 
causes cleavage of C4. Activation through all three 
pathways generates the same downstream pro-in-
flammatory fragments: C3a, C5a, C3b, and C5b-9.
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peritubular C4d likely represents activation of 
the classical pathway by antibodies that have 
bound to endothelial antigens.

MBL pathway

Work in recent years has revealed that 
the MBL pathway is activated in several re-
nal diseases, including IgA nephropathy [20] 
and in selected cases of other forms of glo-
merulonephritis [21]. IgA may directly acti-
vate the MBL pathway [22], or MBL could 
possibly bind neo-epitopes that are generated 
or exposed within the injured kidney [23].

Alternative pathway

The alternative pathway amplification 
loop may be engaged in diseases in which 
the classical and MBL pathways are activat-
ed. This pathway is also a primary cause of 
vascular and glomerular injury in aHUS and 
DDD. Surprisingly, experiments in animal 
models also suggest that the alterative path-
way contributes to injury in “antineutrophil 
cytoplasmic autoantibody (ANCA)” associ-
ated vasculitis and FSGS [24, 25]. Alterna-
tive pathway activation causes tubular injury 
in chronic proteinuric renal diseases [26] and 
in acute ischemic injury [27].

Complement activation as a 
primary or secondary 
phenomenon

It may be useful to think of complement 
as a primary or secondary immune factor 
in kidney diseases. In DDD, for example, 
dysregulated control of the complement sys-
tem seems to directly injure the kidney. In 
an antibody-mediated disease such as lupus 
nephritis, complement acts downstream of 
immune-complexes to cause renal injury. 
Categorizing diseases like this may help as-
sess whether complement inhibition should 
be a first line drug, or rather used as adjunct 
therapy for patients already receiving B and 
T cell targeted therapies. Unfortunately such 
distinctions are not absolute. DDD, for ex-
ample, is not an immune-complex mediated 
disease, but antibodies (C3 nephritic factor) 
can play a role in its development.

Evidence that complement is 
pathogenic in kidney diseases

There is evidence that complement acti-
vation contributes to the pathogenesis of a 
wide range of different renal diseases (Table 
1). Because of the important role that the 

Table 1. 

Syndrome Disease Systemic 
levels

Biopsy Genetic association
(selected references)

Animal model
(selected references)

Nephritic syndrome Lupus nephritis ü ü ü [80] ü [16, 83]
MPGN I ü ü ü [81] ü [28]
MPGN II (DDD) ü ü ü [82] ü [84]
IgA Nephropathy ü

ANCA associated vasculitis ü [24]
Post-strep GN ü ü

Nephrotic 
syndrome

Membranous GN ü ü [29]
FSGS ü ü [25]
Diabetic nephropathy ü

Tubular injury Ischemic AKI ü ü [27, 85]
Tubular injury in proteinuric 
disease

ü ü [26]

Allograft rejection Humoral ü

Cellular ü [74, 86]
TMA Atypical HUS ü ü ü [82] ü [89]

TTP ü [87]
HELLP ü [88]

MPGN = membranoproliferative glomerulonephritis; ANCA = anti-cytoplasmic nuclear antigen; GN = glomerulonephritis; FSGS = focal 
segmental glomerulosclerosis; AKI = acute kidney injury; TMA = thrombotic microangiopathy; TTP = thrombotic thrombocytopenic 
purpura; HELLP = syndrome of hemolysis, elevated liver enzymes, and low platelet count.
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complement system plays in both innate and 
adaptive immune responses, this system is 
engaged by multiple different molecular pro-
cesses within the kidney. Serologic evidence 
of complement activation and renal biopsy 
studies indicate that complement activation 
is associated with disease activity. A wide 
range of animal models has shown that com-
plement activation plays a pathogenic role in 
the development of renal injury. There are 
numerous experiments demonstrating that 
complement activation contributes to the 
pathogenesis of immune-complex mediated 
renal diseases such as membranoprolifera-
tive glomerulonephritis (mpgn) Type I and 
membranous disease [28, 29]. More recently, 
animal models using targeted deletion of 
complement proteins or complement inhibi-
tors have indicated a role for the comple-
ment system in unexpected diseases includ-
ing renal ischemia/reperfusion injury [27], 
focal segmental glomerulosclerosis [25], 
and ANCA associated renal disease [24]. 
The best evidence for a pathologic role of 
complement activation in human disease is 
provided, of course, by successful treatment 
of the disease with complement inhibitors. A 
number of case reports have been published 
[9, 10, 11, 12], and several clinical trials are 
currently underway.

