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We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network
completion is tomake theminimumamount ofmodifications to an initial network so that the completed network ismost consistent
with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we
present a new method for network completion using dynamic programming and least-squares fitting. This method can find an
optimal solution in polynomial time if themaximum indegree of the network is bounded by a constant.We evaluate the effectiveness
of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method
can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal
gene expression data.

1. Introduction

Estimation of genetic interactions from gene expression
microarray data is an interesting and important issue in
bioinformatics. There are two kinds of gene expression data:
time series data and nontime series data. To estimate the
dynamics of gene regulatory networks such as cell cycle
and life cycle processes, various mathematical models and
methods have been proposed using time series data. Since the
number of observed time points in time series data is usually
small, thesemethods suffer from low accuracies. On the other
hand, a large number of nontime series data are available, for
example, samples from normal people and patients of various
types of diseases. Although these data are not necessarily
static, we may regard these data as static data because these
are averaged over a large amount of cells in rather steady
states.

For inference of genetic networks, various reverse engi-
neering methods have been proposed, which include meth-
ods based on Boolean networks [1, 2], Bayesian networks
[3, 4], differential equations [5–7], and graphical Gaussian
models [8–10]. Boolean networks can only be applied to
inference of genetic networks from time series data because
the Boolean network is intrinsically a dynamic model.

Although Bayesian networks have widely been applied to
analysis of static data, they can only output acyclic networks.
Many methods have also been proposed using various kinds
of differential equation models. However, in many cases,
parameter estimation needs a huge amount of computation
time. Overall, most methods suffer from inaccuracy and/or
computational inefficiency and thus there is not yet an
established or standard method for inference of genetic
networks using only gene expression data. Therefore, it is
reasonable to try to develop another approach for analysis of
gene regulatory networks.

In recent years, there have been several studies and
attempts for network completion, not necessarily for biolog-
ical networks but also for social networks and web graphs.
Different from network inference, we assume in network
completion that a certain type of a prototype network is
given, which can be obtained by using existing knowledge.
Kim and Leskovec [11] addressed the network completion
problem in which an incomplete network including unob-
served nodes and edges is given and then the unobserved
parts should be inferred. They proposed KronEM, which
combined the ExpectationMaximization with the Kronecker
graphs model to estimate the missing part of the network.
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Guimerà and Sales-Pardo [12] presented a mathematical
and computational method which can identify both missing
and spurious interactions in complex networks by using the
stochastic block models to capture the structural features
in the network. This method was also applied to a protein
interaction network of yeast. Hanneke and Xing [13] defined
the network completion as a problem of inferring the rest
part of the network, given an observed incomplete network
sample andproposed a samplingmethod to derive confidence
intervals from sample networks. As a related work, Saito et
al. [14] developed a method to measure the consistency of an
inferred network with the measured gene expression data.

Independently, Akutsu et al. [15] proposed anothermodel
of network completion in which the objective is to make
the minimum amount of modifications to a given network
so that the resulting network is most consistent with the
observed data. Based on this concept, Nakajima et al. [16]
developed a practical method, DPLSQ, for completion of
genetic networks from time series data, in which addition
and deletion of edges are the basic modification operations
and the numbers of added and deleted edges are specified.
In addition, if we begin with a network with an empty set
of edges, it can be applied to network inference. DPLSQ
is based on a combination of least-squares fitting and
dynamic programming, where least-squares fitting is used
for estimation of parameters in differential equations and
dynamic programming is used for minimizing the sum of
least-squares errors under the restriction of the number of
added and deleted edges. Different from other heuristic or
stochastic approaches, DPLSQ is guaranteed to output an
optimal solution (in the sense of the minimum least-squares
error) in polynomial time if the maximum indegree of nodes
is bounded by a constant.Nakajima andAkutsu [17] proposed
a method to complete and infer the time varying networks by
extendingDPLSQ so that additions anddeletions of edges can
be performed at several time points. However, since DPLSQ
is based on a dynamicmodel, it cannot be applied to inference
or completion of genetic networks from static data.

In this study, we propose a novel method, DPLSQ-SS
(DPLSQ for Static Samples), for completing and inferring a
network using static gene expression data, based on DPLSQ.
The purpose of this study is twofold: first, to complete and
infer gene networks from static expression profile, instead of
time series data and, secondly, to investigate the relationship
between different kinds of inferred networks under different
conditions (e.g., comparison of normal and cancer networks
obtained from samples of normal and cancer cells). Static
data typically consist of expression levels of genes, which
were measured at single time point but for a large number
of samples. As discussed in the beginning part of this
section, these types of data can be regarded as the gene
expression measurements in a stationary phase. Many of
static microarray data are publicly available, in particular
for cancer microarray data with a relatively large size of
tumor and normal samples. Therefore, it may be possible
to estimate and investigate differences between cancer and
normal networks. The basic strategy of DPLSQ-SS is the
same as that of DPLSQ: least-squares fitting is used for
parameter estimation and dynamic programming is used for

minimizing the sum of least-squares errors when adding
and deleting edges. In order to cope with static data, we
modified the error function to be minimized. Although
the idea is simple, it brings wider applicability because a
large number of static gene expression data are available.
We demonstrate the effectiveness of DPLSQ-SS through
computational experiments using synthetic data and gene
expression data for lung cancer and normal samples. We
also perform computational comparison of DPLSQ-SS as an
inference method with some of state-of-the-art tools using
synthetic data.

2. Method

The purpose of network completion in this study is to
modify a given network by making the minimum number of
modifications so that the resulting network is most consistent
with the observed data. Here we assume additions and
deletions of edges asmodification operations (see Figure 1). In
the following, graph 𝐺(𝑉, 𝐸) denotes a given network where
𝑉 and 𝐸 are the sets of nodes and directed edges, including
loops, respectively. In this graph𝐺, each node corresponds to
a gene and each edge represents a direct regulation between
two genes. We let 𝑛 denote the number of genes and let 𝑉 =
{V
1
, . . . , V

𝑛
}. For each node V
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, 𝑒−(V
𝑖
) anddeg−(V

𝑖
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We employ least-squares fitting for the parameter estima-
tion and dynamic programming for identifying structure of
the network. In the following we explain the algorithm of the
proposed method.

2.1. Model of Nonlinear Equation and Estimation of Param-
eters. Since we consider static data in this paper, we adopt a
mathematicalmodel based on nonlinear equations, instead of
differential equations in [16]. We assume that the static state
of each node V

𝑖
is determined by the following equation:
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where V
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are incoming nodes to V
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, 𝑥
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to the expression value of the 𝑖th gene, and 𝜔 denotes a
random noise. The second and third terms of the right-hand
side of the equation represent linear and nonlinear effects
to node V

𝑖
, respectively (see Figure 2), where positive 𝑎𝑖
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We assume that static expression data ⟨𝑦
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Observed data

Initial network Completed network

...

⟨y1(m), y2(m), y3(m), y4(m), y5(m), y6(m)⟩

⟨y1(2), y2(2), y3(2), y4(2), y5(2), y6(2)⟩

⟨y1(1), y2(1), y3(1), y4(1), y5(1), y6(1)⟩

Figure 1: Network completion by addition and deletion of edges from𝑚 samples.The bold dashed and the thin dashed edges represent added
and deleted edges, respectively.
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Figure 2: Static model of genetic network. The expression level
of V
𝑖
is determined from those of input nodes. 𝑎𝑖

1,2
is a coefficient

corresponding to cooperative regulation by genes V
𝑖1
and V

𝑖2
to gene

V
𝑖
.

estimated by minimizing the following objective function
using a standard least-squares fitting method:
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2.2. Completion by Addition of Edges. Once the objective
function is determined, the completion procedure is the same
as that for DPLSQ [16]. In order to make this paper self-
contained, we also present the completion procedure here.