Because complement activation gener-
ates several pro-inflammatory products, the 
mechanisms by which it causes injury can 
be distinct in different locations in different 
diseases. There are animal studies that dem-
onstrate specific disease-inducing roles for 
C3a [30, 31], C5a [31, 32], and C5b-9 [28, 
33]. If it were determined that particular re-
nal diseases were caused by specific comple-
ment factors, then therapies could be focused 
on the pathologic factor(s). Therapies with a 
narrower range of action within the comple-
ment system might have fewer side-effects.

Biomarkers of complement 
activation in renal diseases

An important and difficult problem is how 
to determine whether the complement system 
is activated in a given patient. Activation of 
the complement system can be inferred from 
several clinical findings, including the deposi-
tion of complement proteins within the kid-

ney, perturbations of the levels of circulating 
C3 and C4 during disease flares [34], detec-
tion of complement activation fragments (e.g. 
C3a, C3d, Bb, C5a, sC5b-9) in the plasma or 
urine, and the association of mutations and 
polymorphisms in complement proteins with 
the development of disease.

Although not commonly performed in 
clinical practice, detection of the comple-
ment activation fragments can be a useful 
method of detecting intra-renal complement 
activation. In lupus nephritis, for example, 
the measurement of C3a may be a more sen-
sitive marker of disease flares than C3 levels 
[35] and may be predictive of disease flares 
[36]. Elevations in circulating C3a may also 
be seen in IgA nephropathy, a disease in 
which perturbations in intact C3 are not usu-
ally seen [37, 38]. Similarly, C3dg and C5b-9 
can be detected in the urine of patients with 
membranous nephropathy, another disease in 
which levels of circulating C3 are not typi-
cally depressed [39]. Soluble C5b-9 has been 
used as an indicator of complement activa-
tion in aHUS, and can also be used to moni-
tor the response to eculizumab [9].

Atypical HUS and DDD are fairly “pure” 
complement-mediated diseases, and are dis-
eases for which there is a strong rationale 
in support of complement inhibition. Even 
in these diseases, however, there are many 
practical difficulties in the identification 
and monitoring of appropriate patients to 
treat. Consequently, new biomarkers would 
be of great benefit. Accurate biomarkers of 
complement activation would permit the cli-
nician to identify patients most likely to ben-
efit from a therapeutic complement inhibitor, 
and could also be used to monitor patients 
for relapse.

Atypical HUS

Atypical HUS is the renal disease with the 
most extensive experience using eculizumab 
[6, 7, 8, 10, 11, 12, 40, 41]. Atypical HUS is 
associated with genetic abnormalities in up to 
60% of patients [42]. Complement activation 
may also cause tissue injury in other forms of 
thrombotic microangiopathy (TMA), includ-
ing Shiga-toxin associated disease (typical 
HUS) [43]. In practice, however, the diagno-
sis of a TMA can be delayed or unclear, and 
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distinguishing aHUS from other forms of 
TMA can take weeks. Alternative diagnoses, 
such as thrombocytopenic thrombotic purpu-
ra or disseminated intravascular coagulation, 
can be difficult to exclude in a timely fashion. 
Furthermore, finding objective evidence of 
pathologic complement activation can be ex-
ceedingly difficult. C3 levels are commonly 
measured in patients with suspected glomeru-
lar disease. But even in patients with aHUS 
and mutations in factor H, in whom comple-
ment activation almost certainly contributes to 
disease, C3 levels are depressed in only about 
50% of the patients [44]. New functional 
tests may help identify patients with comple-
ment dysregulation more rapidly [45]. In my 
own experience, however, plasma exchange 
is frequently initiated before the question of 
complement inhibition is even raised, further 
complicating clinical assessment of comple-
ment activity.