For the simplicity, we begin with network completion by
adding 𝑘 edges in total so that the sum of least-squares errors
is minimized.

We let𝜎+
𝑘𝑗 ,𝑗

denote theminimum least-squares errorwhen
adding 𝑘

𝑗
edges to the 𝑗th node and they are defined as
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+
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Here, we define𝐷+[𝑘, 𝑖] by
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The entries of 𝐷+[𝑘, 𝑖] can be computed by the dynamic
programming algorithm as follows:

𝐷
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It is to be noted that 𝐷+[𝑘, 𝑛] is determined uniquely
regardless of the ordering of nodes in the network.
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The correctness of this dynamic programming algorithm can
be seen by

min
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2.3. Completion by Addition and Deletion of Edges. The
above dynamic programming procedure can be modified for
addition and deletion of edges.

We let 𝜎
𝑘𝑗 ,ℎ𝑗 ,𝑗
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Here, we define𝐷[𝑘, ℎ, 𝑖] by
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Then, the network completion problem by addition and
deletion of edges can be solved by using the dynamic
programming algorithm as follows:

𝐷[𝑘, ℎ, 1] = 𝜎𝑘,ℎ,1,
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We will also discuss the computational complexity of
DPLSQ-SS. Since completion by addition of edges is a special
case, we only analyze completion by addition and deletion of
edges.

It is known that least-squares fitting for a linear system
can be done in 𝑂(𝑚𝑝2 + 𝑝3) time where 𝑚 is the number of
samples and 𝑝 is the number of parameters. In our proposed
method, we assume that the maximum indegree in a given
network and the number of parameters are bounded by
constants. In this case, the time complexity per least-squares
fitting can be estimated as 𝑂(𝑚).

Next we analyze the time complexity required for 𝜎
𝑘𝑗 ,ℎ𝑗 ,𝑗

and𝐷[𝑘, ℎ, 𝑖]. The time complexity required for computation
of 𝜎
𝑘𝑗 ,ℎ𝑗 ,𝑗

is 𝑂(𝑚𝑛𝐾+1) [16], where the time complexity of
computing the minimum least-squares for 𝑗th node depends
on the upper bounds for the number of adding and deleting

edges per node, 𝐾 and 𝐻. In addition, the time complexity
for 𝐷[𝑘, ℎ, 𝑖]s is 𝑂(𝑛3) [16], considering that the size of
table 𝐷[𝑘, ℎ, 𝑖] is 𝑂(𝑛3). Therefore, total time complexity for
DPLSQ-SS is

𝑂(𝑚𝑛
𝐾+1

+ 𝑛
3
) . (11)

This analysis suggests that DPLSQ-SS can be applicable to
large-scale networks if𝐾 ≤ 2 and 𝑛 is not too large.

If the maximum indegree of the initial network is not
bounded by a constant, the time complexity per least-
squares fitting increases to 𝑂(𝑚𝑛4 + 𝑛6) and the number of
combinations to be examined per node increases to𝑂(𝑛𝐻+𝐾),
as discussed in [16]. In this case, the total time complexity
would be𝑂(𝑛𝐻+𝐾+1 ⋅ (𝑚𝑛4+𝑛6)), which suggests that network
completion should not start with dense networks but with
sparse networks.

3. Results

To evaluate the effectiveness of DPLSQ-SS, we performed two
types of computational experiments using both synthetic data
and real expression data. All experiments were performed on
a PC with Intel Core 2 Quad CPU (3.0GHz). We employed
the liblsq library (http://www2.nict.go.jp/aeri/sts/stmg/K5/
VSSP/install lsq.html) for a least-squares fitting method.

3.1. Inference Using Synthetic Data. In order to assess the
potential effectiveness of DPLSQ-SS, we begin with network
inference using two kinds of synthetic data. Recall that net-
work completion beginning with a null network corresponds
to network inference.

We employed here nonlinear equations as gene regulation
rules between genes. Since it is difficult to generate static
data by numerical simulations, we made manually nonlinear
equations with obvious solutions as the synthetic network
topology and regarded each solution as static data for one
sample. For example, if we make 𝑛 equations with 𝑛 variables,
it is assumed that there exist 𝑛 genes in the synthetic network.
We give an example of nonlinear equations with 3 variables
below:

𝑥
1
= 𝑥
2

1
− 2,

𝑥
2
= 𝑥
2

2
− 6,

𝑥
3
= 𝑥
1
𝑥
2
− 1,

(12)

where we assume that 𝑥
𝑖
(𝑖 = 1, . . . , 3) corresponds to the

expression value of 𝑖th gene. Therefore, an example network
consists of 3 genes and 4 edges, including self-loops. If we
solve this set of equations, we can find four solutions as below:

(2, 3, 5) , (2, −2, −5) , (−1, 3, −4) , (−1, −2, 1) . (13)

Then, we can employ these solutions as synthetic data. Since
the use of synthetic static data consisting only of a few
solutions easily resulted in numerical calculation error, we
generated additional 400 data sets for each of static solutions

http://www2.nict.go.jp/aeri/sts/stmg/K5/VSSP/install_lsq.html
http://www2.nict.go.jp/aeri/sts/stmg/K5/VSSP/install_lsq.html
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by adding random numbers uniformly distributed between
−0.5 and 0.5.

Under the above model, we examined DPLSQ-SS for
network inference, using synthetic data which is generated
as described above and letting 𝐸 = 0 in the initial network.
It should be noted that we let upper bounds for the number
of adding and deleting edges per node to be 𝐾 = 2 and
𝐻 = 0, respectively. Furthermore, in order to examine the
CPU time changes with respect to the size of the network, we
made synthetic networks with 10 and 20 nodes bymaking the
nonlinear equation with corresponding number of variables.

Since the number of added edges was always equal to the
number of edges in the original network, we evaluated the
performance of DPLSQ-SS by means of the averaged accu-
racy, which was defined as the number of correctly inferred
edges to the number of edges in the original network (i.e.,
the number of added edges) and the averaged computational
time over 5modified networks.

We also compared DPLSQ-SS with two well-known
existing tools for inference of genetic networks, ARACNE
[18, 19] and GeneNet [9, 10]. ARACNE is based on mutual
information between genes and GeneNet is based on graphi-
cal Gaussianmodels and partial correlations. Since both tools
output only correlation values for genes, we selected the top
𝑀 from them and regarded {V

𝑖
, V
𝑗
} as a correct edge if either

(V
𝑖
, V
𝑗
) or (V

𝑗
, V
𝑖
) was included in the edge set of the original

network. We employed datasets which were generated by the
same way for DPLSQ-SS and default parameter settings for
both tools. We evaluated the results by the ratio of correctly
inferred edges and averaged CPU time (see Table 1).TheCPU
time used by ARACNE is user time + sys time and that used
by GeneNet is time difference between the start time and end
time.

The results on DPLSQ-SS and comparative methods
using synthetic data show that the accuracies by DPLSQ-
SS are higher than those by ARACNE and GeneNet.
Although ARACNE cannot handle networks with self-loops
but GeneNet can, both methods showed almost the same
performance in the case of 𝑛 = 10. On the whole, three
methods have something in common, which perform with
low accuracy as the size of the network grows. As for the CPU
time, ARACNE was faster than DPLSQ-SS and GeneNet in
case of 𝑛 = 10. In addition, the CPU time by DPLSQ-SS
increases rapidly as the size of the network grows, in contrast
to those by the comparativemethods. Since DPLSQ-SS works
in polynomial time, if we obtain sufficient computer resource,
DPLSQ-SS can handle large-scale networks. Since accuracy is
themost important criterion andDPLSQ-SS ismore accurate
than existing methods, our proposed method might be a
useful tool for network inference.