Dense deposit disease

Like aHUS, DDD is commonly associated 
with defective complement regulation [46], 
and a clinical trial with eculizumab is current-
ly underway (clintrials.gov NCT01221181). 
The diagnosis of DDD is made by renal bi-
opsy and virtually all biopsies show C3 depo-
sition [47]. There is, therefore, less diagnos-
tic uncertainty than there is with aHUS since 
patients with suspected TMA are usually not 
biopsied. There are currently no clinically 
proven effective therapies for DDD. Approxi-
mately 50% of DDD patients reach end-stage 
renal disease within 10 years, and ~ 50% of re-
nal transplants are lost within 5 years [46]. On 
the other hand, the rate of progression occurs 
over months to years, and some patients have 
normal renal function at the time of diagnosis. 
Thus, although the prognosis for patients with 
this disease is poor, it can be difficult to assess 
whether the clinical benefits justify long-term 
complement inhibition.

Lupus nephritis

Like DDD, the definitive diagnosis of lu-
pus nephritis is usually made only after a re-
nal biopsy has been performed. Most patients 
with proliferative lupus nephritis undergo 

induction therapy with cyclophosphamide 
or mycophenolate mofetil based therapies 
[48, 49, 50, 51]. Experience with rituximab 
shows that it may be difficult to demonstrate 
in a randomized clinical trial a benefit to 
adding-on an additional agent to the standard 
regimens [52]. On the other hand, in some 
studies up to 50% of patients do not respond 
to standard induction therapies [48, 51]. Di-
rect complement inhibitors would block an 
effector system that is not directly affected 
by MMF or cyclophosphamide, and add to 
the effective scope of B-cell and T-cell tar-
geted therapies. Furthermore, the response to 
standard induction therapies can take months 
[48, 53], and complement inhibitors could 
theoretically suppress glomerular inflamma-
tion almost immediately. Thus, although the 
role for therapeutic complement inhibitors in 
patients with lupus nephritis remains to be 
defined, these agents may fill an unmet need 
in the treatment of this disease.

The ideal biomarker

The requirements for a complement bio-
marker vary from disease to disease. In a dis-
ease like aHUS a sensitive systemic marker 
of complement activation, particularly one 
not confounded by plasmapheresis, would be 
critically useful. In DDD, the non-invasive 
detection of glomerular C3 deposition could 
help guide treatment with a complement in-
hibitor. In a disease like lupus nephritis that 
has established therapies, the detection of 
intra-renal complement activation would be 
invaluable determining whether the addition 
of a complement inhibitor is likely to add 
benefit to the agents the patient is already 
receiving.

My laboratory has developed an MRI-
based method for the detection of intra-renal 
complement activation [54]. This method 
employs a contrast agent that is targeted to 
tissue-bound C3d and is then detected by T2-
weighted MRI. Our hope is that this could 
provide a global picture of inflammation, and 
specifically complement activation, through-
out both kidneys. The bound C3 fragments 
are a useful and robust marker of disease ac-
tivity insofar as they are abundant and they 
are durably fixed to tissues. It is worth not-
ing, however, that the detection of C3 cleav-
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age may not be useful in the context of treat-
ment with eculizumab, a drug that blocks the 
complement system at the level of C5.

Therapeutic options

A large number of agents have been de-
veloped, or are currently being developed, 
for the therapeutic inhibition of the comple-
ment system [55]. Eculizumab is a monoclo-
nal antibody to C5 that prevents the genera-
tion of C5a and C5b-9 [41]. Eculizumab has 
now been used in a large number of patients 
with complement-dependent renal disease 
[6, 7, 8, 9, 10, 11, 12, 40], and several clini-
cal trials of this agent in these diseases are 
currently underway. Purified Serping1 (a cir-
culating inhibitor of C1) is approved for the 
treatment of hereditary angioedema, a dis-
ease caused by deficiency of the protein [56]. 
Reports also suggest that administration of 
this protein may reduce tissue injury in other 
diseases [57, 58, 59].

There are other clinically available drugs 
also known to have complement modulat-
ing activity, including IVIg [60] and heparin 
[61]. Given the wide clinical experience with 
a drug like heparin, a greater understand-
ing of its ability to modulate complement 
activation could potentially give it a role 
in treating inflammatory diseases. In light 
of evidence that there are interactions be-
tween the complement system and the clot-
ting cascades, a drug that inhibits both sys-
tems may be particularly useful for diseases 
such as the TMAs [62]. Plasmapheresis can 
modulate complement activation in several 
ways. It can remove activating antibodies 
and immune-complexes. Replacement of 
the removed patient plasma with fresh fro-
zen donor plasma can also restore circulating 
inhibitory proteins, such as factor H. This is 
a presumed mechanism by which plasma ex-
change benefits patients with deficient factor 
H function in aHUS and DDD.