3.2. Inference Using DREAM4 Data. In this subsection, we
try to evaluate the effectiveness of DPLSQ-SS and perform
a comparison with other methods in order to perform an
unbiased evaluation since the results in Section 3.1 are based
on the mathematical model adopted by DPLSQ-SS. We
used synthetic datasets generated byGeneNetWeaver (GNW)
[20], which provide benchmarks and performance testing

Table 1: Results on inference using synthetic data.

Method
DPLSQ-SS ARACNE GeneNet

𝑛 = 10
Accuracy 0.779 0.578 0.571

CPU time (sec.) 1.784 1.113 4.020

𝑛 = 20
Accuracy 0.722 0.554 0.390

CPU time (sec.) 14.482 4.795 4.040

Table 2: Results on inference using DREAM4 data, where the
accuracy is shown for each case.

Method
DPLSQ-SS ARACNE GeneNet

Insilico size 10 1 0.2666 0.2000 0.0666
Insilico size 10 2 0.1875 0.2500 0.1250
Insilico size 10 3 0.1333 0.2000 0.0666
Insilico size 10 4 0.1538 0.3076 0.0769
Insilico size 10 5 0.0833 0.1666 0.0833

for network inference methods in the DREAM (Dialogue
on Reverse Engineering Assessment and Methods) challenge
(http://www.the-dream-project.org/challenges). One aim of
the DREAM project is to provide benchmark data on
real and simulated expression data for network inference.
This challenge includes several editions, where GNW has
been developed to generate genetic network motifs and
simulated expression data. In this evaluation, we used the
DREAM4 challenge which is divided into three subchal-
lenges called InSilico Size10, InSilico Size100, and InSil-
ico Size100 Multifactorial, consisting of five networks.

We validated the performance using InSilico Size10 sub-
challenge consisting of gold standard 10 gene networks and
simulated expression data generated under different con-
ditions (wild-type, knockouts, knockdowns, multifactorial
perturbations, and time series). Since only one set of wild-
type data, which corresponds to static data, is provided for
each network and it is not enough for inference, we generated
500 static data sets by randomly perturbing each data as
in Section 3.1. The result is shown in Table 2, where the
accuracy was evaluated as in Section 3.1. It is seen from the
table that the performance of any method is not good. It is
reasonable because inference was preformed based on one set
of expression data (i.e.,𝑚 = 1) although perturbed data were
also used. Although ARACNE was better than DPLSQ-SS in
four cases, DPLSQ-SS was better than ARACNE in one case.
DPLSQ-SS was better than GeneNet in four cases and was
comparative to GeneNet in one case.This result suggests that
although DPLSQ-SS is not necessarily the best for simulated
data in DREAM4, it has reasonable performance when a very
few samples are given.

3.3. Completion Using Synthetic Data. We also examined
network completion using synthetic data. In this experiment,
we adopted the nonlinear equations described in Section 3.1.
In order to examine network completion, we also applied
DPLSQ-SS to synthetic networks, which are generated by

http://www.the-dream-project.org/challenges
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Table 3: Results on completion with synthetic data on DPLSQ-SS.

Number of added
edges and

number of deleted
edges

Accuracy CPU time (sec.)

𝑛 = 10

𝑘 = 1, ℎ = 1 1.000 0.720
𝑘 = 2, ℎ = 2 1.000 5.810
𝑘 = 3, ℎ = 3 1.000 4.610
𝑘 = 4, ℎ = 4 1.000 5.000
𝑘 = 5, ℎ = 5 0.700 4.410

𝑛 = 20

𝑘 = 1, ℎ = 1 1.000 2.760
𝑘 = 2, ℎ = 2 1.000 51.870
𝑘 = 3, ℎ = 3 0.833 46.220
𝑘 = 4, ℎ = 4 1.000 53.880
𝑘 = 5, ℎ = 5 0.700 48.910

MYC

P15

MAX
CKS

SKP2

CCNE1

E2F

CDK4

CCND1

Figure 3: A part of small cell lung cancer network, containing
RB/E2F pathway.

randomly adding 𝑘 edges and deleting ℎ edges from an
original network.