A large number of other complement in-
hibitory agents are in development, includ-
ing recombinant constructs made from en-
dogenous complement regulatory proteins, 
monoclonal antibodies to specific complement 
components or receptors, small molecules 
with complement inhibitory activity, and pep-
tide inhibitors of the C3a and C5a receptors 

[55, 63, 64]. Although a full discussion of 
the agents under development is beyond the 
scope of this review, the features of some of 
these agents are noteworthy. Monoclonal anti-
bodies to components of activation pathways 
can selectively block activation through a sin-
gle pathway. For example, antibodies to factor 
D and factor B that inhibit activation through 
the alternative pathway have been developed 
[63, 65]. These agents may be useful in dis-
eases, such as aHUS and DDD, where com-
plement activation appears to be dependent 
upon this pathway. A small peptide inhibitor 
of C3 activation (POT-4) and a cyclic hexa-
peptide inhibitor of the C5a receptor (PMX-
53) are currently being tested in clinical trials. 
These drugs offer the possibility of blocking 
complement activation at an earlier stage 
(e.g. POT-4), blocking a specific complement 
pathway, or selectively blocking one activa-
tion fragment (e.g. PMX-53). Agents with a 
more selective mechanism of action may have 
improved efficacy in a given disease with a 
reduced risk of side-effects.

Several agents have also been developed 
to target therapeutic complement inhibitors 
to specific tissue sites. A recombinant form 
of complement receptor 1 (CR1) was one of 
the first agents developed as a therapeutic 
complement inhibitor [66]. An agent called 
APT070 links the complement regulating re-
gion of CR1 to a peptide that associates with 
cell membranes, and with a myristoyl group 
that inserts into the cell membrane [67]. Ex-
periments in animal models indicate that al-
lografts treated with this agent are protected 
from ischemic and immune-mediated injury 
[67, 68]. Tomlinson and colleagues have 
developed several complement receptor 2 
(CR2)-targeted complement inhibitors [69, 
70]. These agents bind at sites of comple-
ment activation (tissue-bound iC3b/C3d), 
conferring local complement inhibition with-
out long lasting systemic inhibition. These 
agents appear to have superior pharmacoki-
netics to untargeted inhibitors, and they may 
also pose less infectious risk [71]. Another 
targeted inhibitor was developed using an 
antibody that binds an epitope expressed in 
the rat proximal tubule. This complement in-
hibitor protected rats from tubular injury in 
puromycin induced nephrosis [72]. Further 
development of complement inhibitors tar-
geted to sites of complement activation or to 
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specific tissues should improve the efficacy 
and pharmacokinetics of these agents while 
also reducing their potential toxicity. Such 
improvements will be a great advantage, 
particularly for patients who require chronic 
treatment.

Issues that may affect the 
efficacy of complement 
inhibitors

Half-life and tissue penetration

Depending upon their mechanism of ac-
tion, a complement inhibitor may or may 
not require access to the site of complement 
activation. Agents that work by inactivat-
ing the C3 and/or C5 convertases, that block 
complement receptors, or that are targeted 
to tissue sites will obviously need adequate 
tissue penetration. There is also evidence 
that tubular epithelial cells can locally pro-
duce complement components, contributing 
to tissue injury [73, 74, 75]. Complement 
inhibitors used to treat tubular injury may, 
therefore, need to penetrate the tubuloin-
terstitium. Tissue inflammation increases 
local vascular permeability, of course, and 
glomerular perm-selectivity is increased in 
many glomerular diseases. Nevertheless, for 
some complement inhibitors the ability of 
the molecule to access the site of injury will 
need to be verified.