We assess the DPLSQ-SS performance in terms of the
accuracy of modified edges and the computational time for
network completion. The accuracy is defined as follows:

ℎ + 𝑘 +

𝐸org ∩ 𝐸cmp


−

𝐸org



ℎ + 𝑘
, (14)

where 𝐸org and 𝐸cmp are the set of edges in the original
network and the completed network, respectively. This value
takes 1 if all added and deleted edges are correct and takes 0 if
all added and deleted edges are incorrect. For each (𝑘, ℎ), we
took the averaged accuracy and CPU time for completing the
network over 5 modifications for 10 and 20 gene networks,
where we used the default values of 𝐾 = 𝐻 = 2. To avoid
the numerical calculation error, we also generated additional
400 data sets for each of static solutions by adding random
numbers uniformly distributed between −0.5 and 0.5.

The results are shown in Table 3. It is observed that
DPLSQ-SS has quite high accuracy regardless of the number
of 𝑘 and ℎ except for 𝑘 = ℎ = 5. It is also seen that the
CPU time increases rapidly when applied to networks with

20 genes. In comparison with the CPU time for network
inference by DPLSQ-SS, there seems to be a significant
difference even if 𝑛 equals 10. In this study, we used the default
values of 𝐾 = 2 and 𝐻 = 2 for network completion, which
were 𝐾 = 2 and 𝐻 = 0 for network inference. Moreover,
the number of modified edges for network inference is
much larger than that for network completion. However, the
latter procedure requires more CPU time than the former
procedure. This result suggests that the time complexity of
DPLSQ-SS depends not so much on the number of modified
edges, 𝑘 and ℎ, but depends much on the number of𝐾 and𝐻
as indicated in Section 2.3.

3.4. Inference Using Real Data. We also examined DPLSQ-
SS for inference of gene networks from static data under
multiple conditions.The aim of this experiment is to identify
different static gene networks under different conditions and
investigate the differences of these network topologies. We
focus on the genetic network related to lung cancer and
employed a partial network which contains RB/E2F pathway
in human small cell lung cancer from theKEGGdatabase [21]
shown in Figure 3. RB/E2F pathway is one of twomain tumor
suppressor pathways and the retinoblastoma gene (RB) plays
a key role in cancer [22]. RB is known to control the activity
of E2F transcription factor which regulates the cell-cycle
progression and E2F is under the control of both CDK4 and
CCND1 (CyclinD1). It is also known that the activity of E2F
plays an important role in the tumor cell proliferation and
that absence of E2F leads to cancer formation. In this way,
it is obvious that the gene abnormality of RB/E2F pathway
is linked to cancer and there are precise differences between
the cancer gene network and the normal gene network.
Therefore, inferring the cancer and normal gene networks is
quite meaningful. In this study, we demonstrate that DPLSQ-
SS can distinguish the difference between cancer and normal
networks from static expression data. Based on the KEGG
database and Entrez Gene ID, we selected 9 genes shown
in Table 4. We referred to RefGene (http://refgene.com/) for
gene symbols and annotations and employed the resulting
network as the original network.

As for the static expression data, we employed lung cancer
microarray data obtained by Beer et al. [23]. They clus-
tered hierarchically the gene expression profiles from lung
adenocarcinoma tumor tissues and those from normal lung
tissues. This data contains 86 tumor samples and 10 normal
samples and is publicly available from the study of Choi
and Kendziorski [24]. In order to investigate the relationship
between cancer and normal gene network topologies, we
performed network inference using these two types of data,
where 𝐾 = 2, 𝐻 = 0, and 𝑘 = 13 were used. In order
to avoid the numerical calculation error, we also generated
additional 5 data sets for each expression value by adding
random numbers uniformly distributed between −0.5 and
0.5. The results are shown in Figure 4.