Complement inhibitors in patients 
with genetic mutations or with 
activating autoantibodies

As described above, uncontrolled patho-
logic complement activation in patients with 
aHUS and DDD can be caused by a num-
ber of defects. Loss of function mutations in 
inhibitory proteins can have the same physi-
ologic effect as gain of function mutations in 
activating proteins. Furthermore, the loss of 
complement control may be due to auto-an-
tibodies to complement regulatory proteins 
such as factor H [42]. This wide range of 
molecular defects raises the possibility that 
some complement inhibitors will be less ef-
fective in some particular patients. For ex-
ample, agents that work at the level of the C3 

convertase may be less effective in a patient 
with a gain of function mutation in the C3 
gene. Similarly, agents that restore native or 
recombinant forms of factor H may be less 
effective in patients with auto-antibodies to 
factor H or who have C3 nephritic factor. 
Many nephrologists do not have access to 
sophisticated complement testing. Even if 
such testing is available, it can take months 
to identify complement gene mutations. 
Because eculizumab targets a downstream 
component of the complement cascade it 
should still be effective at blocking C5a and 
C5b-9 generation in patients with the vari-
ous described defects. As new agents enter 
clinical use, though, the possibility that the 
agent may not work in selected patients must 
be kept in mind.

Risk of infection with therapeutic 
complement inhibitors

The complement system has been shown 
to play a role in a wide range of physiologic 
functions, including defense against infec-
tion, removal of apoptotic cells, immune-
complex clearance, tissue repair, and coagu-
lation [62]. Given the well-described role 
of complement in the innate and adaptive 
immune responses, infection is the most ob-
vious complication of a therapeutic comple-
ment inhibitor. An increased risk of infection 
in patients treated with a complement inhibi-
tor may be inferred from the increased risk 
seen in patients with congenital complement 
deficiencies. Patients with deficiencies in 
classical pathway proteins, alternative path-
way proteins, regulatory proteins, and pro-
teins of the terminal complement complex 
have been identified [62]. The susceptibility 
of patients to particular organisms is related 
to where the defect is in the complement 
cascade. It is also worth noting that deficien-
cies in complement regulatory proteins also 
increase the risk of infection due to the con-
sumption of factors such as C3 [76]. Thus, 
patients with aHUS or DDD may have an in-
creased risk of infection prior treatment.

Overall, infection with Neisseria menin-
gitidis appears to be the most common infec-
tious complication of complement deficiency 
[77], and this is by far the most common in-
fection in those with deficiencies in terminal 
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complement proteins (i.e. C5 – C9) [78]. 
Eculizumab (which blocks complement acti-
vation at the level of C5) carries a black box 
warning that patients should be immunized 
against Meningococcal infections at least 
two weeks prior to treatment with the drug. 
The most extensive experience with this drug 
is in patients with PNH, three patients who 
had been immunized against N Meningitides 
developed Meningococcal sepsis while be-
ing treated for PNH [79]. Thus, although the 
risk of infection in patients treated with com-
plement inhibitors may be mitigated, caution 
is clearly warranted.

The future

Pathogenic complement activation con-
tributes to a wide range of renal diseases. 
Eculizumab has now been used in dozens of 
patients with aHUS, anti-phospholipid anti-
body syndrome, DDD, or at risk for humoral 
allograft rejection. As experience with this 
drug grows it will undoubtly be used in pa-
tients with other types of renal disease too. 
The involvement of the complement system 
in renal disease is complex. There are mul-
tiple mechanisms of complement activation, 
and activation generates multiple biologi-
cally active fragments. Within this complex-
ity lies opportunity. In recent years there has 
been much work exploring the role of specif-
ic complement components in causing tissue 
injury or in facilitating tissue repair. Further-
more, the therapeutic complement inhibitors 
under development will give clinicians the 
ability to block specific pathways or comple-
ment components.

Nephrologists often have direct evidence 
of abnormal complement activation in an in-
dividual patient. This may be an important 
aspect of the clinical use of complement 
inhibitors, and it distinguishes these agents 
from many of the other new biologic thera-
pies. The development of new biomarkers 
and clinical testing should further improve 
our ability to detect and characterize com-
plement activation in patients. New meth-
ods may thus allow clinicians to identify the 
pathways that are engaged in a patient, lo-
calize complement activation within a given 
organ, and choose therapeutic agents de-
signed to block specific complement compo-

nents at that specific location. Furthermore, 
the dosing and duration of treatment could 
be tailored to a patient’s response. The use 
of eculizumab in patients with renal disease 
over the past few years has been an impor-
tant advance in the care of patients with renal 
disease. Given all the new approaches and 
therapeutics under development, however, 
anti-complement therapies may well emerge 
in years to come as one of the great success 
stories of individualized medicine.
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