We also compared DPLSQ-SS with ARACNE and
GeneNet using these real data.The result is shown in Table 5,
where the accuracy (i.e., the ratio of the number of correctly
inferred edges to the number of added edges) was calculated

http://refgene.com/
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Figure 4: Results on inference with gene expression data for cancer and normal samples. We could verify the activation of RB/E2F pathway
in the normal network and the inactivation of it in the cancer network. The bold dashed arrows denote the incorrectly added edges. The
bold solid arrows denote the correctly added edges (i.e., added edges that are included in the original network). Since directions of edges
are ignored in comparison with ARACNE and GeneNet, bold dashed arrows connecting to P15 are regarded as correct in the evaluation of
accuracy in Table 5.

Table 4: List of gene symbols and annotations in human small cell lung cancer network.

Number Gene symbol Gene annotation
1 MYC v-myc myelocytomatosis viral oncogene homolog (avian)
2 P15 Cyclin-dependent kinase inhibitor 2B
3 CDK4/6 Cyclin-dependent kinase 4
4 CCND1 Cyclin D1
5 MAX MYC associated factor X
6 CKS1 CDC28 protein kinase regulatory subunit 1B
7 SKP2 S-phase kinase-associated protein 2 (p45)
8 CCNE1 Cyclin E1
9 E2F3 E2F transcription factor 3

Table 5: Results on inference of real networks, where the accuracy
is shown for each case.

Method
DPLSQ-SS ARACNE GeneNet

Normal network 0.3846 0.3076 0.0769
Cancer network 0.1538 0.3846 0.0769

as in Section 3.1 and the networks obtained from the KEGG
database were regarded as the correct networks. Although
DPLSQ-SS was worse than ARACNE for the cancer network,
it was better for the normal network. For both networks,
DPLSQ-SS was better than GeneNet. This result suggests
that the accuracy of DPLSQ-SS for real data is reasonable
compared with existing methods.

Although the accuracy of DPLSQ-SS is not high for real
data, there are significant differences between cancer and
normal networks.The inferred normal network indicated the
existence of RB/E2F pathway involved in the regulation of
E2F activity. It is observed that the tumor suppressor gene P15
regulated CDK4 activity and E2F was under the regulation
of both CDK4 and CCND1. On the other hand, in the
inferred tumor network, we found no significant correlations
between genes in RB/E2F pathway. Instead, we discovered the

regulation of CCND1 and deregulation of E2F activity. It has
been reported that overexpression of CDK4/6 and CCND1
and deregulated E2F could contribute to cancer progression
[22, 25]. Therefore, inference of two types of networks could
produce the reasonable outcome that matches biological
knowledge asmentioned above and could capture the features
of each network. Although there is no common edge between
the inferred cancer network and the original network, it is
reasonable because cancer networks may be very different
fromnormal networks.This result suggests that our proposed
method can infer different static networks under the different
conditions and can identify the feature of cancer and normal
networks.

4. Conclusion

In this study, we addressed the problem of completing and
inferring gene networks under the stationary conditions from
static gene expression data. In our approach, we defined
network completion as making the minimum amount of
modifications to an initial network so that the inferred
network ismost consistent with the gene expression data.The
aim of this study is (1) to complete genetic networks using
static data and (2) to investigate the differences between two
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types of gene networks under different conditions. In order to
achieve our goal, we proposed a novelmethod calledDPLSQ-
SS for network completion and network inference based
on dynamic programming and least-squares fitting. This
method works in polynomial time if the maximum indegree
is bounded by a constant. We demonstrated the effectiveness
of DPLSQ-SS through computational experiments using
synthetic data and real data. In particular, we tried to infer the
normal and lung cancer networks from static genemicroarray
data. As the results using synthetic data, DPLSQ-SS showed
relatively good performance in comparison to other existing
methods. As the results using microarray data from normal
and lung cancer samples, it is seen that this method allows us
to distinguish the differences between gene networks under
different conditions.

There is some room for extending DPLSQ-SS. For exam-
ple, we employed here simple nonlinear equations as gene
regulation rules, but it can be replaced by more complex
types of nonlinear equations. Although DPLSQ-SS works in
polynomial time, the degree of polynomial is not low, which
prevents the method from being applied to completion of
large networks. However, DPLSQ-SS can be highly paral-
lelizable: 𝜎

𝑘𝑗 ,ℎ𝑗 ,𝑗
can be computed independently for different

𝜎
𝑘𝑗 ,ℎ𝑗 ,𝑗

s. Therefore, parallel implementation of DPLSQ-SS
is also important future work. Although we have focused
on completion and inference of gene regulatory networks,
completion and inference of large-scale protein-protein or
ChIP-chip/seq interaction networks are also important. Since
the proposed method is only applicable to gene regulatory
networks, extension and application of DPLSQ-SS for these
networks should be studied in the future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was partially supported by Grant-in-Aid no.
22240009 from JSPS, Japan.

References

[1] S. Liang, S. Fuhrman, and R. Somogyi, “Reveal, a general
reverse engineering algorithm for inference of genetic network
architectures,” Pacific Symposium on Biocomputing. Pacific Sym-
posium on Biocomputing, pp. 18–29, 1998.

[2] T. Akutsu, S. Miyano, and S. Kuhara, “Inferring qualitative
relations in genetic networks and metabolic pathways,” Bioin-
formatics, vol. 16, no. 8, pp. 727–734, 2000.

[3] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using
Bayesian networks to analyze expression data,” Journal of
Computational Biology, vol. 7, no. 3-4, pp. 601–620, 2000.

[4] S. Imoto, S. Kim, T. Goto et al., “Bayesian network and nonpara-
metric heteroscedastic regression for nonlinear modeling of
genetic network,” Journal of Bioinformatics and Computational
Biology, vol. 1, no. 2, pp. 231–252, 2003.

[5] P. D’Haeseleer, S. Liang, and R. Somogyi, “Genetic network
inference: from co-expression clustering to reverse engineer-
ing,” Bioinformatics, vol. 16, no. 8, pp. 707–726, 2000.

[6] Y. Wang, T. Joshi, X.-S. Zhang, D. Xu, and L. Chen, “Inferring
gene regulatory networks from multiple microarray datasets,”
Bioinformatics, vol. 22, no. 19, pp. 2413–2420, 2006.

[7] R.-S.Wang, Y.Wang, X.-S. Zhang, and L. Chen, “Inferring tran-
scriptional regulatory networks from high-throughput data,”
Bioinformatics, vol. 23, no. 22, pp. 3056–3064, 2007.

[8] H. Toh and K. Horimoto, “Inference of a genetic network by a
combined approach of cluster analysis and graphical Gaussian
modeling,” Bioinformatics, vol. 18, no. 2, pp. 287–297, 2002.

[9] R. Opgen-Rhein and K. Strimmer, “Inferring gene dependency
networks from genomic longitudinal data: a functional data
approach,” REVSTAT, vol. 4, no. 1, pp. 53–65, 2006.

[10] R. Opgen-Rhein and K. Strimmer, “From correlation to cau-
sation networks: a simple approximate learning algorithm and
its application to high-dimensional plant gene expression data,”
BMC Systems Biology, vol. 1, article 37, 2007.

[11] M. Kim and J. Leskovec, “The network completion problem:
inferring missing nodes and edges in networks,” in Proceedings
of SIAM International Conference on Data Mining, pp. 47–58,
2011.
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